1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-08 07:51:57 +02:00

(v0.8.0.9030) depend on tidyr >= 1.0.0

This commit is contained in:
2019-11-11 10:46:39 +01:00
parent d22834c5b8
commit 248b45da71
28 changed files with 580 additions and 515 deletions

View File

@ -29,12 +29,13 @@
#' @param year_every unit of sequence between lowest year found in the data and \code{year_max}
#' @param minimum minimal amount of available isolates per year to include. Years containing less observations will be estimated by the model.
#' @param model the statistical model of choice. This could be a generalised linear regression model with binomial distribution (i.e. using \code{\link{glm}(..., family = \link{binomial})}), assuming that a period of zero resistance was followed by a period of increasing resistance leading slowly to more and more resistance. See Details for all valid options.
#' @param I_as_S a logical to indicate whether values \code{I} should be treated as \code{S} (will otherwise be treated as \code{R})
#' @param I_as_S a logical to indicate whether values \code{I} should be treated as \code{S} (will otherwise be treated as \code{R}). The default, \code{TRUE}, follows the redefinition by EUCAST about the interpretion of I (increased exposure) in 2019, see section 'Interpretation of S, I and R' below.
#' @param preserve_measurements a logical to indicate whether predictions of years that are actually available in the data should be overwritten by the original data. The standard errors of those years will be \code{NA}.
#' @param info a logical to indicate whether textual analysis should be printed with the name and \code{\link{summary}} of the statistical model.
#' @param main title of the plot
#' @param ribbon a logical to indicate whether a ribbon should be shown (default) or error bars
#' @param ... parameters passed on to functions
#' @inheritSection as.rsi Interpretation of S, I and R
#' @inheritParams first_isolate
#' @inheritParams graphics::plot
#' @details Valid options for the statistical model are:
@ -59,6 +60,7 @@
#' @export
#' @importFrom stats predict glm lm
#' @importFrom dplyr %>% pull mutate mutate_at n group_by_at summarise filter filter_at all_vars n_distinct arrange case_when n_groups transmute ungroup
#' @importFrom tidyr pivot_wider
#' @inheritSection AMR Read more on our website!
#' @examples
#' x <- resistance_predict(example_isolates, col_ab = "AMX", year_min = 2010, model = "binomial")
@ -161,6 +163,7 @@ resistance_predict <- function(x,
}
year <- function(x) {
# don't depend on lubridate or so, would be overkill for only this function
if (all(grepl("^[0-9]{4}$", x))) {
x
} else {
@ -192,9 +195,12 @@ resistance_predict <- function(x,
}
colnames(df) <- c("year", "antibiotic", "observations")
df <- df %>%
filter(!is.na(antibiotic)) %>%
tidyr::spread(antibiotic, observations, fill = 0) %>%
pivot_wider(names_from = antibiotic,
values_from = observations,
values_fill = list(observations = 0)) %>%
filter((R + S) >= minimum)
df_matrix <- df %>%
ungroup() %>%