From 4ca00e186891e23e35b03c5e7f06772b5aef6afb Mon Sep 17 00:00:00 2001
From: "Matthijs S. Berends" Note: values on this page will change with every website update since they are based on randomly created values and the page was written in R Markdown. However, the methodology remains unchanged. This page was generated on 17 May 2019. Note: values on this page will change with every website update since they are based on randomly created values and the page was written in R Markdown. However, the methodology remains unchanged. This page was generated on 20 May 2019. Use the frequency table function So, we can draw at least two conclusions immediately. From a data scientist perspective, the data looks clean: only values The data is already quite clean, but we still need to transform some variables. The Finally, we will apply EUCAST rules on our antimicrobial results. In Europe, most medical microbiological laboratories already apply these rules. Our package features their latest insights on intrinsic resistance and exceptional phenotypes. Moreover, the Because the amoxicillin (column This So only 28.4% is suitable for resistance analysis! We can now filter on it with the So only 28.5% is suitable for resistance analysis! We can now filter on it with the For future use, the above two syntaxes can be shortened with the Only 2 isolates are marked as ‘first’ according to CLSI guideline. But when reviewing the antibiogram, it is obvious that some isolates are absolutely different strains and should be included too. This is why we weigh isolates, based on their antibiogram. The Instead of 2, now 5 isolates are flagged. In total, 75.8% of all isolates are marked ‘first weighted’ - 47.4% more than when using the CLSI guideline. In real life, this novel algorithm will yield 5-10% more isolates than the classic CLSI guideline. Instead of 2, now 8 isolates are flagged. In total, 75.5% of all isolates are marked ‘first weighted’ - 47% more than when using the CLSI guideline. In real life, this novel algorithm will yield 5-10% more isolates than the classic CLSI guideline. As with So we end up with 15,158 isolates for analysis. So we end up with 15,100 isolates for analysis. We can remove unneeded columns: Time for the analysis! Or can be used like the Frequency table of Frequency table of Columns: 2 Shortest: 16How to conduct AMR analysis
Matthijs S. Berends
- 17 May 2019
+ 20 May 2019
AMR.Rmd
Introduction
@@ -217,21 +217,21 @@
-
2019-05-17
+2019-05-20
abcd
Escherichia coli
S
S
-
2019-05-17
+2019-05-20
abcd
Escherichia coli
S
R
-
2019-05-17
+2019-05-20
efgh
Escherichia coli
R
@@ -327,69 +327,69 @@
-
-2017-11-01
-W7
-Hospital D
-Streptococcus pneumoniae
-S
-S
-S
-S
-F
-
-
-2012-09-25
-R9
-Hospital A
-Streptococcus pneumoniae
-S
-S
-S
-S
-F
-
-
-2013-05-22
-V2
-Hospital A
+2014-11-27
+T8
+Hospital B
Escherichia coli
-S
-S
-S
-S
-F
-
-
-2017-03-29
-W6
-Hospital C
-Escherichia coli
-S
-S
-S
-S
-F
-
-
2017-09-07
-N7
-Hospital C
-Staphylococcus aureus
+R
S
R
S
-S
F
-
+2012-09-27
-B7
+2016-12-03
+R9
+Hospital B
+Staphylococcus aureus
+S
+S
+S
+S
+F
+
+
+2013-11-11
+M6
+Hospital D
+Staphylococcus aureus
+S
+S
+S
+S
+M
+
+
+2014-03-17
+O9
Hospital B
Escherichia coli
S
R
S
S
+F
+
+
+2012-10-08
+R4
+Hospital C
+Streptococcus pneumoniae
+S
+S
+S
+S
+F
+
+
@@ -402,17 +402,17 @@
Cleaning the data
2015-10-15
+C5
+Hospital C
+Escherichia coli
+S
+I
+S
+S
M
freq()
to look specifically for unique values in any variable. For example, for the gender
variable:
+#> Frequency table of `gender` from a data.frame (20,000 x 9)
-#>
-#> Class: factor (numeric)
-#> Length: 20,000 (of which NA: 0 = 0.00%)
-#> Levels: 2: F, M
-#> Unique: 2
-#>
-#> Item Count Percent Cum. Count Cum. Percent
-#> --- ----- ------- -------- ----------- -------------
-#> 1 M 10,580 52.9% 10,580 52.9%
-#> 2 F 9,420 47.1% 20,000 100.0%
# Frequency table of `gender` from a data.frame (20,000 x 9)
+#
+# Class: factor (numeric)
+# Length: 20,000 (of which NA: 0 = 0.00%)
+# Levels: 2: F, M
+# Unique: 2
+#
+# Item Count Percent Cum. Count Cum. Percent
+# --- ----- ------- -------- ----------- -------------
+# 1 M 10,370 51.8% 10,370 51.8%
+# 2 F 9,630 48.2% 20,000 100.0%
M
and F
. From a researcher perspective: there are slightly more men. Nothing we didn’t already know.bacteria
column now consists of text, and we want to add more variables based on microbial IDs later on. So, we will transform this column to valid IDs. The mutate()
function of the dplyr
package makes this really easy:data <- data %>%
@@ -423,61 +423,61 @@
eucast_rules()
function can also apply additional rules, like forcing AMX
) and amoxicillin/clavulanic acid (column AMC
) in our data were generated randomly, some rows will undoubtedly contain AMX = S and AMC = R, which is technically impossible. The eucast_rules()
