mirror of
https://github.com/msberends/AMR.git
synced 2024-12-25 18:06:12 +01:00
(v1.3.0.9033) skimr fix
This commit is contained in:
parent
519aada54f
commit
36ec8b0d81
@ -1,5 +1,5 @@
|
||||
Package: AMR
|
||||
Version: 1.3.0.9032
|
||||
Version: 1.3.0.9033
|
||||
Date: 2020-09-28
|
||||
Title: Antimicrobial Resistance Analysis
|
||||
Authors@R: c(
|
||||
|
2
NEWS.md
2
NEWS.md
@ -1,4 +1,4 @@
|
||||
# AMR 1.3.0.9032
|
||||
# AMR 1.3.0.9033
|
||||
## <small>Last updated: 28 September 2020</small>
|
||||
|
||||
Note: some changes in this version were suggested by anonymous reviewers from the journal we submitted our manuscipt to. We are those reviewers very grateful for going through our code so thoroughly!
|
||||
|
6
R/disk.R
6
R/disk.R
@ -193,10 +193,10 @@ get_skimmers.disk <- function(column) {
|
||||
inline_hist <- import_fn("inline_hist", "skimr", error_on_fail = FALSE)
|
||||
sfl(
|
||||
skim_type = "disk",
|
||||
smallest = ~min(as.double(.), na.rm = TRUE),
|
||||
largest = ~max(as.double(.), na.rm = TRUE),
|
||||
min = ~min(as.double(.), na.rm = TRUE),
|
||||
max = ~max(as.double(.), na.rm = TRUE),
|
||||
median = ~stats::median(as.double(.), na.rm = TRUE),
|
||||
n_unique = n_unique,
|
||||
n_unique = ~pm_n_distinct(., na.rm = TRUE),
|
||||
hist = ~inline_hist(stats::na.omit(as.double(.)))
|
||||
)
|
||||
}
|
||||
|
@ -42,8 +42,8 @@ EUCAST_VERSION_EXPERT_RULES <- list("3.1" = list(version_txt = "v3.1",
|
||||
#' @param info print progress
|
||||
#' @param rules a character vector that specifies which rules should be applied. Must be one or more of `"breakpoints"`, `"expert"`, `"other"`, `"all"`, and defaults to `c("breakpoints", "expert")`. The default value can be set to another value, e.g. using `options(AMR_eucastrules = "all")`.
|
||||
#' @param verbose a [logical] to turn Verbose mode on and off (default is off). In Verbose mode, the function does not apply rules to the data, but instead returns a data set in logbook form with extensive info about which rows and columns would be effected and in which way. Using Verbose mode takes a lot more time.
|
||||
#' @param version_breakpoints the version number to use for the EUCAST Clinical Breakpoints guideline
|
||||
#' @param version_expertrules the version number to use for the EUCAST Expert Rules and Intrinsic Resistance guideline
|
||||
#' @param version_breakpoints the version number to use for the EUCAST Clinical Breakpoints guideline. Currently supported: `r paste0(names(EUCAST_VERSION_BREAKPOINTS), collapse = ", ")`.
|
||||
#' @param version_expertrules the version number to use for the EUCAST Expert Rules and Intrinsic Resistance guideline. Currently supported: `r paste0(names(EUCAST_VERSION_EXPERT_RULES), collapse = ", ")`.
|
||||
#' @param ... column name of an antibiotic, please see section *Antibiotics* below
|
||||
#' @inheritParams first_isolate
|
||||
#' @details
|
||||
@ -143,8 +143,8 @@ eucast_rules <- function(x,
|
||||
|
||||
check_dataset_integrity()
|
||||
|
||||
version_breakpoints <- as.double(version_breakpoints)
|
||||
version_expertrules <- as.double(version_expertrules)
|
||||
version_breakpoints <- as.double(gsub("[^0-9.]+", "", version_breakpoints))
|
||||
version_expertrules <- as.double(gsub("[^0-9.]+", "", version_expertrules))
|
||||
stop_ifnot(version_breakpoints %in% as.double(names(EUCAST_VERSION_BREAKPOINTS)),
|
||||
"EUCAST version ", version_breakpoints, " for clinical breakpoints not found")
|
||||
stop_ifnot(version_expertrules %in% as.double(names(EUCAST_VERSION_EXPERT_RULES)),
|
||||
|
2
R/mic.R
2
R/mic.R
@ -306,7 +306,7 @@ get_skimmers.mic <- function(column) {
|
||||
min = ~as.character(sort(na.omit(.))[1]),
|
||||
max = ~as.character(sort(stats::na.omit(.))[length(stats::na.omit(.))]),
|
||||
median = ~as.character(stats::na.omit(.)[as.double(stats::na.omit(.)) == median(as.double(stats::na.omit(.)))])[1],
|
||||
n_unique = n_unique,
|
||||
n_unique = ~pm_n_distinct(., na.rm = TRUE),
|
||||
hist_log2 = ~inline_hist(log2(as.double(stats::na.omit(.))))
