1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-17 23:13:14 +02:00

(v1.8.0) prerelease 1.8.0

This commit is contained in:
2021-12-23 18:56:28 +01:00
parent 3f4ff260d2
commit 25cef46c59
200 changed files with 585 additions and 588 deletions

View File

@ -44,7 +44,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.7.1.9073</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.8.0</span>
</span>
</div>
@ -222,23 +222,23 @@
<span class="fu"><a href="../reference/as.mo.html">as.mo</a></span><span class="op">(</span><span class="st">"MRSA"</span><span class="op">)</span>, <span class="co"># Methicillin Resistant S. aureus</span>
<span class="fu"><a href="../reference/as.mo.html">as.mo</a></span><span class="op">(</span><span class="st">"VISA"</span><span class="op">)</span>, <span class="co"># Vancomycin Intermediate S. aureus</span>
times <span class="op">=</span> <span class="fl">25</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">S.aureus</span>, unit <span class="op">=</span> <span class="st">"ms"</span>, signif <span class="op">=</span> <span class="fl">2</span><span class="op">)</span>
<span class="fu"><a href="https://docs.ropensci.org/skimr/reference/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">S.aureus</span>, unit <span class="op">=</span> <span class="st">"ms"</span>, signif <span class="op">=</span> <span class="fl">2</span><span class="op">)</span>
<span class="co"># Unit: milliseconds</span>
<span class="co"># expr min lq mean median uq max neval</span>
<span class="co"># as.mo("sau") 12.0 12.0 17.0 14.0 15.0 56 25</span>
<span class="co"># as.mo("stau") 51.0 60.0 81.0 87.0 98.0 120 25</span>
<span class="co"># as.mo("STAU") 51.0 64.0 83.0 90.0 98.0 130 25</span>
<span class="co"># as.mo("staaur") 9.7 12.0 15.0 15.0 15.0 46 25</span>
<span class="co"># as.mo("STAAUR") 11.0 14.0 17.0 15.0 16.0 45 25</span>
<span class="co"># as.mo("S. aureus") 24.0 31.0 43.0 33.0 63.0 77 25</span>
<span class="co"># as.mo("S aureus") 26.0 28.0 45.0 34.0 62.0 76 25</span>
<span class="co"># as.mo("Staphylococcus aureus") 3.0 3.7 5.4 3.8 4.6 37 25</span>
<span class="co"># as.mo("Staphylococcus aureus (MRSA)") 240.0 250.0 270.0 260.0 270.0 310 25</span>
<span class="co"># as.mo("Sthafilokkockus aaureuz") 180.0 190.0 210.0 200.0 220.0 260 25</span>
<span class="co"># as.mo("MRSA") 10.0 13.0 20.0 15.0 17.0 73 25</span>
<span class="co"># as.mo("VISA") 20.0 23.0 38.0 26.0 49.0 150 25</span></code></pre></div>
<span class="co"># as.mo("sau") 10.0 12.0 20.0 12.0 15.0 53 25</span>
<span class="co"># as.mo("stau") 49.0 54.0 72.0 58.0 91.0 97 25</span>
<span class="co"># as.mo("STAU") 50.0 54.0 71.0 57.0 90.0 110 25</span>
<span class="co"># as.mo("staaur") 10.0 12.0 17.0 12.0 14.0 51 25</span>
<span class="co"># as.mo("STAAUR") 10.0 12.0 17.0 12.0 14.0 54 25</span>
<span class="co"># as.mo("S. aureus") 26.0 27.0 40.0 31.0 56.0 74 25</span>
<span class="co"># as.mo("S aureus") 26.0 27.0 39.0 29.0 58.0 68 25</span>
<span class="co"># as.mo("Staphylococcus aureus") 3.5 3.9 6.6 4.1 4.8 38 25</span>
<span class="co"># as.mo("Staphylococcus aureus (MRSA)") 230.0 240.0 250.0 240.0 250.0 280 25</span>
<span class="co"># as.mo("Sthafilokkockus aaureuz") 180.0 190.0 200.0 190.0 200.0 290 25</span>
<span class="co"># as.mo("MRSA") 11.0 12.0 19.0 13.0 14.0 50 25</span>
<span class="co"># as.mo("VISA") 21.0 22.0 32.0 25.0 50.0 60 25</span></code></pre></div>
<p><img src="benchmarks_files/figure-html/unnamed-chunk-4-1.png" width="750"></p>
<p>In the table above, all measurements are shown in milliseconds (thousands of seconds). A value of 5 milliseconds means it can determine 200 input values per second. It case of 200 milliseconds, this is only 5 input values per second. It is clear that accepted taxonomic names are extremely fast, but some variations are up to 69 times slower to determine.</p>
