From 226d10f546d1b4b8777d5f5119167f87c78c6ed0 Mon Sep 17 00:00:00 2001 From: Matthijs Berends Date: Sat, 22 Feb 2025 22:07:56 +0100 Subject: [PATCH] (v2.1.1.9154) documentation fix --- DESCRIPTION | 2 +- NEWS.md | 2 +- PythonPackage/AMR/AMR.egg-info/PKG-INFO | 2 +- ...ny.whl => AMR-2.1.1.9154-py3-none-any.whl} | Bin 10254 -> 10255 bytes PythonPackage/AMR/dist/amr-2.1.1.9153.tar.gz | Bin 10082 -> 0 bytes PythonPackage/AMR/dist/amr-2.1.1.9154.tar.gz | Bin 0 -> 10067 bytes PythonPackage/AMR/setup.py | 2 +- R/plotting.R | 86 ++++------ ....txt => gpt_training_text_v2.1.1.9154.txt} | 155 +----------------- man/plot.Rd | 153 ----------------- 10 files changed, 34 insertions(+), 368 deletions(-) rename PythonPackage/AMR/dist/{AMR-2.1.1.9153-py3-none-any.whl => AMR-2.1.1.9154-py3-none-any.whl} (84%) delete mode 100644 PythonPackage/AMR/dist/amr-2.1.1.9153.tar.gz create mode 100644 PythonPackage/AMR/dist/amr-2.1.1.9154.tar.gz rename data-raw/{gpt_training_text_v2.1.1.9153.txt => gpt_training_text_v2.1.1.9154.txt} (99%) diff --git a/DESCRIPTION b/DESCRIPTION index dfa3c71b7..2c35b4b43 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,5 +1,5 @@ Package: AMR -Version: 2.1.1.9153 +Version: 2.1.1.9154 Date: 2025-02-22 Title: Antimicrobial Resistance Data Analysis Description: Functions to simplify and standardise antimicrobial resistance (AMR) diff --git a/NEWS.md b/NEWS.md index 4485f3c8c..ee37d9fab 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,4 +1,4 @@ -# AMR 2.1.1.9153 +# AMR 2.1.1.9154 *(this beta version will eventually become v3.0. We're happy to reach a new major milestone soon, which will be all about the new One Health support! Install this beta using [the instructions here](https://msberends.github.io/AMR/#latest-development-version).)* diff --git a/PythonPackage/AMR/AMR.egg-info/PKG-INFO b/PythonPackage/AMR/AMR.egg-info/PKG-INFO index bc1c0e2c2..4583ab3ba 100644 --- a/PythonPackage/AMR/AMR.egg-info/PKG-INFO +++ b/PythonPackage/AMR/AMR.egg-info/PKG-INFO @@ -1,6 +1,6 @@ Metadata-Version: 2.2 Name: AMR -Version: 2.1.1.9153 +Version: 2.1.1.9154 Summary: A Python wrapper for the AMR R package Home-page: https://github.com/msberends/AMR Author: Matthijs Berends diff --git a/PythonPackage/AMR/dist/AMR-2.1.1.9153-py3-none-any.whl b/PythonPackage/AMR/dist/AMR-2.1.1.9154-py3-none-any.whl similarity index 84% rename from PythonPackage/AMR/dist/AMR-2.1.1.9153-py3-none-any.whl rename to PythonPackage/AMR/dist/AMR-2.1.1.9154-py3-none-any.whl index 1481339c51c5c629666c828cfb7c138574df5f8b..bd4abbb05b08b3b04b74478c59a632b69ee8f5fe 100644 GIT binary patch delta 624 zcmeAR=nvot@MdNaVPIh3U=Uilk*9){NoeKfHdav<5IvXk7B`3Z%CM+oZyC8J*NaLr znoOQ4TE!TbUP@+hiEd_ITE2detFwQQOYJ$|;zb4w4G*j9y*ISCxj+RdBy zeCa;nT`wh5vaG1Xf6HRewQtyVulx|ZxvT0IgP7BgqyLJ21jF5gG zSHT^yYTEBLN=0jfi&Bkh`HSQwJgz^lS9P6zaJ_*^ujKmrs+A$Jm6fV_Y1UorPYL9L zg_g9%UR%SKoe?0d!hY_@x3y*Wqfd#?(Wy=4Gx#Gpb-K27_il^xPn_)vwOyV}4isB& z*}GiV&|UQHC*|c|7pl%=ky;)t>6mBuMdLtyTX4DLay|zAdWHaRMkWzvSZq%gQnLoe z@??Jq)uU#Ei0cb#>cFV{p(YQCS4nkUdE^KS_i%OfK{gAhCRJS*sA00Y3MV}7Cm&E( Q1ByLYS7c*V1110l0AeKY^Z)<= delta 600 zcmeAV=nLQp@MdNaVPIh3V8~p&k*9){DRc4WHdav<5IvXk7B@%M;;^Wqg*rnQhV-n(JBLmhKIHDRU?>$&Me}d(j60| zx9C`&ksR}KMn>I_O#by%%O3lfzy0$&zpgvwd{1YX$1%0#j9=bYpLNhz)IL44a*KGZ zegB;$^~W5uHFp1)yUk?fl(T17vF^)ywovLnld$5Slv=AA{qMDkzw`YJURZSH+)&|C z{`bVye5TGpgnyJVJKDnH7Y;qkZVly~)nMcMnEx4+qwcu?%w=UE2!i(0qO zThBCQI@y_o-d)n_waZ^n?&;$OylW3BwY6#Nz2{qyx+ zj|o!SD&O8c6Wu#Y;b!5n%b`#Am`*uw8TsQBPr?slt=+=bV%Hy8Of3I-;Hpa}2 zb870V>HeyxXC9`eYrdw4Lqufc?zDx5m^*v0a>}Q z^?`l=HkL9c{jSUaF>fw?8xM8-Owm-&i$7%om`I9*o+NCIyo%p1R@zN3gTJnzh2_$Q zH8Nb&;JD#yN#Hzsm&{9m%}N57M4!jtI^JTiQ=hkkQ>qC}t$~3(yNq39|3X~nD1s_} zhde;(;)V}Lo%Fr%)epqjL`|0;z3pqdauocN>v4g2&E>|A)m|>${W2ZC$3XZk_UgG# zfsxd!2N5Sv+V4w!banl)e1!4_0k1*^a^5HkyaFe0fK&IT zE7?O*#+L!rvnvpW63v*mOZA23W=K+$=nqIw)EQ*E@~!ZxuGU)>`)g<aRz zfVMC^QiPwaxDRDsLdr_AWZZ#ERjZ&{-b~9XkIVK@sgY*;>z{z$Q%!NB^si7*Fabi% zLf>gtHkfF1m?($74fk!(bO^QHqxh3`iAo)6f5qdsd>V3>&wCkWqvVJ2NgB8txvljEl;|^*eE?CfAz;bLu~5LQ;2|y@zj^L@RSbL zvVih!q%T}Z){~GuGggpr*@gZW1gNDnU!