mirror of
				https://github.com/msberends/AMR.git
				synced 2025-10-31 00:48:29 +01:00 
			
		
		
		
	Built site for AMR@2.1.1.9151: ef02f4a
				
					
				
			This commit is contained in:
		| @@ -31,7 +31,7 @@ | ||||
|  | ||||
|     <a class="navbar-brand me-2" href="../index.html">AMR (for R)</a> | ||||
|  | ||||
|     <small class="nav-text text-muted me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="">2.1.1.9150</small> | ||||
|     <small class="nav-text text-muted me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="">2.1.1.9151</small> | ||||
|  | ||||
|  | ||||
|     <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation"> | ||||
| @@ -95,7 +95,7 @@ question about the AMR package.</p> | ||||
| understanding resistance patterns is crucial for managing effective | ||||
| treatments. The <code>AMR</code> R package provides robust tools for | ||||
| analysing AMR data, including convenient antibiotic selector functions | ||||
| like <code><a href="../reference/antimicrobial_class_selectors.html">aminoglycosides()</a></code> and <code><a href="../reference/antimicrobial_class_selectors.html">betalactams()</a></code>. In | ||||
| like <code><a href="../reference/antimicrobial_selectors.html">aminoglycosides()</a></code> and <code><a href="../reference/antimicrobial_selectors.html">betalactams()</a></code>. In | ||||
| this post, we will explore how to use the <code>tidymodels</code> | ||||
| framework to predict resistance patterns in the | ||||
| <code>example_isolates</code> dataset.</p> | ||||
| @@ -112,7 +112,7 @@ antibiotic classes: aminoglycosides and beta-lactams.</p> | ||||
| microorganism based on microbial data. We will:</p> | ||||
| <ol style="list-style-type: decimal"> | ||||
| <li>Preprocess data using the selector functions | ||||
| <code><a href="../reference/antimicrobial_class_selectors.html">aminoglycosides()</a></code> and <code><a href="../reference/antimicrobial_class_selectors.html">betalactams()</a></code>.</li> | ||||
| <code><a href="../reference/antimicrobial_selectors.html">aminoglycosides()</a></code> and <code><a href="../reference/antimicrobial_selectors.html">betalactams()</a></code>.</li> | ||||
| <li>Define a logistic regression model for prediction.</li> | ||||
| <li>Use a structured <code>tidymodels</code> workflow to preprocess, | ||||
| train, and evaluate the model.</li> | ||||
| @@ -142,7 +142,7 @@ package.</p> | ||||
| <span><span class="co">#> <span style="color: #BB0000;">✖</span> <span style="color: #0000BB;">dplyr</span>::<span style="color: #00BB00;">filter()</span>  masks <span style="color: #0000BB;">stats</span>::filter()</span></span> | ||||
| <span><span class="co">#> <span style="color: #BB0000;">✖</span> <span style="color: #0000BB;">dplyr</span>::<span style="color: #00BB00;">lag()</span>     masks <span style="color: #0000BB;">stats</span>::lag()</span></span> | ||||
| <span><span class="co">#> <span style="color: #BB0000;">✖</span> <span style="color: #0000BB;">recipes</span>::<span style="color: #00BB00;">step()</span>  masks <span style="color: #0000BB;">stats</span>::step()</span></span> | ||||
| <span><span class="co">#> <span style="color: #0000BB;">•</span> Dig deeper into tidy modeling with R at <span style="color: #00BB00;">https://www.tmwr.org</span></span></span> | ||||
| <span><span class="co">#> <span style="color: #0000BB;">•</span> Search for functions across packages at <span style="color: #00BB00;">https://www.tidymodels.org/find/</span></span></span> | ||||
| <span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://msberends.github.io/AMR/">AMR</a></span><span class="op">)</span>          <span class="co"># For AMR data analysis</span></span> | ||||
| <span></span> | ||||
| <span><span class="co"># Load the example_isolates dataset</span></span> | ||||
| @@ -151,7 +151,7 @@ package.</p> | ||||
| <span><span class="co"># Select relevant columns for prediction</span></span> | ||||
| <span><span class="va">data</span> <span class="op"><-</span> <span class="va">example_isolates</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%>%</a></span></span> | ||||
| <span>  <span class="co"># select AB results dynamically</span></span> | ||||
| <span>  <span class="fu"><a href="https://dplyr.tidyverse.org/reference/select.html" class="external-link">select</a></span><span class="op">(</span><span class="va">mo</span>, <span class="fu"><a href="../reference/antimicrobial_class_selectors.html">aminoglycosides</a></span><span class="op">(</span><span class="op">)</span>, <span class="fu"><a href="../reference/antimicrobial_class_selectors.html">betalactams</a></span><span class="op">(</span><span class="op">)</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%>%</a></span></span> | ||||