|
||||
)
|
||||
}
|
||||
|
26
R/mo.R
26
R/mo.R
@ -1647,7 +1647,7 @@ get_skimmers.mo <- function(column) {
|
||||
sfl <- import_fn("sfl", "skimr", error_on_fail = FALSE)
|
||||
sfl(
|
||||
skim_type = "mo",
|
||||
unique_total = n_unique,
|
||||
unique_total = ~pm_n_distinct(., na.rm = TRUE),
|
||||
gram_negative = ~sum(mo_gramstain(stats::na.omit(.), language = NULL) == "Gram-negative", na.rm = TRUE),
|
||||
gram_positive = ~sum(mo_gramstain(stats::na.omit(.), language = NULL) == "Gram-positive", na.rm = TRUE),
|
||||
top_genus = ~names(sort(-table(mo_genus(stats::na.omit(.), language = NULL))))[1L],
|
||||
@ -1778,20 +1778,20 @@ print.mo_uncertainties <- function(x, ...) {
|
||||
if (NROW(x) == 0) {
|
||||
return(NULL)
|
||||
}
|
||||
cat(font_blue(strwrap(c("Matching scores are based on human pathogenic prevalence and the resemblance between the input and the full taxonomic name. Furthermore, an indication is given about the certainty of the match - the more transformations are needed for coercion, the less certain the result.")), collapse = "\n"))
|
||||
cat(font_blue(strwrap(c("Matching scores are based on human pathogenic prevalence and the resemblance between the input and the full taxonomic name. Please see ?mo_matching_score.")), collapse = "\n"))
|
||||
cat("\n")
|
||||
|
||||
msg <- ""
|
||||
for (i in seq_len(nrow(x))) {
|
||||
if (x[i, ]$candidates != "") {
|
||||
candidates <- unlist(strsplit(x[i, ]$candidates, ", ", fixed = TRUE))
|
||||
scores <- mo_matching_score(x = x[i, ]$input,
|
||||
n = candidates)
|
||||
scores <- mo_matching_score(x = x[i, ]$input, n = candidates)
|
||||
# sort on descending scores
|
||||
candidates <- candidates[order(1 - scores)]
|
||||
scores_formatted <- trimws(formatC(round(scores, 3), format = "f", digits = 3))
|
||||
n_candidates <- length(candidates)
|
||||
candidates <- paste0(font_italic(candidates, collapse = NULL),
|
||||
" (", trimws(percentage(scores[order(1 - scores)], digits = 1)), ")")
|
||||
" (", scores_formatted[order(1 - scores)], ")")
|
||||
candidates <- paste(candidates, collapse = ", ")
|
||||
# align with input after arrow
|
||||
candidates <- paste0("\n", strrep(" ", nchar(x[i, ]$input) + 6),
|
||||
@ -1799,23 +1799,17 @@ print.mo_uncertainties <- function(x, ...) {
|
||||
} else {
|
||||
candidates <- ""
|
||||
}
|
||||
if (x[i, ]$uncertainty == 1) {
|
||||
uncertainty_interpretation <- font_green("* very certain *")
|
||||
} else if (x[i, ]$uncertainty == 1) {
|
||||
uncertainty_interpretation <- font_yellow("* certain *")
|
||||
} else {
|
||||
uncertainty_interpretation <- font_red("* not certain *")
|
||||
}
|
||||
score <- trimws(formatC(round(mo_matching_score(x = x[i, ]$input,
|
||||
n = x[i, ]$fullname),
|
||||
3),
|
||||
format = "f", digits = 3))
|
||||
msg <- paste(msg,
|
||||
paste0('"', x[i, ]$input, '" -> ',
|
||||
paste0(font_bold(font_italic(x[i, ]$fullname)),
|
||||
ifelse(!is.na(x[i, ]$renamed_to), paste(", renamed to", font_italic(x[i, ]$renamed_to)), ""),
|
||||
" (", x[i, ]$mo,
|
||||
", matching score = ", trimws(percentage(mo_matching_score(x = x[i, ]$input,
|
||||
n = x[i, ]$fullname),
|
||||
digits = 1)),
|
||||
", matching score = ", score,
|
||||
") "),
|
||||
uncertainty_interpretation,
|
||||
candidates),
|
||||
sep = "\n")
|
||||
}
|
||||
|
@ -25,7 +25,7 @@
|
||||
#' @param x Any user input value(s)
|
||||
#' @param n A full taxonomic name, that exists in [`microorganisms$fullname`][microorganisms]
|
||||
#' @section Matching score for microorganisms:
|
||||
#' With ambiguous user input in [as.mo()] and all the [`mo_*`][mo_property()] functions, the returned results are chosen based on their matching score using [mo_matching_score()]. This matching score \eqn{m}, ranging from 0 to 100%, is calculated as:
|
||||
