mirror of
https://github.com/msberends/AMR.git
synced 2025-12-24 03:10:26 +01:00
(v3.0.1.9009) tidymodels vignette
This commit is contained in:
@@ -1,6 +1,6 @@
|
|||||||
Package: AMR
|
Package: AMR
|
||||||
Version: 3.0.1.9008
|
Version: 3.0.1.9009
|
||||||
Date: 2025-12-22
|
Date: 2025-12-23
|
||||||
Title: Antimicrobial Resistance Data Analysis
|
Title: Antimicrobial Resistance Data Analysis
|
||||||
Description: Functions to simplify and standardise antimicrobial resistance (AMR)
|
Description: Functions to simplify and standardise antimicrobial resistance (AMR)
|
||||||
data analysis and to work with microbial and antimicrobial properties by
|
data analysis and to work with microbial and antimicrobial properties by
|
||||||
|
|||||||
2
NEWS.md
2
NEWS.md
@@ -1,4 +1,4 @@
|
|||||||
# AMR 3.0.1.9008
|
# AMR 3.0.1.9009
|
||||||
|
|
||||||
### New
|
### New
|
||||||
* Integration with the **tidymodels** framework to allow seamless use of SIR, MIC and disk data in modelling pipelines via `recipes`
|
* Integration with the **tidymodels** framework to allow seamless use of SIR, MIC and disk data in modelling pipelines via `recipes`
|
||||||
|
|||||||
@@ -267,10 +267,9 @@ testing_data <- testing(split)
|
|||||||
# Define the recipe
|
# Define the recipe
|
||||||
mic_recipe <- recipe(esbl ~ ., data = training_data) %>%
|
mic_recipe <- recipe(esbl ~ ., data = training_data) %>%
|
||||||
remove_role(genus, old_role = "predictor") %>% # Remove non-informative variable
|
remove_role(genus, old_role = "predictor") %>% # Remove non-informative variable
|
||||||
step_mic_log2(all_mic_predictors()) %>% # Log2 transform all MIC predictors
|
step_mic_log2(all_mic_predictors()) # Log2 transform all MIC predictors
|
||||||
prep()
|
|
||||||
|
|
||||||
mic_recipe
|
prep(mic_recipe)
|
||||||
```
|
```
|
||||||
|
|
||||||
**Explanation:**
|
**Explanation:**
|
||||||
@@ -331,7 +330,7 @@ metrics
|
|||||||
- `predict()`: Produces predictions for unseen test data.
|
- `predict()`: Produces predictions for unseen test data.
|
||||||
- `metric_set()`: Allows evaluating multiple classification metrics. This will make `our_metrics` to become a function that we can use to check the predictions with.
|
- `metric_set()`: Allows evaluating multiple classification metrics. This will make `our_metrics` to become a function that we can use to check the predictions with.
|
||||||
|
|
||||||
It appears we can predict ESBL gene presence with a positive predictive value (PPV) of `r round(metrics[metrics$.metric == "ppv", ]$.estimate, 3) * 100`% and a negative predictive value (NPV) of `r round(metrics[metrics$.metric == "npv", ]$.estimate, 3) * 100` using a simplistic logistic regression model.
|
It appears we can predict ESBL gene presence with a positive predictive value (PPV) of `r round(metrics[metrics$.metric == "ppv", ]$.estimate, 3) * 100`% and a negative predictive value (NPV) of `r round(metrics[metrics$.metric == "npv", ]$.estimate, 3) * 100`% using a simplistic logistic regression model.
|
||||||
|
|
||||||
### **Visualising Predictions**
|
### **Visualising Predictions**
|
||||||
|
|
||||||
@@ -369,7 +368,7 @@ predictions %>%
|
|||||||
|
|
||||||
### **Conclusion**
|
### **Conclusion**
|
||||||
|
|
||||||
In this example, we showcased how the new `AMR`-specific recipe steps simplify working with `<mic>` columns in `tidymodels`. The `step_mic_log2()` transformation converts ordered MICs to log2-transformed numerics, improving compatibility with classification models.
|
In this example, we showcased how the new `AMR`-specific recipe steps simplify working with `<mic>` columns in `tidymodels`. The `step_mic_log2()` transformation converts MICs (with or without operators) to log2-transformed numerics, improving compatibility with classification models.
|
||||||
|
|
||||||
This pipeline enables realistic, reproducible, and interpretable modelling of antimicrobial resistance data.
|
This pipeline enables realistic, reproducible, and interpretable modelling of antimicrobial resistance data.
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user