<p>In the table above, all measurements are shown in milliseconds (thousands of seconds). A value of 5 milliseconds means it can determine 200 input values per second. It case of 200 milliseconds, this is only 5 input values per second. It is clear that accepted taxonomic names are extremely fast, but some variations are up to 47 times slower to determine.</p>
<p>To improve performance, we implemented two important algorithms to save unnecessary calculations: <strong>repetitive results</strong> and <strong>already precalculated results</strong>.</p>
<div class="section level3">
<h3 id="repetitive-results">Repetitive results<a class="anchor" aria-label="anchor" href="#repetitive-results"></a>
@ -258,8 +258,8 @@
<span class="co"># what do these values look like? They are of class &lt;mo&gt;:</span>
<span class="fu"><a href="https://rdrr.io/r/utils/head.html" class="external-link">head</a></span><span class="op">(</span><span class="va">x</span><span class="op">)</span>
<span class="co"># Class &lt;mo&gt;</span>
<span class="co"># [1] B_STRPT_PNMN B_ESCHR_COLI B_STPHY_AURS B_STPHY_CONS B_ENTRC </span>
<span class="co"># [6] B_STPHY_HMNS</span>
<span class="co"># [1] B_STPHY_AURS B_STRPT_EQNS B_KLBSL_PNMN B_STPHY_EPDR B_STPHY_AURS</span>
<span class="co"># [6] B_CRYNB_STRT</span>
<span class="co"># as the example_isolates data set has 2,000 rows, we should have 2 million items</span>
<span class="fu"><a href="https://rdrr.io/r/base/length.html" class="external-link">length</a></span><span class="op">(</span><span class="va">x</span><span class="op">)</span>
@ -272,11 +272,11 @@
<span class="co"># now let's see:</span>
<span class="va">run_it</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/pkg/microbenchmark/man/microbenchmark.html" class="external-link">microbenchmark</a></span><span class="op">(</span><span class="fu"><a href="../reference/mo_property.html">mo_name</a></span><span class="op">(</span><span class="va">x</span><span class="op">)</span>,
times <span class="op">=</span> <span class="fl">10</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">run_it</span>, unit <span class="op">=</span> <span class="st">"ms"</span>, signif <span class="op">=</span> <span class="fl">3</span><span class="op">)</span>
<span class="fu"><a href="https://docs.ropensci.org/skimr/reference/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">run_it</span>, unit <span class="op">=</span> <span class="st">"ms"</span>, signif <span class="op">=</span> <span class="fl">3</span><span class="op">)</span>
<span class="co"># Unit: milliseconds</span>
<span class="co"># expr min lq mean median uq max neval</span>
<span class="co"># mo_name(x) 205 234 315 310 393 447 10</span></code></pre></div>
<p>So getting official taxonomic names of 2,000,000 (!!) items consisting of 90 unique values only takes 0.31 seconds. That is 155 nanoseconds on average. You only lose time on your unique input values.</p>
<span class="co"># mo_name(x) 196 209 274 223 364 388 10</span></code></pre></div>
<p>So getting official taxonomic names of 2,000,000 (!!) items consisting of 90 unique values only takes 0.223 seconds. That is 112 nanoseconds on average. You only lose time on your unique input values.</p>
</div>
<div class="section level3">
<h3 id="precalculated-results">Precalculated results<a class="anchor" aria-label="anchor" href="#precalculated-results"></a>
@ -287,12 +287,12 @@
B <span class="op">=</span> <span class="fu"><a href="../reference/mo_property.html">mo_name</a></span><span class="op">(</span><span class="st">"S. aureus"</span><span class="op">)</span>,