#' With ambiguous user input in [as.mo()] and all the [`mo_*`][mo_property()] functions, the returned results are chosen based on their matching score using [mo_matching_score()]. This matching score \eqn{m}, is calculated as:
|
||||
#'
|
||||
#' \deqn{m_{(x, n)} = \frac{l_{n} - 0.5 \cdot \min \begin{cases}l_{n} \\ \operatorname{lev}(x, n)\end{cases}}{l_{n} \cdot p_{n} \cdot k_{n}}}{m(x, n) = ( l_n * min(l_n, lev(x, n) ) ) / ( l_n * p_n * k_n )}
|
||||
#'
|
||||
@ -66,7 +66,7 @@ mo_matching_score <- function(x, n) {
|
||||
var_F <- nchar(n)
|
||||
# L = modified Levenshtein distance
|
||||
var_L <- levenshtein
|
||||
# P = Prevalence (1 to 3)
|
||||
# P = prevalence (1 to 3), see ?as.mo
|
||||
var_P <- MO_lookup[match(n, MO_lookup$fullname), "prevalence", drop = TRUE]
|
||||
# K = kingdom index (Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, others = 5)
|
||||
var_K <- MO_lookup[match(n, MO_lookup$fullname), "kingdom_index", drop = TRUE]
|
||||
|
23
R/rsi.R
23
R/rsi.R
@ -746,20 +746,27 @@ freq.rsi <- function(x, ...) {
|
||||
|
||||
# will be exported using s3_register() in R/zzz.R
|
||||
get_skimmers.rsi <- function(column) {
|
||||
# a bit of a crazy hack to get the variable name
|
||||
name_call <- function(.data, name = deparse(substitute(column))) {
|
||||
vars <- tryCatch(eval(parse(text = ".data$skim_variable"), envir = sys.frame(2)),
|
||||
error = function(e) NULL)
|
||||
# get the variable name 'skim_variable'
|
||||
name_call <- function(.data) {
|
||||
calls <- sys.calls()
|
||||
calls_txt <- vapply(calls, function(x) paste(deparse(x), collapse = ""), FUN.VALUE = character(1))
|
||||
if (any(calls_txt %like% "skim_variable", na.rm = TRUE)) {
|
||||
ind <- which(calls_txt %like% "skim_variable")[1L]
|
||||
vars <- tryCatch(eval(parse(text = ".data$skim_variable"), envir = sys.frame(ind)),
|
||||
error = function(e) NULL)
|
||||
} else {
|
||||
vars <- NULL
|
||||
}
|
||||
i <- tryCatch(attributes(calls[[length(calls)]])$position,
|
||||
error = function(e) NULL)
|
||||
if (is.null(vars) | is.null(i)) {
|
||||
NA_character_
|
||||
} else {
|
||||
lengths <- sapply(vars, length)
|
||||
lengths <- sum(lengths[!names(lengths) == "rsi"])
|
||||
var <- vars$rsi[i - lengths]
|
||||
if (var == "data") {
|
||||
when_starts_rsi <- which(names(sapply(vars, length)) == "rsi")
|
||||
offset <- sum(lengths[c(1:when_starts_rsi - 1)])
|
||||
var <- vars$rsi[i - offset]
|
||||
if (!isFALSE(var == "data")) {
|
||||
NA_character_
|
||||
} else{
|
||||
ab_name(var)
|
||||
@ -770,7 +777,7 @@ get_skimmers.rsi <- function(column) {
|
||||
sfl <- import_fn("sfl", "skimr", error_on_fail = FALSE)
|
||||
sfl(
|
||||
skim_type = "rsi",
|
||||
name = name_call,
|
||||
ab_name = name_call,
|
||||
count_R = count_R,
|
||||
count_S = count_susceptible,
|
||||
count_I = count_I,
|
||||
|
@ -81,7 +81,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="https://msberends.github.io/AMR/index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9032</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9033</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
|
@ -81,7 +81,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9032</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9033</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
|
@ -81,7 +81,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="../index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9032</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9033</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
|
@ -81,7 +81,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9032</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9033</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
|
