mirror of
https://github.com/msberends/AMR.git
synced 2025-09-11 06:09:44 +02:00
Built site for AMR@2.1.1.9086: 50a9f8f
This commit is contained in:
@@ -29,7 +29,7 @@
|
||||
|
||||
<a class="navbar-brand me-2" href="../index.html">AMR (for R)</a>
|
||||
|
||||
<small class="nav-text text-muted me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="">2.1.1.9084</small>
|
||||
<small class="nav-text text-muted me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="">2.1.1.9086</small>
|
||||
|
||||
|
||||
<button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation">
|
||||
@@ -91,13 +91,14 @@ antimicrobial resistance (AMR) data analysis, providing extensive
|
||||
functionality for working with microbial and antimicrobial properties.
|
||||
But what if you’re working in Python and still want to benefit from the
|
||||
robust features of <code>AMR</code>?</p>
|
||||
<p>Luckily, there is no need to port the package to Python! With the
|
||||
help of <code>rpy2</code>, a powerful Python package, you can easily
|
||||
access R from Python and call functions from the <code>AMR</code>
|
||||
package to process your own data. This post will guide you through
|
||||
<p>The best way is to access R directly from Python with the help of
|
||||
<code>rpy2</code>, a simple yet powerful Python package. You can easily
|
||||
call functions from the <code>AMR</code> package to process your own
|
||||
data in your own Python environment. This post will guide you through
|
||||
setting up <code>rpy2</code> and show you how to use R functions from
|
||||
<code>AMR</code> in Python to supercharge your antimicrobial resistance
|
||||
analysis.</p>
|
||||
<p><a href="https://chatgpt.com/g/g-M4UNLwFi5-amr-for-r-assistant" class="external-link"><img src="../AMRforRGPT.svg" style="min-width: 300px; width: 10%;"></a></p>
|
||||
</div>
|
||||
<div class="section level2">
|
||||
<h2 id="what-is-rpy2">What is <code>rpy2</code>?<a class="anchor" aria-label="anchor" href="#what-is-rpy2"></a>
|
||||
@@ -127,19 +128,44 @@ environment.</li>
|
||||
<div class="section level3">
|
||||
<h3 id="step-1-install-r">Step 1: Install R<a class="anchor" aria-label="anchor" href="#step-1-install-r"></a>
|
||||
</h3>
|
||||
<p>Ensure that you have R installed on your system. You can download R
|
||||
from <a href="https://cran.r-project.org/" class="external-link">CRAN</a>.</p>
|
||||
<p>Ensure that R is installed on your system. R has minimal dependencies
|
||||
and is very simple to install:</p>
|
||||
<ul>
|
||||
<li>
|
||||
<strong>Linux</strong>
|
||||
<ul>
|
||||
<li>Ubuntu / Debian:<br><code>sudo apt install r-base</code>
|
||||
</li>
|
||||
<li>Fedora:<br><code>sudo dnf install R</code>
|
||||
</li>
|
||||
<li>CentOS/RHEL:<br><code>sudo yum install R</code>
|
||||
</li>
|
||||
<li>Arch Linux:<br><code>sudo pacman -S r</code>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li>
|
||||
<strong>macOS</strong> (with Homebrew):<br><code>brew install r</code>
|
||||
</li>
|
||||
<li>
|
||||
<strong>Other Systems:</strong><br>
|
||||
Visit the <a href="https://cran.r-project.org" class="external-link">CRAN download
|
||||
page</a>.</li>
|
||||
</ul>
|
||||
</div>
|
||||
<div class="section level3">
|
||||
<h3 id="step-2-install-the-amr-package-in-r">Step 2: Install the <code>AMR</code> package in R<a class="anchor" aria-label="anchor" href="#step-2-install-the-amr-package-in-r"></a>
|
||||
</h3>
|
||||
<p>Once you have R installed, open your R console and install the
|
||||
<code>AMR</code> package:</p>
|
||||
<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
|
||||
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/utils/install.packages.html" class="external-link">install.packages</a></span><span class="op">(</span><span class="st">"AMR"</span><span class="op">)</span></span></code></pre></div>
|
||||
<p>You can also install the latest development version of the
|
||||
<code>AMR</code> package if needed:</p>
|
||||
<p>On Linux and macOS, open Terminal and run:</p>
|
||||
<div class="sourceCode" id="cb1"><pre class="sourceCode bash"><code class="sourceCode bash"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="ex">Rscript</span> <span class="at">-e</span> <span class="st">'install.packages("AMR")'</span></span></code></pre></div>
|
||||
<p>For other systems, open your R console and install the