C <span class="op">=</span> <span class="fu"><a href="../reference/mo_property.html">mo_name</a></span><span class="op">(</span><span class="st">"Staphylococcus aureus"</span><span class="op">)</span>,
times <span class="op">=</span> <span class="fl">10</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">run_it</span>, unit <span class="op">=</span> <span class="st">"ms"</span>, signif <span class="op">=</span> <span class="fl">3</span><span class="op">)</span>
<span class="fu"><a href="https://docs.ropensci.org/skimr/reference/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">run_it</span>, unit <span class="op">=</span> <span class="st">"ms"</span>, signif <span class="op">=</span> <span class="fl">3</span><span class="op">)</span>
<span class="co"># Unit: milliseconds</span>
<span class="co"># expr min lq mean median uq max neval</span>
<span class="co"># A 7.89 8.95 14.80 9.21 10.50 64.60 10</span>
<span class="co"># B 22.60 26.10 33.80 26.90 29.80 89.20 10</span>
<span class="co"># C 1.76 2.04 2.44 2.49 2.73 3.37 10</span></code></pre></div>
<span class="co"># A 8.00 9.16 9.19 9.28 9.46 9.73 10</span>
<span class="co"># B 23.40 27.20 32.60 27.90 28.10 80.20 10</span>
<span class="co"># C 1.85 2.25 2.40 2.47 2.62 2.90 10</span></code></pre></div>
<p>So going from <code>mo_name("Staphylococcus aureus")</code> to <code>"Staphylococcus aureus"</code> takes 0.0025 seconds - it doesnt even start calculating <em>if the result would be the same as the expected resulting value</em>. That goes for all helper functions:</p>
<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="va">run_it</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/pkg/microbenchmark/man/microbenchmark.html" class="external-link">microbenchmark</a></span><span class="op">(</span>A <span class="op">=</span> <span class="fu"><a href="../reference/mo_property.html">mo_species</a></span><span class="op">(</span><span class="st">"aureus"</span><span class="op">)</span>,
@ -304,17 +304,17 @@
G <span class="op">=</span> <span class="fu"><a href="../reference/mo_property.html">mo_phylum</a></span><span class="op">(</span><span class="st">"Firmicutes"</span><span class="op">)</span>,
H <span class="op">=</span> <span class="fu"><a href="../reference/mo_property.html">mo_kingdom</a></span><span class="op">(</span><span class="st">"Bacteria"</span><span class="op">)</span>,
times <span class="op">=</span> <span class="fl">10</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">run_it</span>, unit <span class="op">=</span> <span class="st">"ms"</span>, signif <span class="op">=</span> <span class="fl">3</span><span class="op">)</span>
<span class="fu"><a href="https://docs.ropensci.org/skimr/reference/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">run_it</span>, unit <span class="op">=</span> <span class="st">"ms"</span>, signif <span class="op">=</span> <span class="fl">3</span><span class="op">)</span>
<span class="co"># Unit: milliseconds</span>
<span class="co"># expr min lq mean median uq max neval</span>
<span class="co"># A 1.62 1.67 1.81 1.71 1.75 2.45 10</span>
<span class="co"># B 1.59 1.62 1.94 1.75 2.15 3.08 10</span>
<span class="co"># C 1.61 1.64 1.74 1.70 1.73 2.09 10</span>
<span class="co"># D 1.58 1.66 1.87 1.69 2.07 2.63 10</span>
<span class="co"># E 1.59 1.61 1.70 1.64 1.72 2.15 10</span>
<span class="co"># F 1.57 1.60 1.69 1.66 1.71 2.07 10</span>
<span class="co"># G 1.56 1.60 1.75 1.67 1.73 2.21 10</span>
<span class="co"># H 1.60 1.62 1.67 1.64 1.70 1.81 10</span></code></pre></div>
<span class="co"># A 1.76 1.80 2.07 1.95 2.26 2.90 10</span>