@ -43,7 +43,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9032</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9033</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
|
@ -81,7 +81,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="../index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9032</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9033</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
@ -236,9 +236,9 @@
|
||||
<small>Source: <a href='https://github.com/msberends/AMR/blob/master/NEWS.md'><code>NEWS.md</code></a></small>
|
||||
</div>
|
||||
|
||||
<div id="amr-1309032" class="section level1">
|
||||
<h1 class="page-header" data-toc-text="1.3.0.9032">
|
||||
<a href="#amr-1309032" class="anchor"></a>AMR 1.3.0.9032<small> Unreleased </small>
|
||||
<div id="amr-1309033" class="section level1">
|
||||
<h1 class="page-header" data-toc-text="1.3.0.9033">
|
||||
<a href="#amr-1309033" class="anchor"></a>AMR 1.3.0.9033<small> Unreleased </small>
|
||||
</h1>
|
||||
<div id="last-updated-28-september-2020" class="section level2">
|
||||
<h2 class="hasAnchor">
|
||||
|
@ -2,7 +2,7 @@ pandoc: 2.7.3
|
||||
pkgdown: 1.5.1.9000
|
||||
pkgdown_sha: eae56f08694abebf93cdfc0dd8e9ede06d8c815f
|
||||
articles: []
|
||||
last_built: 2020-09-27T23:07Z
|
||||
last_built: 2020-09-28T09:00Z
|
||||
urls:
|
||||
reference: https://msberends.github.io/AMR/reference
|
||||
article: https://msberends.github.io/AMR/articles
|
||||
|
@ -82,7 +82,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="../index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9032</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9033</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
@ -388,7 +388,7 @@ The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>stable</s
|
||||
|
||||
|
||||
|
||||
<p>With ambiguous user input in <code>as.mo()</code> and all the <code><a href='mo_property.html'>mo_*</a></code> functions, the returned results are chosen based on their matching score using <code><a href='mo_matching_score.html'>mo_matching_score()</a></code>. This matching score \(m\), ranging from 0 to 100%, is calculated as:</p>
|
||||
<p>With ambiguous user input in <code>as.mo()</code> and all the <code><a href='mo_property.html'>mo_*</a></code> functions, the returned results are chosen based on their matching score using <code><a href='mo_matching_score.html'>mo_matching_score()</a></code>. This matching score \(m\), is calculated as:</p>
|
||||
<p>$$m_{(x, n)} = \frac{l_{n} - 0.5 \cdot \min \begin{cases}l_{n} \\ \operatorname{lev}(x, n)\end{cases}}{l_{n} \cdot p_{n} \cdot k_{n}}$$</p>
|
||||
<p>where:</p><ul>
|
||||
<li><p>\(x\) is the user input;</p></li>
|
||||
|
@ -83,7 +83,7 @@ To improve the interpretation of the antibiogram before EUCAST rules are applied
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="../index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9028</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9033</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
@ -280,11 +280,11 @@ To improve the interpretation of the antibiogram before EUCAST rules are applied
|
||||
</tr>
|
||||
<tr>
|
||||
<th>version_breakpoints</th>
|
||||
<td><p>the version number to use for the EUCAST Clinical Breakpoints guideline</p></td>
|
||||
<td><p>the version number to use for the EUCAST Clinical Breakpoints guideline. Currently supported: 10.0.</p></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<th>version_expertrules</th>
|
||||
<td><p>the version number to use for the EUCAST Expert Rules and Intrinsic Resistance guideline</p></td>
|
||||
<td><p>the version number to use for the EUCAST Expert Rules and Intrinsic Resistance guideline. Currently supported: 3.1, 3.2.</p></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<th>...</th>
|
||||
|