|
||||
<code>AMR</code> package by running:</p>
|
||||
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
|
||||
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/utils/install.packages.html" class="external-link">install.packages</a></span><span class="op">(</span><span class="st">"AMR"</span><span class="op">)</span></span></code></pre></div>
|
||||
<p>On any system, you can also install the latest development version of
|
||||
the <code>AMR</code> package by setting <code>repos</code> to our beta
|
||||
channel:</p>
|
||||
<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r">
|
||||
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/utils/install.packages.html" class="external-link">install.packages</a></span><span class="op">(</span><span class="st">"AMR"</span>, repos <span class="op">=</span> <span class="st">"https://msberends.r-universe.dev"</span><span class="op">)</span></span></code></pre></div>
|
||||
</div>
|
||||
<div class="section level3">
|
||||
@@ -147,58 +173,53 @@ from <a href="https://cran.r-project.org/" class="external-link">CRAN</a>.</p>
|
||||
</h3>
|
||||
<p>To install <code>rpy2</code>, simply run the following command in
|
||||
your terminal:</p>
|
||||
<div class="sourceCode" id="cb3"><pre class="sourceCode bash"><code class="sourceCode bash"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="ex">pip</span> install rpy2</span></code></pre></div>
|
||||
<div class="sourceCode" id="cb4"><pre class="sourceCode bash"><code class="sourceCode bash"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="ex">pip</span> install rpy2</span></code></pre></div>
|
||||
</div>
|
||||
<div class="section level3">
|
||||
<h3 id="step-4-test-rpy2-installation">Step 4: Test <code>rpy2</code> Installation<a class="anchor" aria-label="anchor" href="#step-4-test-rpy2-installation"></a>
|
||||
</h3>
|
||||
<p>To ensure everything is set up correctly, you can test your
|
||||
installation by running the following Python script:</p>
|
||||
<div class="sourceCode" id="cb4"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="im">import</span> rpy2.robjects <span class="im">as</span> ro</span>
|
||||
<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a></span>
|
||||
<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a><span class="co"># Test a simple R function from Python</span></span>
|
||||
<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a>ro.r(<span class="st">'1 + 1'</span>)</span></code></pre></div>
|
||||
installation by running the following Python script, which essentially
|
||||
runs R in the background:</p>
|
||||
<div class="sourceCode" id="cb5"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="im">import</span> rpy2.robjects <span class="im">as</span> ro</span>
|
||||
<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a></span>
|
||||
<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a><span class="co"># Test a simple R function from Python</span></span>
|
||||
<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a>ro.r(<span class="st">'1 + 1'</span>)</span></code></pre></div>
|
||||
<p>If this returns <code>2</code>, you’re good to go!</p>
|
||||
</div>
|
||||
</div>
|
||||
<div class="section level2">
|
||||
<h2 id="working-with-amr-in-python-using-rpy2">Working with AMR in Python using <code>rpy2</code><a class="anchor" aria-label="anchor" href="#working-with-amr-in-python-using-rpy2"></a>
|
||||
<h2 id="working-with-amr-in-python">Working with <code>AMR</code> in Python<a class="anchor" aria-label="anchor" href="#working-with-amr-in-python"></a>
|
||||
</h2>
|
||||
<p>Now that we have <code>rpy2</code> set up, let’s walk through some
|
||||
practical examples of using the <code>AMR</code> package within
|
||||
Python.</p>
|
||||
<div class="section level3">
|
||||
<h3 id="example-1-loading-amr-and-example-data">Example 1: Loading <code>AMR</code> and Example Data<a class="anchor" aria-label="anchor" href="#example-1-loading-amr-and-example-data"></a>
|
||||
<h3 id="example-1-converting-taxonomic-data">Example 1: Converting Taxonomic Data<a class="anchor" aria-label="anchor" href="#example-1-converting-taxonomic-data"></a>
|
||||
</h3>
|
||||
<p>Let’s start by converting taxonomic user input to valid taxonomy
|
||||
using the <code>AMR</code> package, from within Python:</p>
|
||||
