1
0
mirror of https://github.com/msberends/AMR.git synced 2025-12-15 07:10:23 +01:00

(v1.6.0.9021) join functions update

This commit is contained in:
2021-05-12 18:15:03 +02:00
parent 3319fbae58
commit 29dbfa2f49
119 changed files with 973 additions and 1040 deletions

View File

@@ -15,7 +15,7 @@ pca(
)
}
\arguments{
\item{x}{a \link{data.frame} containing numeric columns}
\item{x}{a \link{data.frame} containing \link{numeric} columns}
\item{...}{columns of \code{x} to be selected for PCA, can be unquoted since it supports quasiquotation.}
@@ -57,7 +57,7 @@ Performs a principal component analysis (PCA) based on a data set with automatic
\details{
The \code{\link[=pca]{pca()}} function takes a \link{data.frame} as input and performs the actual PCA with the \R function \code{\link[=prcomp]{prcomp()}}.
The result of the \code{\link[=pca]{pca()}} function is a \link{prcomp} object, with an additional attribute \code{non_numeric_cols} which is a vector with the column names of all columns that do not contain numeric values. These are probably the groups and labels, and will be used by \code{\link[=ggplot_pca]{ggplot_pca()}}.
The result of the \code{\link[=pca]{pca()}} function is a \link{prcomp} object, with an additional attribute \code{non_numeric_cols} which is a vector with the column names of all columns that do not contain \link{numeric} values. These are probably the groups and labels, and will be used by \code{\link[=ggplot_pca]{ggplot_pca()}}.
}
\section{Stable Lifecycle}{