1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-20 23:33:16 +02:00

(v3.0.0.9011) allow names for age_groups()

This commit is contained in:
2025-07-17 19:32:46 +02:00
parent 65ec098acf
commit 39ea5f6597
8 changed files with 104 additions and 85 deletions

View File

@ -19,56 +19,59 @@
#' @keywords internal
#' @export
#' @examples
#' library(tidymodels)
#' if (require("tidymodels")) {
#'
#' # The below approach formed the basis for this paper: DOI 10.3389/fmicb.2025.1582703
#' # Presence of ESBL genes was predicted based on raw MIC values.
#' # The below approach formed the basis for this paper: DOI 10.3389/fmicb.2025.1582703
#' # Presence of ESBL genes was predicted based on raw MIC values.
#'
#'
#' # example data set in the AMR package
#' esbl_isolates
#' # example data set in the AMR package
#' esbl_isolates
#'
#' # Prepare a binary outcome and convert to ordered factor
#' data <- esbl_isolates %>%
#' mutate(esbl = factor(esbl, levels = c(FALSE, TRUE), ordered = TRUE))
#' # Prepare a binary outcome and convert to ordered factor
#' data <- esbl_isolates %>%
#' mutate(esbl = factor(esbl, levels = c(FALSE, TRUE), ordered = TRUE))
#'
#' # Split into training and testing sets
#' split <- initial_split(data)
#' training_data <- training(split)
#' testing_data <- testing(split)
#' # Split into training and testing sets
#' split <- initial_split(data)
#' training_data <- training(split)
#' testing_data <- testing(split)
#'
#' # Create and prep a recipe with MIC log2 transformation
#' mic_recipe <- recipe(esbl ~ ., data = training_data) %>%
#' # Optionally remove non-predictive variables
#' remove_role(genus, old_role = "predictor") %>%
#' # Apply the log2 transformation to all MIC predictors
#' step_mic_log2(all_mic_predictors()) %>%
#' prep()
#' # Create and prep a recipe with MIC log2 transformation
#' mic_recipe <- recipe(esbl ~ ., data = training_data) %>%
#'
#' # View prepped recipe
#' mic_recipe
#' # Optionally remove non-predictive variables
#' remove_role(genus, old_role = "predictor") %>%
#'
#' # Apply the recipe to training and testing data
#' out_training <- bake(mic_recipe, new_data = NULL)
#' out_testing <- bake(mic_recipe, new_data = testing_data)
#' # Apply the log2 transformation to all MIC predictors
#' step_mic_log2(all_mic_predictors()) %>%
#'
#' # Fit a logistic regression model
#' fitted <- logistic_reg(mode = "classification") %>%
#' set_engine("glm") %>%
#' fit(esbl ~ ., data = out_training)
#' # And apply the preparation steps
#' prep()
#'
#' # Generate predictions on the test set
#' predictions <- predict(fitted, out_testing) %>%
#' bind_cols(out_testing)
#' # View prepped recipe
#' mic_recipe
#'
#' # Evaluate predictions using standard classification metrics
#' our_metrics <- metric_set(accuracy, kap, ppv, npv)
#' metrics <- our_metrics(predictions, truth = esbl, estimate = .pred_class)
#' # Apply the recipe to training and testing data
#' out_training <- bake(mic_recipe, new_data = NULL)
#' out_testing <- bake(mic_recipe, new_data = testing_data)
#'
#' # Show performance:
#' # - negative predictive value (NPV) of ~98%
#' # - positive predictive value (PPV) of ~94%
#' metrics
#' # Fit a logistic regression model
#' fitted <- logistic_reg(mode = "classification") %>%
#' set_engine("glm") %>%
#' fit(esbl ~ ., data = out_training)
#'
#' # Generate predictions on the test set
#' predictions <- predict(fitted, out_testing) %>%
#' bind_cols(out_testing)
#'
#' # Evaluate predictions using standard classification metrics
#' our_metrics <- metric_set(accuracy, kap, ppv, npv)
#' metrics <- our_metrics(predictions, truth = esbl, estimate = .pred_class)
#'
#' # Show performance
#' metrics
#' }
all_mic <- function() {
x <- tidymodels_amr_select(levels(NA_mic_))
names(x)