{CcgJRJBCb(pXIfb?p75+i4P#*WtKMSRH!$cRex zOmh|mU0O4Ipk5b6CZnk8LYapCyypv+8%4ptS>iTf?X-jIpg>m;kBh(jl|=mgiOy#k z?~*4cxuOllNkl0M+9|ZG@K3PZvhjFopC*}Ml;K+)cLT24(im@;xP7@k(L-54C8?M% zz|y2#TqsOsl%1bOnlVeAVNcHm6ZdnQWh=#@d2zAodMnb4b)<=Qq>0!!?ik$Eu#gl) zN~+)dpd}av+{%8U8Q3${KX&my0#C#O7LlNDY#Y^(XTop%YB(hA9b!?8SBotlgw+gAoEPp8xb)PEmVq}P6zQeXf%96x8qXU^*ZT- zP^%mqg>y9$x1dOSTP)GgsHtWJ3SRX6mJc3aEHnhGdjCyO6J;D>VYj@{=hz86*vc$Q zZl2By+q8bdLgf@C^Jh?1@o#Pj<+r|G?zW|Nq0ov9dwEL_r#h4qpGmPWa9Y(9yuZpM2gC^oI zUNP_s*YiXM1B0l4d|29aFtdczl*HYyq2P+2K zVo{i>?npOR6AlL&))9 z2heF2pgcQ|Udnu8v^rG|lUaDxZwkxMOeHEtb%9gl6R&4E%h?iW4r)d=R^RqNnOaFC z@9TukB-b6DToI1JDZ&9av$jCw&mo#Gz@?U8h);d9n&iw|G*exMS>UGkXpQpc2_;*F~r^jzQQEH?J$N9 zH=6aDFe-q7Jv^-MmJRkRpYe?6PLq})6eM2g|Y7rll|ymC-y$dR>sl9AXp zDL)R7v7VFapAYJZTDIv8YPGvp`cz5sie2lvYd-!g5OjCHvYT3=5@za`{W&O0kQuOU zKY_5mMfVvlkc{y@8%IX$0Imj4)z$nStGNg>*Jvny0ApSM7{R^u!lV##Cf^K3G>wkH z{+myXs2C?@1IPM)D}rSoNCCX`H4x!0{E0&e7N7He`Yb=!OVtab9TjXcluLIPoRwcE ziPqc!#};Q@+njysY4UaDi#^WE`C7<>^{WN}sp9vyOKImz>CyR$p0~vE;CkcFv()fu zP&`pV2WF%3rJaPNVxFM8L)gJW)oX99SagR$w3eD~{JAw$2@t!X84NLouB8WByN=%5LZ{kZA)Jjf~ZPcMSBdFu^wlA)!dk?pW?pdl2)U_MS0KUs(O>O^d~0YC5e48f1mZ_Yx&HcjydzdwFDMNY<5b{`Yx{GnXUr(hub{;tmwQLm z&+B|6@g6iqpj|za2Y07W*zAhIQ__Pl$24w!xi|AG4jARfPt)Fp{*TWexn2sPJ%QvV zRgRTVp6lC&K*wDbO%Ze@%(<&1d<>jf1o+1-Iif-T=ZYq(DBqXWxtB{#avOdx@7I_M zxvu!HQ@%3~tnW2nSqbc~Q%J8^I|S8|qc%eh^1n~c*RP~b8B|+sWE|x?Y~1ezv~1Wd zpKJ>u{jGiItEiJ+5zg?)UV1Qfc$2S%RGvB-Llg;;#8;q`z1}LsNkjK)>ml*Ko@c>z z5Zp{JGkg~PYbL{)HM!0|+didfy2X%;3R1h-r)i$2yFsKy)G4~-BrmSs#mQ7FxQQ4i z*9gT#-7B!BFWF+K#3U$K57zblZwXa19c>ggmU*l!48u9Zq6sG+AhS+MLz7 zDj3=nD#_!U!=nK{)`Bb9oQ;Ij|*r`;$o>UY8piduDMhmA<<+$^e zp(1kO&I1XIG2?Be#UCV;#IkqfOu(CWn*xJtwF8!>s$Hw><+K}6itNcmc}6=!Te_zh|vr8-(!TLGTRakcY2Wh0-= z;_!1$N3K|o2tEn`d8#_GLVVovPE;Bgr7AuaLz_THntDORdWV#+M Z` zVm9f@vvE9UCT--65ObQ~n-gCeZNdf_bsa#M@?fGM;|ap0+tSJkoVZ#u;Pj_*E>G8VMl3zYK5P6DW`n@ z#M~fpBRP=E6cy-^{G$*5vb&0_U7VzWveEBiCau5c3T3%T;tuWL%>;FL`bg@EKlSN_ z6O-Fi#Hc9ybvrjo4>o}U9x}O;S%5UJv3v3tX4J-_2tom z7avyy*67h&Ux{Vh8Q8*^o8OwhM|R2rvx$mH{MO}u^S7m&t1Q3z`SdJbSSV!2XQCxv ze`edaezWSHo+5;CUNN1tX4DcKgXK+ahDx7Yw~>33HHPL&=b5d~F0xdauvz&BJCK9Y z1#Mr>=K|9_n$DbHD4y@Gm98&N&}e*WeU4niq`ZeXmBXzS$z@F=Xxnrclr}isB7ea% zx84?u>NxrNdS@Z$RvW;_+qQ$Sw7r!Ps)EM$k$ohA^MI-xVPV;5N4N-&`Fk0{-`0-j zUk(S&$kl(bav5G*IcMBva@d16ksjfj_PE>18w`*F!J4mgefCC^oUWFduuyiCCF$dE zT~l(h83q@``VMQ+f zF$zLdCu)rzlcZ4P>v$foAG8@BMRsK3wDR;)hFs|%xgedzY5>fzGP_kV{#BUHEC|C+ z+&_TAgo3tH6b71tcXMO1E(VZ}6H#V-0phoUaD}@c2ZQo`ot@#bTmhcTqeX9b? zC`yHLj_0Q(Sge{4o}UikPCp zIFO`4*lxf|24+(yQTQd-9L`sU1yx>w#pXxo2~~$T*@{WazI4rrv!su_vDxjcT;tQx zg_96^Jg~28dJXZfv8&u=m|-|!anlb_-WHtCjsJDfyo}mqxZ$)2&6ERWg)fNJ=See{ zH+jCR|EJU}-+$&rqMq{V1TFR)4*hlxR4tGEcfk01^)rIv7NAjM zV;sYr-00z*5u7bU+Ev%JVF<4oglhim!u_lXw=gKgvv6`7osG+1!e>U;3H@UgVP^x) zz8bky>h85;5%X6njcVXmay630%s+bE8K}8v0dJC?kKf^q{IH~4pUM$ds4^0%+KogW zI;phcUK%M4GO^{y!c^$dk?J2LT5-0{{IbJ8ZPj0P@t+4doU7+{Fu(rWkjo7pg%&43 zMO~>6&btbd<~wrC?X54S4%e)Am&K-9LU~cSohTHf%gluL_1r8=zYuw0v4Z%v|lGMvP@QhK0zz5q%U3v_vYTT#ll&{b?alko=)Ymd$D? zs0`bM@9Sr6RJL1TLn;gx$dMqEwH!=cn?Jr<7+ekJ_ z1z)u|1s$apy#nmN5ST+1>>?&^GYXQO&WvJ}wIAI@fTj|zw6$kmafh`Im;T8XSbIMA z{6_eH4_s;4zZ_)Z9>3J4xY*V9t$dQqL5rJ-cF+d#7zV}#Rn`M;)sW`$#!lo4T(n5O zI}bW|<83;{>O)ppvD5Vb{8=A!VM55Rec++-QHJ~M9qeExZK0s z8{Vd?@*a*gra}osz@NYKf88^P!cN)SG&_*h^7C&%;a1%(%So>;zw&7LFPlC*bPdkM zra8Ai1-Bv#4|8ld|7qF|;Y@u!9BHmD83pxbsDOCXoc9nqPGH-aFe*KHrJ`=f?BmyI z{x+Mq4sf$k$r<?<%KQI21J@ zMR4Uii8JKCi=55kME}ON{bnEe*f>(7z%CT;g6Bz5c2-?pV&cOOg7Sq;5Q?O+>utr? zHh#U++lY7ZocNb*`~43I@;F&b3c;!=yAfhK{Qt<9O&>Ec7A5~?BmRqgq+L{q-JNXJWsS77bEy)gBdo3hFZ8yG1BYrvMwn_ z7fn()jDBpxoJR?0S&@Fu<#5A2cbUUWdZTGf@Ly>#V9%D!hx+t%y;sI(XZ(0^xrB%T z>{SYacj$YPKyub#Rm^@d?BL%=Yn;#@$dNAyfQH|thY z*Sj#jSB67rx3#@Zq?hAfG1bmKzd6wewPqB{L~Jgb@|DcKYzR8IkR!~UsFilC0GNR_ z9I);{Mo!);g>OJPB&w~dy{Pv$kd+^~2XS~|fk!;$e2s{W^RF_WuN~onpD2x2@%UVl z-HmcoIV!>G6;tuO@AzvHQx?x=%uF*DeH>cUblp5ry$p%_>?R&c)Sb-*%+X9V} z4#lb%U5C6s9{g&8F{+BK;Rp>6uA#fR7jKbi(NHY9U4RgX{EqzY5}g!fRiSQqUT2NP z-j5CJeU+tM<7*Z#Jqw0Bh^k~a_&-Eu??NvmcJ0&JOL8XCmL?dIg|9gTV;Ix@Gv?