@ -81,7 +81,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="../index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9032</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9033</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
|
@ -82,7 +82,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="../index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9032</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9033</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
@ -261,7 +261,7 @@
|
||||
|
||||
|
||||
|
||||
<p>With ambiguous user input in <code><a href='as.mo.html'>as.mo()</a></code> and all the <code><a href='mo_property.html'>mo_*</a></code> functions, the returned results are chosen based on their matching score using <code>mo_matching_score()</code>. This matching score \(m\), ranging from 0 to 100%, is calculated as:</p>
|
||||
<p>With ambiguous user input in <code><a href='as.mo.html'>as.mo()</a></code> and all the <code><a href='mo_property.html'>mo_*</a></code> functions, the returned results are chosen based on their matching score using <code>mo_matching_score()</code>. This matching score \(m\), is calculated as:</p>
|
||||
<p>$$m_{(x, n)} = \frac{l_{n} - 0.5 \cdot \min \begin{cases}l_{n} \\ \operatorname{lev}(x, n)\end{cases}}{l_{n} \cdot p_{n} \cdot k_{n}}$$</p>
|
||||
<p>where:</p><ul>
|
||||
<li><p>\(x\) is the user input;</p></li>
|
||||
|
@ -82,7 +82,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="../index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9032</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9033</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
@ -350,7 +350,7 @@ The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>stable</s
|
||||
|
||||
|
||||
|
||||
<p>With ambiguous user input in <code><a href='as.mo.html'>as.mo()</a></code> and all the <code>mo_*</code> functions, the returned results are chosen based on their matching score using <code><a href='mo_matching_score.html'>mo_matching_score()</a></code>. This matching score \(m\), ranging from 0 to 100%, is calculated as:</p>
|
||||
<p>With ambiguous user input in <code><a href='as.mo.html'>as.mo()</a></code> and all the <code>mo_*</code> functions, the returned results are chosen based on their matching score using <code><a href='mo_matching_score.html'>mo_matching_score()</a></code>. This matching score \(m\), is calculated as:</p>
|
||||
<p>$$m_{(x, n)} = \frac{l_{n} - 0.5 \cdot \min \begin{cases}l_{n} \\ \operatorname{lev}(x, n)\end{cases}}{l_{n} \cdot p_{n} \cdot k_{n}}$$</p>
|
||||
<p>where:</p><ul>
|
||||
<li><p>\(x\) is the user input;</p></li>
|
||||
|
@ -81,7 +81,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9032</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9033</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
|
@ -146,7 +146,7 @@ If the unlying code needs breaking changes, they will occur gradually. For examp
|
||||
|
||||
\section{Matching score for microorganisms}{
|
||||
|
||||
With ambiguous user input in \code{\link[=as.mo]{as.mo()}} and all the \code{\link[=mo_property]{mo_*}} functions, the returned results are chosen based on their matching score using \code{\link[=mo_matching_score]{mo_matching_score()}}. This matching score \eqn{m}, ranging from 0 to 100\%, is calculated as:
|
||||
With ambiguous user input in \code{\link[=as.mo]{as.mo()}} and all the \code{\link[=mo_property]{mo_*}} functions, the returned results are chosen based on their matching score using \code{\link[=mo_matching_score]{mo_matching_score()}}. This matching score \eqn{m}, is calculated as:
|
||||
|
||||
\deqn{m_{(x, n)} = \frac{l_{n} - 0.5 \cdot \min \begin{cases}l_{n} \\ \operatorname{lev}(x, n)\end{cases}}{l_{n} \cdot p_{n} \cdot k_{n}}}{m(x, n) = ( l_n * min(l_n, lev(x, n) ) ) / ( l_n * p_n * k_n )}
