mirror of
https://github.com/msberends/AMR.git
synced 2025-07-08 07:51:57 +02:00
(v0.8.0.9030) depend on tidyr >= 1.0.0
This commit is contained in:
@ -385,9 +385,10 @@ data_1st %>%
|
||||
summarise("1. Amoxi/clav" = susceptibility(AMC),
|
||||
"2. Gentamicin" = susceptibility(GEN),
|
||||
"3. Amoxi/clav + genta" = susceptibility(AMC, GEN)) %>%
|
||||
tidyr::gather("antibiotic", "S", -genus) %>%
|
||||
# pivot_longer() from the tidyr package "lengthens" data:
|
||||
tidyr::pivot_longer(-genus, names_to = "antibiotic") %>%
|
||||
ggplot(aes(x = genus,
|
||||
y = S,
|
||||
y = value,
|
||||
fill = antibiotic)) +
|
||||
geom_col(position = "dodge2")
|
||||
```
|
||||
@ -463,14 +464,19 @@ The next example uses the included `example_isolates`, which is an anonymised da
|
||||
We will compare the resistance to fosfomycin (column `FOS`) in hospital A and D. The input for the `fisher.test()` can be retrieved with a transformation like this:
|
||||
|
||||
```{r, results = 'markup'}
|
||||
# use package 'tidyr' to pivot data;
|
||||
# it gets installed with this 'AMR' package
|
||||
library(tidyr)
|
||||
|
||||
check_FOS <- example_isolates %>%
|
||||
filter(hospital_id %in% c("A", "D")) %>% # filter on only hospitals A and D
|
||||
select(hospital_id, FOS) %>% # select the hospitals and fosfomycin
|
||||
group_by(hospital_id) %>% # group on the hospitals
|
||||
count_df(combine_SI = TRUE) %>% # count all isolates per group (hospital_id)
|
||||
tidyr::spread(hospital_id, value) %>% # transform output so A and D are columns
|
||||
select(A, D) %>% # and select these only
|
||||
as.matrix() # transform to good old matrix for fisher.test()
|
||||
pivot_wider(names_from = hospital_id, # transform output so A and D are columns
|
||||
values_from = value) %>%
|
||||
select(A, D) %>% # and only select these columns
|
||||
as.matrix() # transform to a good old matrix for fisher.test()
|
||||
|
||||
check_FOS
|
||||
```
|
||||
@ -482,4 +488,4 @@ We can apply the test now with:
|
||||
fisher.test(check_FOS)
|
||||
```
|
||||
|
||||
As can be seen, the p value is `r round(fisher.test(check_FOS)$p.value, 3)`, which means that the fosfomycin resistances found in hospital A and D are really different.
|
||||
As can be seen, the p value is `r round(fisher.test(check_FOS)$p.value, 3)`, which means that the fosfomycin resistance found in hospital A and D are really different.
|
||||
|
Reference in New Issue
Block a user