1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-08 09:51:48 +02:00

(v0.7.1.9104) vignette fix

This commit is contained in:
2019-10-12 09:15:27 +02:00
parent b2a08d056b
commit 2eb4a42f3d
17 changed files with 228 additions and 228 deletions

View File

@ -210,7 +210,7 @@ data <- data %>%
mutate(first = first_isolate(.))
```
So only `r clean:::percentage(sum(data$first) / nrow(data))` is suitable for resistance analysis! We can now filter on it with the `filter()` function, also from the `dplyr` package:
So only `r percentage(sum(data$first) / nrow(data))` is suitable for resistance analysis! We can now filter on it with the `filter()` function, also from the `dplyr` package:
```{r 1st isolate filter}
data_1st <- data %>%
@ -272,7 +272,7 @@ weighted_df2 %>%
knitr::kable(align = "c")
```
Instead of `r sum(weighted_df$first)`, now `r sum(weighted_df2$first_weighted)` isolates are flagged. In total, `r clean:::percentage(sum(data$first_weighted) / nrow(data))` of all isolates are marked 'first weighted' - `r clean:::percentage((sum(data$first_weighted) / nrow(data)) - (sum(data$first) / nrow(data)))` more than when using the CLSI guideline. In real life, this novel algorithm will yield 5-10% more isolates than the classic CLSI guideline.
Instead of `r sum(weighted_df$first)`, now `r sum(weighted_df2$first_weighted)` isolates are flagged. In total, `r percentage(sum(data$first_weighted) / nrow(data))` of all isolates are marked 'first weighted' - `r percentage((sum(data$first_weighted) / nrow(data)) - (sum(data$first) / nrow(data)))` more than when using the CLSI guideline. In real life, this novel algorithm will yield 5-10% more isolates than the classic CLSI guideline.
As with `filter_first_isolate()`, there's a shortcut for this new algorithm too:
```{r 1st isolate filter 3, results = 'hide', message = FALSE, warning = FALSE}