<span class="co"># B 1.69 1.73 1.90 1.81 2.03 2.48 10</span>
<span class="co"># C 1.71 1.77 1.92 1.91 2.05 2.17 10</span>
<span class="co"># D 1.68 1.71 1.76 1.76 1.82 1.88 10</span>
<span class="co"># E 1.68 1.70 1.89 1.89 2.04 2.26 10</span>
<span class="co"># F 1.67 1.75 1.93 1.89 2.11 2.35 10</span>
<span class="co"># G 1.70 1.76 1.97 1.88 2.12 2.43 10</span>
<span class="co"># H 1.67 1.71 1.83 1.75 1.98 2.14 10</span></code></pre></div>
<p>Of course, when running <code>mo_phylum("Firmicutes")</code> the function has zero knowledge about the actual microorganism, namely <em>S. aureus</em>. But since the result would be <code>"Firmicutes"</code> anyway, there is no point in calculating the result. And because this package contains all phyla of all known bacteria, it can just return the initial value immediately.</p>
</div>
<div class="section level3">
@ -347,19 +347,19 @@
ru <span class="op">=</span> <span class="fu"><a href="../reference/mo_property.html">mo_name</a></span><span class="op">(</span><span class="va">CoNS</span>, language <span class="op">=</span> <span class="st">"ru"</span><span class="op">)</span>,
sv <span class="op">=</span> <span class="fu"><a href="../reference/mo_property.html">mo_name</a></span><span class="op">(</span><span class="va">CoNS</span>, language <span class="op">=</span> <span class="st">"sv"</span><span class="op">)</span>,
times <span class="op">=</span> <span class="fl">100</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">run_it</span>, unit <span class="op">=</span> <span class="st">"ms"</span>, signif <span class="op">=</span> <span class="fl">4</span><span class="op">)</span>
<span class="fu"><a href="https://docs.ropensci.org/skimr/reference/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">run_it</span>, unit <span class="op">=</span> <span class="st">"ms"</span>, signif <span class="op">=</span> <span class="fl">4</span><span class="op">)</span>
<span class="co"># Unit: milliseconds</span>
<span class="co"># expr min lq mean median uq max neval</span>
<span class="co"># da 1.9160 2.012 2.308 2.213 2.445 4.040 100</span>
<span class="co"># de 1.9130 2.057 3.165 2.358 2.495 44.140 100</span>
<span class="co"># en 0.8684 0.910 1.076 1.004 1.137 2.173 100</span>
<span class="co"># es 1.9060 2.066 3.304 2.335 2.595 60.500 100</span>
<span class="co"># fr 1.7950 1.888 2.169 2.104 2.338 3.366 100</span>
<span class="co"># it 1.8830 2.025 2.809 2.342 2.536 45.730 100</span>
<span class="co"># nl 1.9370 2.034 3.482 2.316 2.626 60.780 100</span>
<span class="co"># pt 1.8450 1.983 3.125 2.293 2.447 43.830 100</span>
<span class="co"># ru 1.8260 1.932 3.454 2.018 2.413 87.210 100</span>
<span class="co"># sv 1.8260 1.930 3.428 2.207 2.441 72.080 100</span></code></pre></div>
<span class="co"># expr min lq mean median uq max neval</span>
<span class="co"># da 1.9470 2.0220 2.190 2.0720 2.358 3.234 100</span>
<span class="co"># de 1.9560 2.0330 3.649 2.1610 2.401 50.670 100</span>
<span class="co"># en 0.8937 0.9124 1.022 0.9776 1.120 1.748 100</span>
<span class="co"># es 1.9710 2.0290 2.216 2.1000 2.391 3.109 100</span>
<span class="co"># fr 1.8280 1.8960 3.214 1.9420 2.237 71.550 100</span>
<span class="co"># it 1.9370 1.9970 2.163 2.0610 2.339 3.210 100</span>
<span class="co"># nl 1.9710 2.0280 2.698 2.1110 2.421 49.340 100</span>
<span class="co"># pt 1.8920 1.9600 2.119 2.0200 2.261 3.265 100</span>
<span class="co"># ru 1.8630 1.9420 2.779 2.0270 2.335 66.660 100</span>
<span class="co"># sv 1.8680 1.9190 4.062 1.9890 2.263 78.870 100</span></code></pre></div>
<p>Currently supported languages are Danish, Dutch, English, French, German, Italian, Portuguese, Russian, Spanish and Swedish.</p>
</div>
</div>