|
||||
|
||||
|
@ -42,9 +42,9 @@ eucast_rules(
|
||||
|
||||
\item{verbose}{a \link{logical} to turn Verbose mode on and off (default is off). In Verbose mode, the function does not apply rules to the data, but instead returns a data set in logbook form with extensive info about which rows and columns would be effected and in which way. Using Verbose mode takes a lot more time.}
|
||||
|
||||
\item{version_breakpoints}{the version number to use for the EUCAST Clinical Breakpoints guideline}
|
||||
\item{version_breakpoints}{the version number to use for the EUCAST Clinical Breakpoints guideline. Currently supported: 10.0.}
|
||||
|
||||
\item{version_expertrules}{the version number to use for the EUCAST Expert Rules and Intrinsic Resistance guideline}
|
||||
\item{version_expertrules}{the version number to use for the EUCAST Expert Rules and Intrinsic Resistance guideline. Currently supported: 3.1, 3.2.}
|
||||
|
||||
\item{...}{column name of an antibiotic, please see section \emph{Antibiotics} below}
|
||||
}
|
||||
|
@ -16,7 +16,7 @@ This helper function is used by \code{\link[=as.mo]{as.mo()}} to determine the m
|
||||
}
|
||||
\section{Matching score for microorganisms}{
|
||||
|
||||
With ambiguous user input in \code{\link[=as.mo]{as.mo()}} and all the \code{\link[=mo_property]{mo_*}} functions, the returned results are chosen based on their matching score using \code{\link[=mo_matching_score]{mo_matching_score()}}. This matching score \eqn{m}, ranging from 0 to 100\%, is calculated as:
|
||||
With ambiguous user input in \code{\link[=as.mo]{as.mo()}} and all the \code{\link[=mo_property]{mo_*}} functions, the returned results are chosen based on their matching score using \code{\link[=mo_matching_score]{mo_matching_score()}}. This matching score \eqn{m}, is calculated as:
|
||||
|
||||
\deqn{m_{(x, n)} = \frac{l_{n} - 0.5 \cdot \min \begin{cases}l_{n} \\ \operatorname{lev}(x, n)\end{cases}}{l_{n} \cdot p_{n} \cdot k_{n}}}{m(x, n) = ( l_n * min(l_n, lev(x, n) ) ) / ( l_n * p_n * k_n )}
|
||||
|
||||
|
@ -126,7 +126,7 @@ If the unlying code needs breaking changes, they will occur gradually. For examp
|
||||
|
||||
\section{Matching score for microorganisms}{
|
||||
|
||||
With ambiguous user input in \code{\link[=as.mo]{as.mo()}} and all the \code{\link[=mo_property]{mo_*}} functions, the returned results are chosen based on their matching score using \code{\link[=mo_matching_score]{mo_matching_score()}}. This matching score \eqn{m}, ranging from 0 to 100\%, is calculated as:
|
||||
With ambiguous user input in \code{\link[=as.mo]{as.mo()}} and all the \code{\link[=mo_property]{mo_*}} functions, the returned results are chosen based on their matching score using \code{\link[=mo_matching_score]{mo_matching_score()}}. This matching score \eqn{m}, is calculated as:
|
||||
|
||||
\deqn{m_{(x, n)} = \frac{l_{n} - 0.5 \cdot \min \begin{cases}l_{n} \\ \operatorname{lev}(x, n)\end{cases}}{l_{n} \cdot p_{n} \cdot k_{n}}}{m(x, n) = ( l_n * min(l_n, lev(x, n) ) ) / ( l_n * p_n * k_n )}
|
||||
|
||||
|
@ -93,11 +93,11 @@ test_that("proportions works", {
|
||||
|
||||
# check too low amount of isolates
|
||||
expect_identical(suppressWarnings(proportion_R(example_isolates$AMX, minimum = nrow(example_isolates) + 1)),
|
||||
NA)
|
||||
NA_real_)
|
||||
expect_identical(suppressWarnings(proportion_I(example_isolates$AMX, minimum = nrow(example_isolates) + 1)),
|
||||
NA)
|
||||
NA_real_)
|
||||
expect_identical(suppressWarnings(proportion_S(example_isolates$AMX, minimum = nrow(example_isolates) + 1)),
|
||||
NA)
|
||||
NA_real_)
|
||||
|
||||
# warning for speed loss
|
||||
expect_warning(proportion_R(as.character(example_isolates$GEN)))
|
||||
|
Loading…
Reference in New Issue
Block a user