| <span>  <span class="fu"><a href="https://dplyr.tidyverse.org/reference/select.html" class="external-link">select</a></span><span class="op">(</span><span class="va">mo</span>, <span class="fu"><a href="../reference/antimicrobial_selectors.html">aminoglycosides</a></span><span class="op">(</span><span class="op">)</span>, <span class="fu"><a href="../reference/antimicrobial_selectors.html">betalactams</a></span><span class="op">(</span><span class="op">)</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%>%</a></span></span> | ||||
| <span>  <span class="co"># replace NAs with NI (not-interpretable)</span></span> | ||||
| <span>   <span class="fu"><a href="https://dplyr.tidyverse.org/reference/mutate.html" class="external-link">mutate</a></span><span class="op">(</span><span class="fu"><a href="https://dplyr.tidyverse.org/reference/across.html" class="external-link">across</a></span><span class="op">(</span><span class="fu"><a href="https://tidyselect.r-lib.org/reference/where.html" class="external-link">where</a></span><span class="op">(</span><span class="va">is.sir</span><span class="op">)</span>,</span> | ||||
| <span>                 <span class="op">~</span><span class="fu">replace_na</span><span class="op">(</span><span class="va">.x</span>, <span class="st">"NI"</span><span class="op">)</span><span class="op">)</span>,</span> | ||||
| @@ -173,7 +173,7 @@ package.</p> | ||||
| <p><strong>Explanation:</strong></p> | ||||
| <ul> | ||||
| <li> | ||||
| <code><a href="../reference/antimicrobial_class_selectors.html">aminoglycosides()</a></code> and <code><a href="../reference/antimicrobial_class_selectors.html">betalactams()</a></code> | ||||
| <code><a href="../reference/antimicrobial_selectors.html">aminoglycosides()</a></code> and <code><a href="../reference/antimicrobial_selectors.html">betalactams()</a></code> | ||||
| dynamically select columns for antibiotics in these classes.</li> | ||||
| <li> | ||||
| <code>drop_na()</code> ensures the model receives complete cases for | ||||
| @@ -193,7 +193,7 @@ three steps: preprocessing, model specification, and fitting.</p> | ||||
| <div class="sourceCode" id="cb2"><pre class="downlit sourceCode r"> | ||||
| <code class="sourceCode R"><span><span class="co"># Define the recipe for data preprocessing</span></span> | ||||
| <span><span class="va">resistance_recipe</span> <span class="op"><-</span> <span class="fu">recipe</span><span class="op">(</span><span class="va">mo</span> <span class="op">~</span> <span class="va">.</span>, data <span class="op">=</span> <span class="va">data</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%>%</a></span></span> | ||||
| <span>  <span class="fu">step_corr</span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fu"><a href="../reference/antimicrobial_class_selectors.html">aminoglycosides</a></span><span class="op">(</span><span class="op">)</span>, <span class="fu"><a href="../reference/antimicrobial_class_selectors.html">betalactams</a></span><span class="op">(</span><span class="op">)</span><span class="op">)</span>, threshold <span class="op">=</span> <span class="fl">0.9</span><span class="op">)</span></span> | ||||
| <span>  <span class="fu">step_corr</span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fu"><a href="../reference/antimicrobial_selectors.html">aminoglycosides</a></span><span class="op">(</span><span class="op">)</span>, <span class="fu"><a href="../reference/antimicrobial_selectors.html">betalactams</a></span><span class="op">(</span><span class="op">)</span><span class="op">)</span>, threshold <span class="op">=</span> <span class="fl">0.9</span><span class="op">)</span></span> | ||||
| <span><span class="va">resistance_recipe</span></span> | ||||
| <span><span class="co">#> </span></span> | ||||
| <span><span class="co">#> <span style="color: #00BBBB;">──</span> <span style="font-weight: bold;">Recipe</span> <span style="color: #00BBBB;">──────────────────────────────────────────────────────────────────────</span></span></span> | ||||
| @@ -355,7 +355,7 @@ antibiotics. The ROC curve looks like this:</p> | ||||
| <p>In this post, we demonstrated how to build a machine learning | ||||
| pipeline with the <code>tidymodels</code> framework and the | ||||
| <code>AMR</code> package. By combining selector functions like | ||||
| <code><a href="../reference/antimicrobial_class_selectors.html">aminoglycosides()</a></code> and <code><a href="../reference/antimicrobial_class_selectors.html">betalactams()</a></code> with | ||||
| <code><a href="../reference/antimicrobial_selectors.html">aminoglycosides()</a></code> and <code><a href="../reference/antimicrobial_selectors.html">betalactams()</a></code> with | ||||
| <code>tidymodels</code>, we efficiently prepared data, trained a model, | ||||
| and evaluated its performance.</p> | ||||
| <p>This workflow is extensible to other antibiotic classes and | ||||
|   | ||||
		Reference in New Issue
	
	Block a user