-M z4`>O2uf8Ecylxv@pD!DQPOvKolz!8Km!wb)5XN~AnLvn3SWlB!7`l-#HTw?0>Qj{~LuEhYx77-gYdzkNO7)Kr=m z_0MDtUbIQ&0LVw0cdQ5Wsp#{!wK{bw{`f}*O@qzW2`0nJ9y`PB5ev-7BPj)N_4%8SZAHMI5t^KZi^bh0U|ceEdAF%Tq-KKkj)Pk2Xb1%A_?(1)IB#r4eX-O_HLJcp<58FY<2eB zPy*)7ARJ{L``4rEnhlp4w(h?=)!V=72>E!I`yv))a)?W5VuW)!VREm22g?K$)ow=b zL&$8fb0`FDSzRb4;wotMt^$+%kxqj&@SbXyi%?*G^TH{^p(Vl9PE}Qd_FhOIOXL%C zC%KuNm4!tEyoypJEU6SQ8OwQ?(VV*+hkjUHWyFHS5WWOYpIEywy>;saZY z9B^^9M9F2G;Ab8?C?3vG>9;4yYh0LTomS4R%)|~ikHdlDT9?QM47lf_F_OI}rb0%7 zluI~U^fRs}LZ2mFx><1E9jh)YJXVvi2w9*7fT^Zu&0OpEO{W1kB&2rA_@TJ|g@GPV zk1dgrD;_abyF2N>>>r1ZpQEH$HDrZWWte!03$q*}4(q3YSW<(QAsWsEpVk;!0E2h4zuGbwhh)M}j#_bz zW8R|YlD&Z2HAX~1J8rmgHowckX>4g3`3yHNq$zqx+Oo`f^j_wspcQp%D#7j z=o84pwE~OI#k&G-{>&(MgP%ZCTF@|VSFaBU*PiMCCg2qkj6L;yDgnXck$B*nZc-pj zL70Bq^crycd5OzbqsrE&Q0i_rIGzVAAryU)Nm&s2lR656YQTj$jC%XLFQCM8^6f!G zq*F#QuULS46}Y|YrT&x>2&cp~!^laZ2tZTm5s9m5|2rbF5e67Q0%^qiQSdVAE7v6v zi{)=Jgz`8iP%6K#KKo_$iDhhN(n|qy>^L+51TF1HwFlgm0}4{qh&CC4%BX~ket_<5 zobb5-rgbtDiSuzi-186y*eZjvry^Ei0w^-97X}`kpjeCQJ4BXxJ4lm!5|3CYy;9k3 z%^Oi zIo`}0VaKo}@?UYYwZm1uP0(dv={FRP)~-js4J|pBbMT1O=$8+GGA;{^S31t zszCcuK(=7wFn!;$G`xVX+g&EUK|-UBHzq3JzLk(twLK*pmn$+NlvN2mn4BD3 zB)6;Zs$6E@hx59BD}TY(Vk7Ll<($`4c=t-NhUzuo=|6yAJWq7pFk=_RaZ}v+gHr< z5ZYrJD$xWk=(FDx8qavz!E$5CF*1x{2g>iKsu@fi!+sqdD!CRI2=+i`D%mf&=1U_m zPS7A+$=Zjf)&27$6L0O(e4Rt}b^O7}euGW3bS5a|%JoOSh`Fa1PaZ8}nXCywDXT$V z(g4cC-(!j5Uf4dxsB`SC*28>xC?Vqh0n@A96z<-Zp&&0~F2&sXmpqZGq{mwy*MZ=pb^SVK`am7#-3 zo=?+TIdoYW`eDYXANu=%+V9>$>{rBiQhH7^KL+_PB&hWAsl{{ET1#mYML-@wBBY)j zGJg>w3RStc1ed8emAyL3JG=3hMZ#t?LIVGw>B37gGK>Xk{~kM5x&0Pu!&(A05l&1? zD$^B4?)$}bd<~Rx8UfT@r}2caa43;QO7iRojA2x?qx*F{G?=-XT&MFtuC>dSMs4G@ zG{e2^GnrpG&;v!XuHR(Y9uKcM(0NCgkpcMngiKll&k`@S?R}^G3KNpUh473}&+|g< zX@Ax|CC50(Dj51|)sZ-UC+P+>9w21NKYF1zC0S{5MDj}W(=(!iH({7|6unk`P{>%3 zD8HwhQnU!v;q~DGmag!{71bH9Odb#m8)8h|Fb;BrrfbC*oA$&$pVvL zLy}hXVhZf{`h49qHMBAt!V;<=-RCs^2PLfC&yx-&C3PYbreU6xDB9|9{mEly{@mxb zBcjmSn1^mXq)TVorZ^%^54-PurCPWCE{?yxK;ojFc_V_8RFr6i9-ht%1<_)MhvKy= zjP|)_f8K6Md{=tjY>wg%p^G0OwEdB3LKbr?Okb0dTgROeM$t1bF>&l|;!h&wzc>b0 z_BcurY$B)QJ(j(nlovHwoY7N9v!(=+k5+s`9hXAM>`;4xp^tZcA=5egv%fZ5bm7q^ zb7@wD3*>+1)#}1=M_nrdZ804!ja=eR7-0oR6iycQrPQ2kYNsMsFVdJgC3Rnu3iP)FLuW z<3dLZ4Cfjp2lwTUNxJX5PHXeyg}>~}++}HVL0OC6z-pXs5ZHZrd0X6HymljPJ2gB6 zi_h-K&6p|E1-1DEzrZ_+UZ_8(Y7e>^7ZP!dz8xFzu$x!9!k43b5~lt}P&|NjE_CAT zsH?C|y$gi&J4SH2r7b_Z@_7f3wJe7}68XQ~jc8pI<%bp%A|XMLC%--xn^rC#so%~H z)4=~za!Z^EBUi@9yf9$y<@ev)fB$}{T-BEXn^`m102cdof;*0iHzI&?RbJMhr#jtv&5dR8p5MZpf_P> z6cl@iz8Kg)GpJgsRS`fiZ-4VsBh7hm^=}xYAP|SJ4^igN_&cuBl}KC+-gSD^)+b;K zdO~D9f9eD38g)qLMDdk}(^O|~)o{lVt5YGdFg9Ahx7*AP93D$>i)js zdkuT(3+yrP>sy8}?3=5fLqeiYZ`SrJ>I=M`n?@cYe0uOY_vAa#x$iYrQnv-#cfe zZv(~0N5n}I`*83n;H$-o|0|vG_VXj8V_CQQ4RZGg92?qiAcj!v4PI_&vuo@_Alr|H zLo?TX9|;kNAW3bb5D}uPtHSNQk2O-gzs+B_@gdFvL}*L@IY2C=e6O$S(e=}N?*D@M z{9e7g4MbD_XjpAuykGK=t{z=L#`fLU-Y+G^6_sBgl@)t^qSIxqqu*;A92{%biL3vI z%ojYDgfG{H6fEzzcAk(+iE~JB@>?In#-2FFbI*0mN%{8H`}QNInI#{v{c+asb?EsW zGViva`vRoc3y?qZBvXI!+eV%+DwLb%YVk~faJVnK*WDRRVpm?92181EA(|^~obQ3v zvs)0leIQW4KpbMuLs)%FLH=j&RHXaYHB5@c8LUEYcsA$QQba06vw=v<3_tC@!Pt|S zz{ATm{DF0l+VE3Ixe7Id|7*8~UKh?$?C|w~OF|$7Q#uzWHCL&}eiF=%3cmrKF zc9n^Y!qly|FC=t0M9lE0f+X+KRZvc9?jVs9iqBW*NJ_-M16?KGBdLqrd;R4&)B7dA z4g>5=9qR32Oq$c*_gQG0J@1LqAv!43#5-D+`pxgO2YnXyh=ObW0DX8>eDU5_1X~*S zSy3WM-C1D!2*D+~`>ZHh%J9N1M6TDmI%$@%HQ@C-%i_1-kPP@auO+>5Ht#BB5AGIRf=iIW-95MkcNyG+OMoDQySqCxH~;R-R_#{p z)4kPos?T@oRQE$abbqHQV~~;8ggdMOP%}qYRxUQqe?x$imxs;W%oXO`|A*UZTjS+h zjcWgHdn-$cgI;HbkEjQio|UUAVTMSG+r?ffKQ_u2VmC6jM&2)#7hrFbOaEjrMsPM= za3h0D5(<9|Qvu3b$E;0(ME$JD3B~(v@ESxq>dX6O&*(x-U1M+ehI8urH=o|mM_4^` z-+O%nnNcNor0zHUv%y=^O;T2Kw~*`d&&2t$NW~Xp&aP|OvHF`8r&Ya?=aiTo{!fR^ zVie^54Uhm~ije?@>&*?*nrWgJsHyNtKv^7RBXqSt^<|zj1XqwMd#b1B;qudK-5E6e zo$^sdH6iUC`fvu_)ya@E`32paf?&O-OM66 zytkG+BCKQMUOT@Isw!KI`?{I`%hnc3iS=p<^~G9-_I`a8yEQU6&7z}&#ej=j&O41D z?f%$e{WTY%Rz{Mvxg}+J^2!LDj~9X9NrK}d$!Ga}G?okXHz15VvP9Kip;jbAz)Vsw z<^!!oZAu#70!9pc<6EHqJhG9AWUzpbypt44oRq^SseUDr@U&e)W&=d-JF~$d1q*4n z%{bvNq9_JekSL2u>DA-2+{RY*sx2OpqVd(_Q-2GFNwv9NMdPhKa%eaJN6(o>^3X6N#7(RFq z{!