<div class="sourceCode" id="cb5"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="im">import</span> pandas <span class="im">as</span> pd</span>
|
||||
<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a><span class="im">import</span> rpy2.robjects <span class="im">as</span> ro</span>
|
||||
<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a><span class="im">from</span> rpy2.robjects.packages <span class="im">import</span> importr</span>
|
||||
<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a><span class="im">from</span> rpy2.robjects <span class="im">import</span> pandas2ri</span>
|
||||
<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a></span>
|
||||
<span id="cb5-6"><a href="#cb5-6" tabindex="-1"></a><span class="co"># Enable conversion between pandas and R data frames</span></span>
|
||||
<span id="cb5-7"><a href="#cb5-7" tabindex="-1"></a>pandas2ri.activate()</span>
|
||||
<span id="cb5-8"><a href="#cb5-8" tabindex="-1"></a></span>
|
||||
<span id="cb5-9"><a href="#cb5-9" tabindex="-1"></a><span class="co"># Load the AMR package from R</span></span>
|
||||
<span id="cb5-10"><a href="#cb5-10" tabindex="-1"></a>amr <span class="op">=</span> importr(<span class="st">'AMR'</span>)</span>
|
||||
<span id="cb5-11"><a href="#cb5-11" tabindex="-1"></a></span>
|
||||
<span id="cb5-12"><a href="#cb5-12" tabindex="-1"></a><span class="co"># Example user dataset in Python</span></span>
|
||||
<span id="cb5-13"><a href="#cb5-13" tabindex="-1"></a>data <span class="op">=</span> pd.DataFrame({</span>
|
||||
<span id="cb5-14"><a href="#cb5-14" tabindex="-1"></a> <span class="st">'microorganism'</span>: [<span class="st">'E. coli'</span>, <span class="st">'S. aureus'</span>, <span class="st">'P. aeruginosa'</span>, <span class="st">'K. pneumoniae'</span>]</span>
|
||||
<span id="cb5-15"><a href="#cb5-15" tabindex="-1"></a>})</span>
|
||||
<span id="cb5-16"><a href="#cb5-16" tabindex="-1"></a></span>
|
||||
<span id="cb5-17"><a href="#cb5-17" tabindex="-1"></a><span class="co"># Convert the Python DataFrame to an R DataFrame</span></span>
|
||||
<span id="cb5-18"><a href="#cb5-18" tabindex="-1"></a>r_data <span class="op">=</span> pandas2ri.py2rpy(data)</span>
|
||||
<span id="cb5-19"><a href="#cb5-19" tabindex="-1"></a></span>
|
||||
<span id="cb5-20"><a href="#cb5-20" tabindex="-1"></a><span class="co"># Apply mo_name() from the AMR package to the 'microorganism' column</span></span>
|
||||
<span id="cb5-21"><a href="#cb5-21" tabindex="-1"></a>ro.globalenv[<span class="st">'r_data'</span>] <span class="op">=</span> r_data</span>
|
||||
<span id="cb5-22"><a href="#cb5-22" tabindex="-1"></a>ro.r(<span class="st">'r_data$mo_name <- mo_name(r_data$microorganism)'</span>)</span>
|
||||
<span id="cb5-23"><a href="#cb5-23" tabindex="-1"></a></span>
|
||||
<span id="cb5-24"><a href="#cb5-24" tabindex="-1"></a><span class="co"># Retrieve and print the modified R DataFrame in Python</span></span>
|
||||
<span id="cb5-25"><a href="#cb5-25" tabindex="-1"></a>result <span class="op">=</span> ro.r(<span class="st">'as.data.frame(r_data)'</span>)</span>
|
||||
<span id="cb5-26"><a href="#cb5-26" tabindex="-1"></a>result <span class="op">=</span> pandas2ri.rpy2py(result)</span>
|
||||
<span id="cb5-27"><a href="#cb5-27" tabindex="-1"></a><span class="bu">print</span>(result)</span></code></pre></div>
|
||||
<div class="sourceCode" id="cb6"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a><span class="im">import</span> pandas <span class="im">as</span> pd</span>
|
||||
<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a><span class="im">import</span> rpy2.robjects <span class="im">as</span> ro</span>
|
||||
<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a><span class="im">from</span> rpy2.robjects.packages <span class="im">import</span> importr</span>
|
||||
<span id="cb6-4"><a href="#cb6-4" tabindex="-1"></a><span class="im">from</span> rpy2.robjects <span class="im">import</span> pandas2ri</span>
|
||||
<span id="cb6-5"><a href="#cb6-5" tabindex="-1"></a></span>
|
||||
<span id="cb6-6"><a href="#cb6-6" tabindex="-1"></a><span class="co"># Load the AMR package from R</span></span>
|
||||
<span id="cb6-7"><a href="#cb6-7" tabindex="-1"></a>amr <span class="op">=</span> importr(<span class="st">'AMR'</span>)</span>
|
||||
<span id="cb6-8"><a href="#cb6-8" tabindex="-1"></a></span>
