1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-08 17:21:49 +02:00

(v0.7.1.9031) include_unknown for first_isolate()

This commit is contained in:
2019-08-08 22:39:42 +02:00
parent 22a206ffd8
commit 1ce4b72dd2
17 changed files with 173 additions and 164 deletions

View File

@ -30,7 +30,7 @@
#' @param col_specimen column name of the specimen type or group
#' @param col_icu column name of the logicals (\code{TRUE}/\code{FALSE}) whether a ward or department is an Intensive Care Unit (ICU)
#' @param col_keyantibiotics column name of the key antibiotics to determine first \emph{weighted} isolates, see \code{\link{key_antibiotics}}. Defaults to the first column that starts with 'key' followed by 'ab' or 'antibiotics' (case insensitive). Use \code{col_keyantibiotics = FALSE} to prevent this.
#' @param episode_days episode in days after which a genus/species combination will be determined as 'first isolate' again
#' @param episode_days episode in days after which a genus/species combination will be determined as 'first isolate' again. The default of 365 days is based on the guideline by CLSI, see Source.
#' @param testcodes_exclude character vector with test codes that should be excluded (case-insensitive)
#' @param icu_exclude logical whether ICU isolates should be excluded (rows with value \code{TRUE} in column \code{col_icu})
#' @param specimen_group value in column \code{col_specimen} to filter on
@ -38,10 +38,13 @@
#' @param ignore_I logical to determine whether antibiotic interpretations with \code{"I"} will be ignored when \code{type = "keyantibiotics"}, see Details
#' @param points_threshold points until the comparison of key antibiotics will lead to inclusion of an isolate when \code{type = "points"}, see Details
#' @param info print progress
#' @param include_unknown logical to determine whether 'unknown' microorganisms should be included too, i.e. microbial code \code{"UNKNOWN"}, which defaults to \code{FALSE}. For WHONET users, this means that all records with organism code \code{"con"} (\emph{contamination}) will be excluded at default. Isolates with a microbial ID of \code{NA} will always be excluded as first isolate.
#' @param ... parameters passed on to the \code{first_isolate} function
#' @details \strong{WHY THIS IS SO IMPORTANT} \cr
#' To conduct an analysis of antimicrobial resistance, you should only include the first isolate of every patient per episode \href{https://www.ncbi.nlm.nih.gov/pubmed/17304462}{[1]}. If you would not do this, you could easily get an overestimate or underestimate of the resistance of an antibiotic. Imagine that a patient was admitted with an MRSA and that it was found in 5 different blood cultures the following week. The resistance percentage of oxacillin of all \emph{S. aureus} isolates would be overestimated, because you included this MRSA more than once. It would be \href{https://en.wikipedia.org/wiki/Selection_bias}{selection bias}.
#'
#' All isolates with a microbial ID of \code{NA} will be excluded as first isolate.
#'
#' The functions \code{filter_first_isolate} and \code{filter_first_weighted_isolate} are helper functions to quickly filter on first isolates. The function \code{filter_first_isolate} is essentially equal to:
#' \preformatted{
#' x \%>\%
@ -170,6 +173,7 @@ first_isolate <- function(x,
ignore_I = TRUE,
points_threshold = 2,
info = TRUE,
include_unknown = FALSE,
...) {
if (!is.data.frame(x)) {
@ -215,7 +219,7 @@ first_isolate <- function(x,
# WHONET support
x <- x %>% mutate(patient_id = paste(`First name`, `Last name`, Sex))
col_patient_id <- "patient_id"
message(blue(paste0("NOTE: Using combined columns ", bold("`First name`, `Last name` and `Sex`"), " as input for `col_patient_id`.")))
message(blue(paste0("NOTE: Using combined columns `", bold("First name"), "`, `", bold("Last name"), "` and `", bold("Sex"), "` as input for `col_patient_id`.")))