%&!b77$@T0-3r7`@b)7`QfoaP$n&ml&v*cw>T9DVKIDZ>35n>%&5+lKIq487icX z`N2(Yys(#fpV9D4UVyDEM=$BLGeCM~KK(S68BT{N!KYB^o2f(R$AFH-@f8V2DlB~L zR3-I-Az`nwEJuLkMbWB)rR)P!QbX2EcahCVnf3_6d7Kb$^*5q+b=w;wD?l7~Phh2jJ+&Rm6gg9JLVGoi9AXx7O&^&iPacIIZ z;!b{+w4ecsZ8jH7!5O#8N2rX}J90%DF=g^XPgfr?)jKC<@p3^=Cy4J?KOtseF1=N( z5YG@oQ5VcLQ7F5eup`%#tfSGeYH-c6GLaf^!QUwf^C(0DQ?}aYN^3kIe_4VNx z|CKTysER%#x_PTSQ~Uvx;cHMZ=u29Te6n@Z&Z2zf=HZfup^2+@q_>u12NyM6 zvE7MgvtQixu{2h9&LGWOc@@fG-LTz(-9e``a4?%mjp8M9Vl?V2C*UN?U|-g2hgwBm zFrR1#4mrkEEU%$@V630?=jqkAL*`tS|cstduvzq8veztb2p zTl)=_M()v4ut*ToYFy}euI~oCoamZ_$z(4O{@eh5-&cgH@nQ5wF&ud#e5nu2{*+}y z>OG&R8dAk{Fdqdt=2^B{RFK?yp}#Ll`8Fnqx91y^MzD+RD zz@d|l+E2Tc^ryX(WZWVM(;0ibp|3u~g5zP*?4;?JP@<11pz@1OYATi|=NS2#w!`u& z!Burct&G2(T=WDzW}(d-dS-zcPqLt;Xzmx+FYr@a6QrmXRC6*DXco$Nb*zHmM#4NU z5=j$?`$AwWO{KF`y_}3_TWg^vRzK3Lqn&DnrXiOJOzyd>35<|T7&}!aR~VX|#&RsO zAF|z$D0}{*LOR)}YQGaadH>`#8f!#a>UhMp2;+3DiBZ8f8R&~EQWlXA&bhc72yYgX zXWtm0P$W!rw;H<{rKvW$m;oR4>$%Aafwh>PTasiAHQ51ZthdD5?PBw6L(q}eb330= zM=k>NKw%T9jZCZa!etO=K(sZmgC?v%iyxrn_OFn93*TY5bLerLZwh1>LP@3b8bGn7 zU`&8mW8tnJ)j#~G9pe7erL0$jc5>f6<(KytN}8H8nss@?*-V$PAi+E-X9!#U%7zgXz_Flkmy8YY(e{xt5;L-hcddv@5Hmy7paYsMi=?LPyGj;7Xq%xu{#P? zesDxUPcO0*JHL>i0){bIEcQcU8df96F)kxCk{E-#yHhtv>g<Xp_Uh-{of~Sl+dg)xW&T8XXOxqRs`_l(u&fCn(&YoXO@BZ+fdf{UxwCpxaC>_JW zPkvsi2KZOn1-}uOcOAiDEg=jsq-)1#Wr8~^6xR)9raEhEMKBA+k^4@E2E@@M$_VX+ zRK4C*w3-RQY=S~|Lm7Y3S#)@In=H=pg=kr~ccRGj=r37uZltE0vF_$bH?+5-m`Pn* zXt4%!nsyBL7-QTk8~gd2XTCMVs9{|W(V-fVh1%F`1v12OmTY5`#M?-5UI~YB<-fk& z+Y6R@L@`!PDQ+xLbmqZCr-;Nz6}H+Px;sn zg*zS`!6r6rkl%vpPx$5Dfw4|-^&3K;~{4@fNiz=CHrt(aR*{N3sAaPEwjNxPSWuTtT)f5rIai66_vv$4iawbpN)8*GzNU>A0p9uf%KCGay6Q7Plbc0n1*Rd7g0$^>|K~cw z`OaX3tBt?4Z74#8F&U5ExSl<{0s8iMXdiIh(rg5HLC2p?d$i0`VV3T))k(&&L5nhB zxoHBUC{jt?@n>ipq&=$IU61TDmB^L}mLsiiqa8nYJqlG=3V+80Zn7X3RYa+lx*I`K zG^CDw+C%#z4g?!3$V7AH2(NDilfmJKgN>MFra}4!3j3uD&y6kbkxy<{M3f>OJ^ezk zR!&Zr(dtuie&^vT&wx51yor^uWX(o?2RsIv#mtuW0v_vank>)E32V|x&SOU}oE5^< zJfs#|#P->sJ8OV-rlxp)?`JbAZ4BFPQb*fILR7l2CF+wu$ z4~yU}7Ig;c>tEbxq_P@Q{6A|1gzxEUq(5PHzPM?ia$AOm%Dyi%!e&}ahHBWrv*T80 zvtW=8{uLj`g|^f{)=~$QNI0huV>v%k-6{=kqVff&xt23YwPm(Lx>5_3mLvVDAcm=d zN}2Kx;s0LlBn15vFSZ8SX&W#f6QB1Q%)1!zl%zY!|z`hs@hS9vS6>=7@= zg49Oo^!0?gt6KFhfk4t(h~P+WhswjI()zofBW03e+Lx3_))Im+4!{5vK4Zei zL%AmbJ&P%;@f{#K@&VdcKC*GB|Boel0D9yLZ{&8op98^AA7?M>*R{BWnj+#ClL*F( z;Suexu>(Uo)X|;S4O;lSb<+5|zLDl4C$8KG*FWLz84JKTa20Px#SFVaxal;Z(2SCHw}+j%a@1M*WmM_V!L3 znaNJUHlqZ&oRVS*9>xj@u)I>74z*!CeGFtLR-Nv!VLW{7r)=7Ar`%$ngfz{4$r^j< zz8a|}N-(mee|fRIn2eFBuijiQ(zWTXzze*{xt}y*kc8Zx0miG`9ER{G~KJfjH{T zlyTh%$h1K63PaCeu|I=16UY(D&TzlW>iLjXZ(IwP!Dw9bnvoR^BNzYAG!R%m#){E5U z+(0Ir*RsOf*>>tjB}{gf!4=$zlar!&DPqPUcyed>=MDB8oUJ|E75Pjw!NOlS_f^Ap zJCLh>nATn76drK(r&XKPREFpUykCgkb*90bZcS)+KO^vHlZS2pXKMo^0EQ=VR$(uA z-LjZQk<}}X1>_)YQDLd|4|x9s=6@i=)3a+={3nF`#}V_-A^Wee{68GoI88QsBuzHU zp+99NqW|GwkVXFj|DO=~uc-V7`hSAb#@=%J_O6aFFD!LTJxN$2rpQ(QqqO#9dOR&B zhzMhAD=ak((OIp(&k~NmEwyn526GP`d!kYdZB;y)+}O{o=TB!#3t+M}P{97%48$j( zj#=*0Qq;GN*-Lva!S5#F&If4`H45 z13`UEE`PF%|FklFpyj}fZ30u7iAj+O43D~pS?+ytw8<^$Uk}`I3e~|MQKdfP{$PWN zOPH(ej$0ycHsvaU{mwj+`#x14EJQ;XPD@9~tt)Xb0Do8ex!9|pRWf!)Z%JI`5+L;4<=taLQ|2|mYL%B{$(uOW*+O8zz3qifm2eM`xc`}w%D)I%ZEbds*wVFgRdkSTW?Uhh3u>Rs2nY9xoyk>`S$Z;^f(-BuQ`yeq7J?6a_t$O|20CUmS~-CBFsb zqalW$f_s#``m-As1F=5QF*dP>^t(7AGIRZ666zng|7~?e869EwkwW)kFRHkkn`_LenKXk{JzZmD7K_(kxHa@0*@kC5I zV`nlqn& zm?yhUMGx-9mt=g>j<-nWt#VQRbMxY+eHztN_>h$}Z>4xvO}C8bJUH-28NAJ(ZyvO& ztrZvxd}g2y)bD&l)d6RODB~=yuIJxcQ$r>feY0>nO8^!8!_^OzhF^M{gR>mlATrZgZSdW2A!t*8A%tno8$3t$uzXdUsF5Ne zMgHk8D^Y?=Rr@saNLCJlat=%}8@25^Srw{%+5P%we~*L?IcOVItJqg_b?C(W?Ef8e zQcA+$#3qPpLgQMX|BsZDi#S)Q=Q{7&(a@A03u#^S&25D;VP@3x*bf+a=@u_)4HctE z*zHYua&oF)JVbjB;31KMQi@qXRU>l#SJIjK4yAbr;8<>kN?AfF2O(ICX93XWRgH9$ z<$!u95%lf)YUuRPNmLG+A1nLupYsD2lKp#tpD=}g**!%gG~i!jO@M(?J3-M?BAU13 zTZ+*UvS@EU$BmI%n5L+b`pbi0neSRhyuirWTCwvw>hP=B{o&Twxm3EvkaEUH@1koO zv50&PGv@EAJz4)%KDX66Zfd=4jNdt zsnljig%*e~3u!zJ&HfFmdx;Zg6lLim$kM<VlgZ>1mGQ#Fc{l*58oOL zOLwYlU1s@HJ9f!