|
||||
<span id="cb6-9"><a href="#cb6-9" tabindex="-1"></a><span class="co"># Example user dataset in Python</span></span>
|
||||
<span id="cb6-10"><a href="#cb6-10" tabindex="-1"></a>data <span class="op">=</span> pd.DataFrame({</span>
|
||||
<span id="cb6-11"><a href="#cb6-11" tabindex="-1"></a> <span class="st">'microorganism'</span>: [<span class="st">'E. coli'</span>, <span class="st">'S. aureus'</span>, <span class="st">'P. aeruginosa'</span>, <span class="st">'K. pneumoniae'</span>]</span>
|
||||
<span id="cb6-12"><a href="#cb6-12" tabindex="-1"></a>})</span>
|
||||
<span id="cb6-13"><a href="#cb6-13" tabindex="-1"></a></span>
|
||||
<span id="cb6-14"><a href="#cb6-14" tabindex="-1"></a><span class="co"># Apply mo_name() from the AMR package to the 'microorganism' column</span></span>
|
||||
<span id="cb6-15"><a href="#cb6-15" tabindex="-1"></a>ro.globalenv[<span class="st">'r_data'</span>] <span class="op">=</span> data</span>
|
||||
<span id="cb6-16"><a href="#cb6-16" tabindex="-1"></a>ro.r(<span class="st">'r_data$mo_name <- mo_name(r_data$microorganism)'</span>)</span>
|
||||
<span id="cb6-17"><a href="#cb6-17" tabindex="-1"></a></span>
|
||||
<span id="cb6-18"><a href="#cb6-18" tabindex="-1"></a><span class="co"># Retrieve and print the modified R DataFrame in Python</span></span>
|
||||
<span id="cb6-19"><a href="#cb6-19" tabindex="-1"></a>result <span class="op">=</span> ro.r(<span class="st">'r_data'</span>)</span>
|
||||
<span id="cb6-20"><a href="#cb6-20" tabindex="-1"></a>result <span class="op">=</span> pandas2ri.rpy2py(result)</span>
|
||||
<span id="cb6-21"><a href="#cb6-21" tabindex="-1"></a><span class="bu">print</span>(result)</span></code></pre></div>
|
||||
<p>In this example, a Python dataset with microorganism names like
|
||||
<em>E. coli</em> and <em>S. aureus</em> is passed to the R function
|
||||
<code><a href="../reference/mo_property.html">mo_name()</a></code>. The result is an updated <code>DataFrame</code>
|
||||
@@ -212,12 +233,12 @@ that includes the standardised microorganism names based on the
|
||||
generating an antibiogram, a table that summarises the antimicrobial
|
||||
susceptibility of bacterial isolates. Here’s how you can generate an
|
||||
antibiogram from Python:</p>
|
||||
<div class="sourceCode" id="cb6"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a><span class="co"># Run an antibiogram in R from Python</span></span>
|
||||
<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a>ro.r(<span class="st">'result <- antibiogram(example_isolates, antibiotics = c(aminoglycosides(), carbapenems()))'</span>)</span>
|
||||
<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a></span>
|
||||
<span id="cb6-4"><a href="#cb6-4" tabindex="-1"></a><span class="co"># Retrieve the result in Python</span></span>
|
||||
<span id="cb6-5"><a href="#cb6-5" tabindex="-1"></a>result <span class="op">=</span> ro.r(<span class="st">'as.data.frame(result)'</span>)</span>
|
||||
<span id="cb6-6"><a href="#cb6-6" tabindex="-1"></a><span class="bu">print</span>(result)</span></code></pre></div>
|
||||
<div class="sourceCode" id="cb7"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a><span class="co"># Run an antibiogram in R from Python</span></span>
|
||||
<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a>ro.r(<span class="st">'result <- antibiogram(example_isolates, antibiotics = c(aminoglycosides(), carbapenems()))'</span>)</span>
|
||||
<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a></span>
|
||||
<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a><span class="co"># Retrieve the result in Python</span></span>
|
||||
<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a>result <span class="op">=</span> ro.r(<span class="st">'as.data.frame(result)'</span>)</span>
|
||||
<span id="cb7-6"><a href="#cb7-6" tabindex="-1"></a><span class="bu">print</span>(result)</span></code></pre></div>
|
||||
<p>In this example, we generate an antibiogram by selecting
|
||||
aminoglycosides and carbapenems, two classes of antibiotics, and then
|
||||
convert the resulting R data frame into a Python-readable format.</p>
|
||||
@@ -227,12 +248,12 @@ convert the resulting R data frame into a Python-readable format.</p>
|
||||
</h3>
|
||||
<p>Let’s say you want to filter the dataset for Gram-negative bacteria
|
||||