} else {
col_patient_id <- search_type_in_df(x = x, type = "patient_id")
}
@ -260,15 +264,14 @@ first_isolate <- function(x,
check_columns_existance(col_icu)
check_columns_existance(col_keyantibiotics)
# join to microorganisms data set
# create new dataframe with original row index
x <- x %>%
mutate_at(vars(col_mo), as.mo) %>%
left_join_microorganisms(by = col_mo) %>%
# empty species will lead to first = FALSE, so put in text there if genus is available
mutate(species = ifelse(!is.na(genus) & species == "", "species", species))
col_genus <- "genus"
col_species <- "species"
mutate(newvar_row_index = 1:nrow(x),
newvar_mo = x %>% pull(col_mo) %>% as.mo(),
newvar_genus_species = paste(mo_genus(newvar_mo), mo_species(newvar_mo)),
newvar_date = x %>% pull(col_date),
newvar_patient_id = x %>% pull(col_patient_id))
if (is.null(col_testcode)) {
testcodes_exclude <- NULL
}
@ -303,16 +306,7 @@ first_isolate <- function(x,
testcodes_exclude <- ''
}
# create new dataframe with original row index and right sorting
x <- x %>%
mutate(first_isolate_row_index = 1:nrow(x),
date_lab = x %>% pull(col_date),
patient_id = x %>% pull(col_patient_id),
species = x %>% pull(col_species),
genus = x %>% pull(col_genus)) %>%
mutate(species = if_else(is.na(species) | species == "(no MO)", "", species),
genus = if_else(is.na(genus) | genus == "(no MO)", "", genus))
# arrange data to the right sorting
if (is.null(specimen_group)) {
# not filtering on specimen
if (icu_exclude == FALSE) {
@ -320,10 +314,9 @@ first_isolate <- function(x,
cat('[Criterion] Included isolates from ICU.\n')
}
x <- x %>%
arrange_at(c(col_patient_id,
col_genus,
col_species,
col_date))
arrange(newvar_patient_id,
newvar_genus_species,
newvar_date)
row.start <- 1
row.end <- nrow(x)
} else {
@ -332,10 +325,9 @@ first_isolate <- function(x,
}
x <- x %>%
arrange_at(c(col_icu,
col_patient_id,
col_genus,
col_species,
col_date))
"newvar_patient_id",
"newvar_genus_species",
"newvar_date"))
suppressWarnings(
row.start <- which(x %>% pull(col_icu) == FALSE) %>% min(na.rm = TRUE)
@ -353,10 +345,9 @@ first_isolate <- function(x,
}
x <- x %>%
arrange_at(c(col_specimen,
col_patient_id,
col_genus,
col_species,
col_date))
"newvar_patient_id",
"newvar_genus_species",
"newvar_date"))
suppressWarnings(
row.start <- which(x %>% pull(col_specimen) == specimen_group) %>% min(na.rm = TRUE)
)
@ -370,10 +361,9 @@ first_isolate <- function(x,
x <- x %>%
arrange_at(c(col_icu,
col_specimen,
col_patient_id,
col_genus,
col_species,
col_date))
"newvar_patient_id",
"newvar_genus_species",
"newvar_date"))
suppressWarnings(
row.start <- which(x %>% pull(col_specimen) == specimen_group
& x %>% pull(col_icu) == FALSE) %>% min(na.rm = TRUE)
@ -386,27 +376,28 @@ first_isolate <- function(x,
}
# no isolates found
if (abs(row.start) == Inf | abs(row.end) == Inf) {
if (info == TRUE) {
message(paste("=> Found", bold("no isolates")))
}
# NAs where genus is unavailable
return(x %>%
mutate(real_first_isolate = if_else(genus == '', NA, FALSE)) %>%
pull(real_first_isolate)
)
return(rep(FALSE, nrow(x)))
}
# did find some isolates - add new index numbers of rows
x <- x %>% mutate(newvar_row_index_sorted = 1:nrow(.))
