mirror of
https://github.com/msberends/AMR.git
synced 2025-07-12 00:22:34 +02:00
new tibble export
This commit is contained in:
@ -58,7 +58,7 @@ filter_first_isolate(
|
||||
|
||||
\item{col_specimen}{column name of the specimen type or group}
|
||||
|
||||
\item{col_icu}{column name of the logicals (\code{TRUE}/\code{FALSE}) whether a ward or department is an Intensive Care Unit (ICU)}
|
||||
\item{col_icu}{column name of the logicals (\code{TRUE}/\code{FALSE}) whether a ward or department is an Intensive Care Unit (ICU). This can also be a \link{logical} vector with the same length as rows in \code{x}.}
|
||||
|
||||
\item{col_keyantimicrobials}{(only useful when \code{method = "phenotype-based"}) column name of the key antimicrobials to determine first isolates, see \code{\link[=key_antimicrobials]{key_antimicrobials()}}. Defaults to the first column that starts with 'key' followed by 'ab' or 'antibiotics' or 'antimicrobials' (case insensitive). Use \code{col_keyantimicrobials = FALSE} to prevent this. Can also be the output of \code{\link[=key_antimicrobials]{key_antimicrobials()}}.}
|
||||
|
||||
@ -87,7 +87,7 @@ filter_first_isolate(
|
||||
\item{...}{arguments passed on to \code{\link[=first_isolate]{first_isolate()}} when using \code{\link[=filter_first_isolate]{filter_first_isolate()}}, otherwise arguments passed on to \code{\link[=key_antimicrobials]{key_antimicrobials()}} (such as \code{universal}, \code{gram_negative}, \code{gram_positive})}
|
||||
}
|
||||
\value{
|
||||
A \code{\link{logical}} vector
|
||||
A \link{logical} vector
|
||||
}
|
||||
\description{
|
||||
Determine first isolates of all microorganisms of every patient per episode and (if needed) per specimen type. These functions support all four methods as summarised by Hindler \emph{et al.} in 2007 (\doi{10.1086/511864}). To determine patient episodes not necessarily based on microorganisms, use \code{\link[=is_new_episode]{is_new_episode()}} that also supports grouping with the \code{dplyr} package.
|
||||
@ -177,36 +177,22 @@ if (require("dplyr")) {
|
||||
# filter on first isolates using dplyr:
|
||||
example_isolates \%>\%
|
||||
filter(first_isolate())
|
||||
|
||||
}
|
||||
if (require("dplyr")) {
|
||||
|
||||
# short-hand version:
|
||||
example_isolates \%>\%
|
||||
filter_first_isolate(info = FALSE)
|
||||
|
||||
}
|
||||
if (require("dplyr")) {
|
||||
|
||||
# flag the first isolates per group:
|
||||
example_isolates \%>\%
|
||||
group_by(hospital_id) \%>\%
|
||||
group_by(ward) \%>\%
|
||||
mutate(first = first_isolate()) \%>\%
|
||||
select(hospital_id, date, patient_id, mo, first)
|
||||
|
||||
# now let's see if first isolates matter:
|
||||
A <- example_isolates \%>\%
|
||||
group_by(hospital_id) \%>\%
|
||||
summarise(count = n_rsi(GEN), # gentamicin availability
|
||||
resistance = resistance(GEN)) # gentamicin resistance
|
||||
|
||||
B <- example_isolates \%>\%
|
||||
filter_first_isolate() \%>\% # the 1st isolate filter
|
||||
group_by(hospital_id) \%>\%
|
||||
summarise(count = n_rsi(GEN), # gentamicin availability
|
||||
resistance = resistance(GEN)) # gentamicin resistance
|
||||
|
||||
# Have a look at A and B.
|
||||
A
|
||||
B
|
||||
|
||||
# B is more reliable because every isolate is counted only once.
|
||||
# Gentamicin resistance in hospital D appears to be 4.2\% higher than
|
||||
# when you (erroneously) would have used all isolates for analysis.
|
||||
select(ward, date, patient, mo, first)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user