and display their resistance to certain antibiotics:</p>
|
||||
<div class="sourceCode" id="cb7"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a><span class="co"># Filter for Gram-negative bacteria with intrinsic resistance to cefotaxime</span></span>
|
||||
<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a>ro.r(<span class="st">'result <- example_isolates[which(mo_is_gram_negative() & mo_is_intrinsic_resistant(ab = "cefotax")), c("bacteria", aminoglycosides(), carbapenems())]'</span>)</span>
|
||||
<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a></span>
|
||||
<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a><span class="co"># Retrieve the filtered result in Python</span></span>
|
||||
<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a>result <span class="op">=</span> ro.r(<span class="st">'as.data.frame(result)'</span>)</span>
|
||||
<span id="cb7-6"><a href="#cb7-6" tabindex="-1"></a><span class="bu">print</span>(result)</span></code></pre></div>
|
||||
<div class="sourceCode" id="cb8"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a><span class="co"># Filter for Gram-negative bacteria with intrinsic resistance to cefotaxime</span></span>
|
||||
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a>ro.r(<span class="st">'result <- example_isolates[which(mo_is_gram_negative() & mo_is_intrinsic_resistant(ab = "cefotax")), c("bacteria", aminoglycosides(), carbapenems())]'</span>)</span>
|
||||
<span id="cb8-3"><a href="#cb8-3" tabindex="-1"></a></span>
|
||||
<span id="cb8-4"><a href="#cb8-4" tabindex="-1"></a><span class="co"># Retrieve the filtered result in Python</span></span>
|
||||
<span id="cb8-5"><a href="#cb8-5" tabindex="-1"></a>result <span class="op">=</span> ro.r(<span class="st">'as.data.frame(result)'</span>)</span>
|
||||
<span id="cb8-6"><a href="#cb8-6" tabindex="-1"></a><span class="bu">print</span>(result)</span></code></pre></div>
|
||||
<p>This example uses the AMR functions
|
||||
<code><a href="../reference/mo_property.html">mo_is_gram_negative()</a></code> and
|
||||
<code><a href="../reference/mo_property.html">mo_is_intrinsic_resistant()</a></code> to filter the dataset and
|
||||
@@ -243,12 +264,12 @@ returns a subset of bacteria with resistance data.</p>
|
||||
</h3>
|
||||
<p>You can easily customise the antibiogram by passing different
|
||||
antibiotics or microorganism transformations, as shown below:</p>
|
||||
<div class="sourceCode" id="cb8"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a><span class="co"># Customise the antibiogram with different settings</span></span>
|
||||
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a>ro.r(<span class="st">'result <- antibiogram(example_isolates, antibiotics = c("TZP", "TZP+TOB", "TZP+GEN"), mo_transform = "gramstain")'</span>)</span>
|
||||
<span id="cb8-3"><a href="#cb8-3" tabindex="-1"></a></span>
|
||||
<span id="cb8-4"><a href="#cb8-4" tabindex="-1"></a><span class="co"># Retrieve and print the result</span></span>
|
||||
<span id="cb8-5"><a href="#cb8-5" tabindex="-1"></a>result <span class="op">=</span> ro.r(<span class="st">'as.data.frame(result)'</span>)</span>
|
||||
<span id="cb8-6"><a href="#cb8-6" tabindex="-1"></a><span class="bu">print</span>(result)</span></code></pre></div>
|
||||
<div class="sourceCode" id="cb9"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a><span class="co"># Customise the antibiogram with different settings</span></span>
|
||||
<span id="cb9-2"><a href="#cb9-2" tabindex="-1"></a>ro.r(<span class="st">'result <- antibiogram(example_isolates, antibiotics = c("TZP", "TZP+TOB", "TZP+GEN"), mo_transform = "gramstain")'</span>)</span>
|
||||
<span id="cb9-3"><a href="#cb9-3" tabindex="-1"></a></span>
|
||||
<span id="cb9-4"><a href="#cb9-4" tabindex="-1"></a><span class="co"># Retrieve and print the result</span></span>
|
||||
<span id="cb9-5"><a href="#cb9-5" tabindex="-1"></a>result <span class="op">=</span> ro.r(<span class="st">'as.data.frame(result)'</span>)</span>
|
||||
<span id="cb9-6"><a href="#cb9-6" tabindex="-1"></a><span class="bu">print</span>(result)</span></code></pre></div>
|
||||
<p>Here, we use piperacillin/tazobactam (TZP) in combination with
|
||||
tobramycin (TOB) and gentamicin (GEN) to see how they perform against
|
||||
various Gram-negative bacteria.</p>
|
||||
|
Reference in New Issue
Block a user