1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-11 12:22:01 +02:00

eucast rules fix, 1st isolate fix, website update

This commit is contained in:
2018-12-31 01:48:53 +01:00
parent 469b145d8c
commit 2e4d703338
51 changed files with 1473 additions and 1760 deletions

View File

@ -56,10 +56,10 @@ The `AMR` package basically does four important things:
2. It **enhances existing data** and **adds new data** from data sets included in this package.
* Use `EUCAST_rules` to apply [EUCAST expert rules to isolates](http://www.eucast.org/expert_rules_and_intrinsic_resistance/).
* Use `eucast_rules` to apply [EUCAST expert rules to isolates](http://www.eucast.org/expert_rules_and_intrinsic_resistance/).
* Use `first_isolate` to identify the first isolates of every patient [using guidelines from the CLSI](https://clsi.org/standards/products/microbiology/documents/m39/) (Clinical and Laboratory Standards Institute).
* You can also identify first *weighted* isolates of every patient, an adjusted version of the CLSI guideline. This takes into account key antibiotics of every strain and compares them.
* Use `MDRO` (abbreviation of Multi Drug Resistant Organisms) to check your isolates for exceptional resistance with country-specific guidelines or EUCAST rules. Currently, national guidelines for Germany and the Netherlands are supported.
* Use `mdro` (abbreviation of Multi Drug Resistant Organisms) to check your isolates for exceptional resistance with country-specific guidelines or EUCAST rules. Currently, national guidelines for Germany and the Netherlands are supported.
* The data set `microorganisms` contains the complete taxonomic tree of more than 18,000 microorganisms (bacteria, fungi/yeasts and protozoa). Furthermore, the colloquial name and Gram stain are available, which enables resistance analysis of e.g. different antibiotics per Gram stain. The package also contains functions to look up values in this data set like `mo_genus`, `mo_family`, `mo_gramstain` or even `mo_phylum`. As they use `as.mo` internally, they also use artificial intelligence. For example, `mo_genus("MRSA")` and `mo_genus("S. aureus")` will both return `"Staphylococcus"`. They also come with support for German, Dutch, Spanish, Italian, French and Portuguese. These functions can be used to add new variables to your data.
* The data set `antibiotics` contains the ATC code, LIS codes, official name, trivial name and DDD of both oral and parenteral administration. It also contains a total of 298 trade names. Use functions like `ab_name` and `ab_tradenames` to look up values. The `ab_*` functions use `as.atc` internally so they support AI to guess your expected result. For example, `ab_name("Fluclox")`, `ab_name("Floxapen")` and `ab_name("J01CF05")` will all return `"Flucloxacillin"`. These functions can again be used to add new variables to your data.