=&__7XLV<4(VdKYC1Q;ZPM3H4^6((TOb}oejhBDsd-*}zXEg*(1)kM=roC_+D4jygDxZKQ8i>g8 zv{M&-;K~r$)>+GUQ$;De^+p$be<)W(>(aD%T=YT0d}moY*)Ti`<#8SPCz^&!nN`lj zCsc7pVZ3wYMPk2O1mp#M4_*#airNS2OerS(gJE<@dx07BbeX9TcsTqcq%4UKY)A?K zeC!M`hOV_}Vu1}Wo=+Q&q;VTe=&j6+aGu9%+(H=9y4`)}3c>Hv;g?qDEP0I(cRCkq zZYxu~p3Ve$tmZT_m$%;EN|Lv z@34^WhY22l|9pIbmc%r99;tL`6%M=7*Qbapcmh@7veMI(rr5vkR!sXPR6YQ!?Wu*? zebs4WtI(=ZV_IqI?M?i0WprYh)vtl?*W@ZJrJ~(qq$mL%Au@8+5>6bU&m?E(9&a%M zrsg4Vj$?pCnoBoTHp6dWLmv0btYSc# zK7?zNt9lH1_{=SrlTq-rIk!*MJzn!W^mP-8rhgjfv4aImfjhuxA7Y7R77bg%QgA39 z_Qvm7b7dY3jzjuw`zEc+nr=|aGj!oH9D&Rk%|-T^I&vBCDbmsH z*6m!X>jrwFT<=xdy&AAM^fl<5(&lx#Hc$A+E$*c$aO)BYaU0o*eVN><`ln3Po)htpu6reS9D;hbqP z6?c}T!l&Jk!%$dEJ}nMcWq3rPQZ}F+O%`hrr8uZd`1n{7r4~p}s-)Q`!+P<<{&`ZD zBRLT{ICFmk7jBrx7{=)Up1RpM+H(Y;Cd5T3)47QvQK@Y!YBTW%L0oPSf)YoNU$kT= z0+?W4fu7CM#$gpisoU~baYSL^sUI21bnl$NYXFW0kU0FNtd2}WS8xwtuAgIY=mV5f&no}9Ngg)tM%~~Q^Ee>Bsv*-0_qeS*CX-iHZ zUmKbrpDkGM+5P3D$(e5O=Wo>fjvvX2V;%v5Y=}ikkS-`uHTvlYS4f2=^OS(Br7f5E zGz%BbD&S|vD3!LasO$Dts#22lyL*i%M#x1}LpcZH5P&psu*E8&fMfG~*-%EUG_&;W z?R044l@|v~-tHT_GS=?iXyF%rO78f{Vn!Auflj*X=Zl^h zslnvHot~b*sKbyaF_34k*E}VL;Fodi6qRtf5Kh(CatvS2S?8r$RB(rF0vfT~&D_}R zl_tKkD}d?u++6XjH*Q%@y!ZH(&3wN5V$7Sh&g}=%ex*>H@v(-%joGJPDcY`rLBFoA zY=l*u^K&G}kDhG0F!p71Xz_=6587bI2n5b7WgdKg@+sko-G~^hv?$`+a_3XNkvTA^ zE`1=!U_eo@P0|U(wL1HnNEm3C_u)R`T}7WR9{S3Sgfz<= zv+Kvqde@9febOy+L zaruIw?uva~28$X9Y{q2!*#2NR!>KfKJmz$&0Z@9}P0Mq5hCRR$&Ha5wtA`(JHZ>E6 zg8G~4Q5@A9m%L?NQce*NX}1rSV~w{Ta*~1J?HW@3i-+0;78$U1*dbbzYA?lft4bi9 z+)f`HNcheNGA{aK5G8uC)1c{2r+GqoN6Ajv>yukQ6Q5&`-KudWCei<7gMzUJp(^D- zc-3mQTxD4;SeznM5FpU!%oKa98ATwVK^qfXK}MH z?!Y65NR!#_*<loaaY9>7wed$|wLXlB z|NT%_yz3Ic)lQ52zB9HuL4%wijcCxpAJfJiDa34rzH{?@3zoqa&75++=)~MZ3-rdM z0={2THXS^<@p_%7Nrc=SjNZo|CUIMzYV}W=`TgA_8C)UGATvvWjaRy+4#{k%X^D5{ zP%)Da!ubu=6hu z2>J^^=-rdM@Q0D}m-OeY>87@?+)L^xn>9w8J^lI#uPG3^v?~L!HDatwKnLNJBJoLf z&~fm1eB_agjk9!TywB8o}PeiIEGXJ|PW7mh(#@f0rK_8_IGo~rT{O_ynvsruCn@?+I z2*mz+{A`Hm$a@>^#~_+a**yNBK<5DDnfatqVlLZAzM^})wQhuzjX(CVG4akNFuxtvB8p#4pQjCQ{8aDKD6pO z!2fO9*VyDQ^b%vS7b;2-JO8+e<$66GzIz!u6wzO)T7GR32eo_C0k?`m0&4FU?4SW6 zkj?8W@1kL7MBCLX-vZkFQ{7Gguy_~x@RVOXcHPj3wz=^HZI|p>H+$P8gks=3m;cAB z`SzIrsyq~+alQFJK<6J#FrbjCfa)ITi|1oN*><0(*MHjbiH88JmoNG&P&p9-=(!mi zh*#S&PRroi!lLef6J4rvwy%zcR_}-fR9)xyyL>4B{&Ic}jl+WFv$~ClfyR!ARbN6W zF&N-L&`0W8FLzP!b#uaFP2%Le?I4SW5cmlT&zk&DzpjKO=-!oy3Gaf#a&bhQ6r*lmnnMMl(3AxlRz1J{EyiIR{l0P>18%p7ZU2VSchxkc$ovZzd z%>8?Pjd1vSiX?w_*yI81=zoT!f1`spx*&!#bt`jY8%#+*?VD$MY&-p0)}0U3Yu!A4 z;rRDmq00asDnxl>F1dXl$iylNA4NLSiqNI|o6x#(dZpwHp~f@15RZN5b_^Jy<&-YW zhrfH855M&XZiSCdU`8`G?_(ZX?-{hbJjI$=32")), #' counts = c(1, 1, 2, 2, 3, 3)), @@ -142,22 +146,10 @@ #' aes(group, mic)) + #' geom_boxplot() + #' geom_violin(linetype = 2, colour = "grey", fill = NA) + -#' scale_y_mic(mic_range = c(NA, 2)) +#' scale_y_mic(mic_range = c(NA, 0.25)) #' } #' #' -#' # Plotting using scale_fill_mic() ----------------------------------------- -#' some_counts <- as.integer(runif(20, 5, 50)) -#' -#' if (require("ggplot2")) { -#' ggplot(data.frame(mic = some_mic_values, -#' group = some_groups, -#' counts = some_counts), -#' aes(group, counts, fill = mic)) + -#' geom_col() + -#' scale_fill_mic(mic_range = c(0.5, 16)) -#' } -#' #' # Plotting using scale_x_sir() ----------------------------------------- #' if (require("ggplot2")) { #' ggplot(data.frame(x = c("I", "R", "S"), @@ -191,42 +183,22 @@ #' if (require("ggplot2")) { #' plain + #' scale_y_mic(mic_range = c(0.005, 32), name = "Our MICs!") + -#' scale_colour_sir(language = "nl", eucast_I = FALSE, -#' name = "In Dutch!") +#' scale_colour_sir(language = "pt", +#' name = "Support in 20 languages") #' } #' #' -#' # Plotting using ggplot2's autoplot() ---------------------------------- -#' if (require("ggplot2")) { -#' autoplot(some_mic_values) -#' } -#' if (require("ggplot2")) { -#' autoplot(some_disk_values, mo = "Escherichia coli", ab = "cipro") -#' } -#' if (require("ggplot2")) { -#' autoplot(some_sir_values) -#' } +#' # Plotting using base R's plot() --------------------------------------- +#' +#' plot(some_mic_values) +#' # when providing the microorganism and antibiotic, colours will show interpretations: +#' plot(some_mic_values, mo = "S. aureus", ab = "ampicillin") #' +#' plot(some_disk_values) +#' plot(some_disk_values, mo = "Escherichia coli", ab = "cipro") +#' plot(some_disk_values, mo = "Escherichia coli", ab = "cipro", language = "nl") #' -#' # Plotting using scale_y_percent() ------------------------------------- -#' if (require("ggplot2")) { -#' p <- ggplot(data.frame(mics = as.mic(c(0.25, "<=4", 4, 8, 32, ">=32")), -#' counts = c(1, 1, 2, 2, 3, 3)), -#' aes(mics, counts / sum(counts))) + -#' geom_col() -#' print(p) -#' -#' p2 <- p + -#' scale_y_percent() + -#' theme_sir() -#' print(p2) -#' -#' p + -#' scale_y_percent(breaks = seq(from = 0, to = 1, by = 0.1), -#' limits = c(0, 1)) + -#' theme_sir() -#' } -#' } +#' plot(some_sir_values) NULL create_scale_mic <- function(aest, keep_operators, mic_range = NULL, ...) { @@ -243,12 +215,12 @@ create_scale_mic <- function(aest, keep_operators, mic_range = NULL, ...) { scale$mic_limits_set <- limits_set scale$transform <- function(x) { - as.double(rescale_mic(x = as.double(x), keep_operators = keep_operators, mic_range = mic_range, as.mic = TRUE)) + as.double(rescale_mic(x = as.double(as.mic(x)), keep_operators = keep_operators, mic_range = mic_range, as.mic = TRUE)) } scale$transform_df <- function(self, df) { stop_if(all(is.na(df[[aest]])), "`scale_", aest, "_mic()`: All MIC values are `NA`. Check your input data.", call = FALSE) - self$mic_values_rescaled <- rescale_mic(x = as.double(df[[aest]]), keep_operators = keep_operators, mic_range = mic_range, as.mic = TRUE) + self$mic_values_rescaled <- rescale_mic(x = as.double(as.mic(df[[aest]])), keep_operators = keep_operators, mic_range = mic_range, as.mic = TRUE) # create new breaks and labels here lims <- range(self$mic_values_rescaled, na.rm = TRUE) # support inner and outer mic_range settings (e.g., data ranges 0.5-8 and mic_range is set to 0.025-64) diff --git a/data-raw/gpt_training_text_v2.1.1.9153.txt b/data-raw/gpt_training_text_v2.1.1.9154.txt similarity index 99% rename from data-raw/gpt_training_text_v2.1.1.9153.txt rename to data-raw/gpt_training_text_v2.1.1.9154.txt index d7a283974..6d9990a71 100644 --- a/data-raw/gpt_training_text_v2.1.1.9153.txt +++ b/data-raw/gpt_training_text_v2.1.1.9154.txt @@ -1,6 +1,6 @@ This knowledge base contains all context you must know about the AMR package for R. You are a GPT trained to be an assistant for the AMR package in R. You are an incredible R specialist, especially trained in this package and in the tidyverse. -First and foremost, you are trained on version 2.1.1.9153. Remember this whenever someone asks which AMR package version you’re at. +First and foremost, you are trained on version 2.1.1.9154. Remember this whenever someone asks which AMR package version you’re at. Below are the contents of the file, the file, and all the files (documentation) in the package. Every file content is split using 100 hypens. ---------------------------------------------------------------------------------------------------- @@ -7540,159 +7540,6 @@ The interpretation of "I" will be named "Increased exposure" for all EUCAST guid For interpreting MIC values as well as disk diffusion diameters, the default guideline is EUCAST 2024, unless the package option \code{\link[=AMR-options]{AMR_guideline}} is set. See \code{\link[=as.sir]{as.sir()}} for more information. } } -\examples{ -some_mic_values <- random_mic(size = 100) -some_disk_values <- random_disk(size = 100, mo = "Escherichia coli", ab = "cipro") -some_sir_values <- random_sir(50, prob_SIR = c(0.55, 0.05, 0.30)) - - -# Plotting using base R's plot() --------------------------------------- - -plot(some_mic_values) -plot(some_disk_values) -plot(some_sir_values) - -# when providing the microorganism and antibiotic, colours will show interpretations: -plot(some_mic_values, mo = "S. aureus", ab = "ampicillin") -plot(some_disk_values, mo = "Escherichia coli", ab = "cipro") -plot(some_disk_values, mo = "Escherichia coli", ab = "cipro", language = "nl") - - -# Plotting using scale_x_mic() ----------------------------------------- -\donttest{ -if (require("ggplot2")) { - mic_plot <- ggplot(data.frame(mics = as.mic(c(0.25, "<=4", 4, 8, 32, ">=32")), - counts = c(1, 1, 2, 2, 3, 3)), - aes(mics, counts)) + - geom_col() - mic_plot + - labs(title = "without scale_x_mic()") -} -if (require("ggplot2")) { - mic_plot + - scale_x_mic() + - labs(title = "with scale_x_mic()") -} -if (require("ggplot2")) { - mic_plot + - scale_x_mic(keep_operators = "all") + - labs(title = "with scale_x_mic() keeping all operators") -} -if (require("ggplot2")) { - mic_plot + - scale_x_mic(mic_range = c(1, 16)) + - labs(title = "with scale_x_mic() using a manual 'within' range") -} -if (require("ggplot2")) { - mic_plot + - scale_x_mic(mic_range = c(0.032, 256)) + - labs(title = "with scale_x_mic() using a manual 'outside' range") -} - - -# Plotting using scale_y_mic() ----------------------------------------- -some_groups <- sample(LETTERS[1:5], 20, replace = TRUE) - -if (require("ggplot2")) { - ggplot(data.frame(mic = some_mic_values, - group = some_groups), - aes(group, mic)) + - geom_boxplot() + - geom_violin(linetype = 2, colour = "grey", fill = NA) + - scale_y_mic() -} -if (require("ggplot2")) { - ggplot(data.frame(mic = some_mic_values, - group = some_groups), - aes(group, mic)) + - geom_boxplot() + - geom_violin(linetype = 2, colour = "grey", fill = NA) + - scale_y_mic(mic_range = c(NA, 2)) -} - - -# Plotting using scale_fill_mic() ----------------------------------------- -some_counts <- as.integer(runif(20, 5, 50)) - -if (require("ggplot2")) { - ggplot(data.frame(mic = some_mic_values, - group = some_groups, - counts = some_counts), - aes(group, counts, fill = mic)) + - geom_col() + - scale_fill_mic(mic_range = c(0.5, 16)) -} - -# Plotting using scale_x_sir() ----------------------------------------- -if (require("ggplot2")) { - ggplot(data.frame(x = c("I", "R", "S"), - y = c(45,323, 573)), - aes(x, y)) + - geom_col() + - scale_x_sir() -} - - -# Plotting using scale_y_mic() and scale_colour_sir() ------------------ -if (require("ggplot2")) { - plain <- ggplot(data.frame(mic = some_mic_values, - group = some_groups, - sir = as.sir(some_mic_values, - mo = "E. coli", - ab = "cipro")), - aes(x = group, y = mic, colour = sir)) + - theme_minimal() + - geom_boxplot(fill = NA, colour = "grey") + - geom_jitter(width = 0.25) - - plain -} -if (require("ggplot2")) { - # and now with our MIC and SIR scale functions: - plain + - scale_y_mic() + - scale_colour_sir() -} -if (require("ggplot2")) { - plain + - scale_y_mic(mic_range = c(0.005, 32), name = "Our MICs!") + - scale_colour_sir(language = "nl", eucast_I = FALSE, - name = "In Dutch!") -} - - -# Plotting using ggplot2's autoplot() ---------------------------------- -if (require("ggplot2")) { - autoplot(some_mic_values) -} -if (require("ggplot2")) { - autoplot(some_disk_values, mo = "Escherichia coli", ab = "cipro") -} -if (require("ggplot2")) { - autoplot(some_sir_values) -} - - -# Plotting using scale_y_percent() ------------------------------------- -if (require("ggplot2")) { - p <- ggplot(data.frame(mics = as.mic(c(0.25, "<=4", 4, 8, 32, ">=32")), - counts = c(1, 1, 2, 2, 3, 3)), - aes(mics, counts / sum(counts))) + - geom_col() - print(p) - - p2 <- p + - scale_y_percent() + - theme_sir() - print(p2) - - p + - scale_y_percent(breaks = seq(from = 0, to = 1, by = 0.1), - limits = c(0, 1)) + - theme_sir() -} -} -} diff --git a/man/plot.Rd b/man/plot.Rd index bdeac271d..c3e175cd2 100644 --- a/man/plot.Rd +++ b/man/plot.Rd @@ -196,156 +196,3 @@ The interpretation of "I" will be named "Increased exposure" for all EUCAST guid For interpreting MIC values as well as disk diffusion diameters, the default guideline is EUCAST 2024, unless the package option \code{\link[=AMR-options]{AMR_guideline}} is set. See \code{\link[=as.sir]{as.sir()}} for more information. } } -\examples{ -some_mic_values <- random_mic(size = 100) -some_disk_values <- random_disk(size = 100, mo = "Escherichia coli", ab = "cipro") -some_sir_values <- random_sir(50, prob_SIR = c(0.55, 0.05, 0.30)) - - -# Plotting using base R's plot() --------------------------------------- - -plot(some_mic_values) -plot(some_disk_values) -plot(some_sir_values) - -# when providing the microorganism and antibiotic, colours will show interpretations: -plot(some_mic_values, mo = "S. aureus", ab = "ampicillin") -plot(some_disk_values, mo = "Escherichia coli", ab = "cipro") -plot(some_disk_values, mo = "Escherichia coli", ab = "cipro", language = "nl") - - -# Plotting using scale_x_mic() ----------------------------------------- -\donttest{ -if (require("ggplot2")) { - mic_plot <- ggplot(data.frame(mics = as.mic(c(0.25, "<=4", 4, 8, 32, ">=32")), - counts = c(1, 1, 2, 2, 3, 3)), - aes(mics, counts)) + - geom_col() - mic_plot + - labs(title = "without scale_x_mic()") -} -if (require("ggplot2")) { - mic_plot + - scale_x_mic() + - labs(title = "with scale_x_mic()") -} -if (require("ggplot2")) { - mic_plot + - scale_x_mic(keep_operators = "all") + - labs(title = "with scale_x_mic() keeping all operators") -} -if (require("ggplot2")) { - mic_plot + - scale_x_mic(mic_range = c(1, 16)) + - labs(title = "with scale_x_mic() using a manual 'within' range") -} -if (require("ggplot2")) { - mic_plot + - scale_x_mic(mic_range = c(0.032, 256)) + - labs(title = "with scale_x_mic() using a manual 'outside' range") -} - - -# Plotting using scale_y_mic() ----------------------------------------- -some_groups <- sample(LETTERS[1:5], 20, replace = TRUE) - -if (require("ggplot2")) { - ggplot(data.frame(mic = some_mic_values, - group = some_groups), - aes(group, mic)) + - geom_boxplot() + - geom_violin(linetype = 2, colour = "grey", fill = NA) + - scale_y_mic() -} -if (require("ggplot2")) { - ggplot(data.frame(mic = some_mic_values, - group = some_groups), - aes(group, mic)) + - geom_boxplot() + - geom_violin(linetype = 2, colour = "grey", fill = NA) + - scale_y_mic(mic_range = c(NA, 2)) -} - - -# Plotting using scale_fill_mic() ----------------------------------------- -some_counts <- as.integer(runif(20, 5, 50)) - -if (require("ggplot2")) { - ggplot(data.frame(mic = some_mic_values, - group = some_groups, - counts = some_counts), - aes(group, counts, fill = mic)) + - geom_col() + - scale_fill_mic(mic_range = c(0.5, 16)) -} - -# Plotting using scale_x_sir() ----------------------------------------- -if (require("ggplot2")) { - ggplot(data.frame(x = c("I", "R", "S"), - y = c(45,323, 573)), - aes(x, y)) + - geom_col() + - scale_x_sir() -} - - -# Plotting using scale_y_mic() and scale_colour_sir() ------------------ -if (require("ggplot2")) { - plain <- ggplot(data.frame(mic = some_mic_values, - group = some_groups, - sir = as.sir(some_mic_values, - mo = "E. coli", - ab = "cipro")), - aes(x = group, y = mic, colour = sir)) + - theme_minimal() + - geom_boxplot(fill = NA, colour = "grey") + - geom_jitter(width = 0.25) - - plain -} -if (require("ggplot2")) { - # and now with our MIC and SIR scale functions: - plain + - scale_y_mic() + - scale_colour_sir() -} -if (require("ggplot2")) { - plain + - scale_y_mic(mic_range = c(0.005, 32), name = "Our MICs!") + - scale_colour_sir(language = "nl", eucast_I = FALSE, - name = "In Dutch!") -} - - -# Plotting using ggplot2's autoplot() ---------------------------------- -if (require("ggplot2")) { - autoplot(some_mic_values) -} -if (require("ggplot2")) { - autoplot(some_disk_values, mo = "Escherichia coli", ab = "cipro") -} -if (require("ggplot2")) { - autoplot(some_sir_values) -} - - -# Plotting using scale_y_percent() ------------------------------------- -if (require("ggplot2")) { - p <- ggplot(data.frame(mics = as.mic(c(0.25, "<=4", 4, 8, 32, ">=32")), - counts = c(1, 1, 2, 2, 3, 3)), - aes(mics, counts / sum(counts))) + - geom_col() - print(p) - - p2 <- p + - scale_y_percent() + - theme_sir() - print(p2) - - p + - scale_y_percent(breaks = seq(from = 0, to = 1, by = 0.1), - limits = c(0, 1)) + - theme_sir() -} -} -}