# suppress warnings because dplyr wants us to use library(dplyr) when using filter(row_number())
suppressWarnings(
scope.size <- x %>%
filter(
row_number() %>% between(row.start,
row.end),
genus != "",
species != "") %>%
nrow()
)
#suppressWarnings(
scope.size <- row.end - row.start + 1
# x %>%
# filter(
# row_number() %>% between(row.start,
# row.end),
# newvar_genus != "",
# newvar_species != "") %>%
# nrow()
# )
identify_new_year = function(x, episode_days) {
# I asked on StackOverflow:
@ -432,15 +423,13 @@ first_isolate <- function(x,
# Analysis of first isolate ----
all_first <- x %>%
mutate(other_pat_or_mo = if_else(patient_id == lag(patient_id)
& genus == lag(genus)
& species == lag(species),
mutate(other_pat_or_mo = if_else(newvar_patient_id == lag(newvar_patient_id)
& newvar_genus_species == lag(newvar_genus_species),
FALSE,
TRUE)) %>%
group_by_at(vars(patient_id,
genus,
species)) %>%
mutate(more_than_episode_ago = identify_new_year(x = date_lab,
group_by(newvar_patient_id,
newvar_genus_species) %>%
mutate(more_than_episode_ago = identify_new_year(x = newvar_date,
episode_days = episode_days)) %>%
ungroup()
@ -461,41 +450,36 @@ first_isolate <- function(x,
}
}
type_param <- type
# suppress warnings because dplyr want us to use library(dplyr) when using filter(row_number())
suppressWarnings(
all_first <- all_first %>%
mutate(key_ab_lag = lag(key_ab)) %>%
mutate(key_ab_other = !key_antibiotics_equal(y = key_ab,
z = key_ab_lag,
type = type_param,
ignore_I = ignore_I,
points_threshold = points_threshold,
info = info)) %>%
mutate(
real_first_isolate =
if_else(
between(row_number(), row.start, row.end)
& genus != ""
& species != ""
& (other_pat_or_mo | more_than_episode_ago | key_ab_other),
TRUE,
FALSE))
)
all_first <- all_first %>%
mutate(key_ab_lag = lag(key_ab)) %>%
mutate(key_ab_other = !key_antibiotics_equal(y = key_ab,
z = key_ab_lag,
type = type_param,
ignore_I = ignore_I,
points_threshold = points_threshold,
info = info)) %>%
mutate(
real_first_isolate =
if_else(
newvar_row_index_sorted %>% between(row.start, row.end)
& newvar_genus_species != ""
& (other_pat_or_mo | more_than_episode_ago | key_ab_other),
TRUE,
FALSE))
} else {
# no key antibiotics
# suppress warnings because dplyr want us to use library(dplyr) when using filter(row_number())
suppressWarnings(
all_first <- all_first %>%
mutate(
all_first <- all_first %>%
mutate(
real_first_isolate =
if_else(
between(row_number(), row.start, row.end)
& genus != ""
& species != ""
newvar_row_index_sorted %>% between(row.start, row.end)
& newvar_genus_species != ""
& (other_pat_or_mo | more_than_episode_ago),
TRUE,
FALSE))
)
}
# first one as TRUE
@ -507,18 +491,39 @@ first_isolate <- function(x,
if (icu_exclude == TRUE) {
all_first[which(all_first[, col_icu] == TRUE), 'real_first_isolate'] <- FALSE
}
# NAs where genus is unavailable
decimal.mark <- getOption("OutDec")
big.mark <- ifelse(decimal.mark != ",", ",", ".")
# handle empty microorganisms
if (any(all_first$newvar_mo == "UNKNOWN", na.rm = TRUE)) {
if (include_unknown == TRUE) {
message(blue(paste0("NOTE: Included ", format(sum(all_first$newvar_mo == "UNKNOWN"),
decimal.mark = decimal.mark, big.mark = big.mark),
' isolates with a microbial ID "UNKNOWN" (column `', bold(col_mo), '`).')))
} else {
message(blue(paste0("NOTE: Excluded ", format(sum(all_first$newvar_mo == "UNKNOWN"),
decimal.mark = decimal.mark, big.mark = big.mark),
' isolates with a microbial ID "UNKNOWN" (column `', bold(col_mo), '`).')))
}
}
all_first[which(all_first$newvar_mo == "UNKNOWN"), 'real_first_isolate'] <- include_unknown
# exclude all NAs
if (any(is.na(all_first$newvar_mo))) {
message(blue(paste0("NOTE: Excluded ", format(sum(is.na(all_first$newvar_mo)),
decimal.mark = decimal.mark, big.mark = big.mark),
' isolates with a microbial ID "NA" (column `', bold(col_mo), '`).')))
}
all_first[which(is.na(all_first$newvar_mo)), 'real_first_isolate'] <- FALSE
# arrange back according to original sorting again
all_first <- all_first %>%
mutate(real_first_isolate = if_else(genus %in% c('', '(no MO)', NA), NA, real_first_isolate))
all_first <- all_first %>%
arrange(first_isolate_row_index) %>%
arrange(newvar_row_index) %>%
pull(real_first_isolate)
if (info == TRUE) {
decimal.mark <- getOption("OutDec")
big.mark <- ifelse(decimal.mark != ",", ",", ".")
n_found <- base::sum(all_first, na.rm = TRUE)
p_found_total <- percent(n_found / nrow(x), force_zero = TRUE)
p_found_scope <- percent(n_found / scope.size, force_zero = TRUE)