fixes this:data <- eucast_rules(data, col_mo = "bacteria")
-#>
-#> Rules by the European Committee on Antimicrobial Susceptibility Testing (EUCAST)
-#> http://eucast.org/
-#>
-#> EUCAST Clinical Breakpoints (v9.0, 2019)
-#> Aerococcus sanguinicola (no new changes)
-#> Aerococcus urinae (no new changes)
-#> Anaerobic Gram negatives (no new changes)
-#> Anaerobic Gram positives (no new changes)
-#> Campylobacter coli (no new changes)
-#> Campylobacter jejuni (no new changes)
-#> Enterobacteriales (Order) (no new changes)
-#> Enterococcus (no new changes)
-#> Haemophilus influenzae (no new changes)
-#> Kingella kingae (no new changes)
-#> Moraxella catarrhalis (no new changes)
-#> Pasteurella multocida (no new changes)
-#> Staphylococcus (no new changes)
-#> Streptococcus groups A, B, C, G (no new changes)
-#> Streptococcus pneumoniae (1481 new changes)
-#> Viridans group streptococci (no new changes)
-#>
-#> EUCAST Expert Rules, Intrinsic Resistance and Exceptional Phenotypes (v3.1, 2016)
-#> Table 01: Intrinsic resistance in Enterobacteriaceae (1304 new changes)
-#> Table 02: Intrinsic resistance in non-fermentative Gram-negative bacteria (no new changes)
-#> Table 03: Intrinsic resistance in other Gram-negative bacteria (no new changes)
-#> Table 04: Intrinsic resistance in Gram-positive bacteria (2729 new changes)
-#> Table 08: Interpretive rules for B-lactam agents and Gram-positive cocci (no new changes)
-#> Table 09: Interpretive rules for B-lactam agents and Gram-negative rods (no new changes)
-#> Table 11: Interpretive rules for macrolides, lincosamides, and streptogramins (no new changes)
-#> Table 12: Interpretive rules for aminoglycosides (no new changes)
-#> Table 13: Interpretive rules for quinolones (no new changes)
-#>
-#> Other rules
-#> Non-EUCAST: amoxicillin/clav acid = S where ampicillin = S (2235 new changes)
-#> Non-EUCAST: ampicillin = R where amoxicillin/clav acid = R (125 new changes)
-#> Non-EUCAST: piperacillin = R where piperacillin/tazobactam = R (no new changes)
-#> Non-EUCAST: piperacillin/tazobactam = S where piperacillin = S (no new changes)
-#> Non-EUCAST: trimethoprim = R where trimethoprim/sulfa = R (no new changes)
-#> Non-EUCAST: trimethoprim/sulfa = S where trimethoprim = S (no new changes)
-#>
-#> --------------------------------------------------------------------------
-#> EUCAST rules affected 6,510 out of 20,000 rows, making a total of 7,874 edits
-#> => added 0 test results
-#>
-#> => changed 7,874 test results
-#> - 98 test results changed from S to I
-#> - 4,755 test results changed from S to R
-#> - 1,023 test results changed from I to S
-#> - 326 test results changed from I to R
-#> - 1,654 test results changed from R to S
-#> - 18 test results changed from R to I
-#> --------------------------------------------------------------------------
-#>
-#> Use verbose = TRUE to get a data.frame with all specified edits instead.
@@ -499,11 +499,11 @@
AMR
package includes this methodology with the first_isolate()
function. It adopts the episode of a year (can be changed by user) and it starts counting days after every selected isolate. This new variable can easily be added to our data:data <- data %>%
mutate(first = first_isolate(.))
-#> NOTE: Using column `bacteria` as input for `col_mo`.
-#> NOTE: Using column `date` as input for `col_date`.
-#> NOTE: Using column `patient_id` as input for `col_patient_id`.
-#> => Found 5,686 first isolates (28.4% of total)
filter()
function, also from the dplyr
package:filter()
function, also from the dplyr
package:filter_first_isolate()
function:
1
-2010-01-10
-T7
+2010-01-18
+F5
B_ESCHR_COL
S
S
@@ -540,8 +540,8 @@
2
-2010-02-24
-T7
+2010-02-13
+F5
B_ESCHR_COL
S
S
@@ -552,40 +552,40 @@
3
2010-04-04
-T7
+F5
B_ESCHR_COL
R
S
S
-R
+S
FALSE
4
-2010-04-14
-T7
+2010-04-28
+F5
B_ESCHR_COL
-S
-S
R
S
+S
+S
FALSE
5
-2010-05-20
-T7
+2010-08-22
+F5
B_ESCHR_COL
S
S
-S
+R
S
FALSE
6
-2010-09-24
-T7
+2010-10-07
+F5
B_ESCHR_COL
S
S
@@ -595,48 +595,48 @@
7
-2010-10-10
-T7
+2010-10-15
+F5
B_ESCHR_COL
-S
-S
-S
+R
+R
+R
S
FALSE
8
-2010-11-17
-T7
+2010-11-24
+F5
B_ESCHR_COL
+R
+I
S
-S
-S
-S
+R
FALSE
-9
-2010-12-16
-T7
+2011-05-09
+F5
B_ESCHR_COL
S
S
S
S
-FALSE
-
-
+10
-2011-04-02
-T7
-B_ESCHR_COL
-I
-S
-S
-S
TRUE
+
10
+2011-05-17
+F5
+B_ESCHR_COL
+R
+R
+R
+R
+FALSE
+key_antibiotics()
function adds a vector with 18 key antibiotics: 6 broad spectrum ones, 6 small spectrum for Gram negatives and 6 small spectrum for Gram positives. These can be defined by the user.data <- data %>%
mutate(keyab = key_antibiotics(.)) %>%
mutate(first_weighted = first_isolate(.))
-#> NOTE: Using column `bacteria` as input for `col_mo`.
-#> NOTE: Using column `bacteria` as input for `col_mo`.
-#> NOTE: Using column `date` as input for `col_date`.
-#> NOTE: Using column `patient_id` as input for `col_patient_id`.
-#> NOTE: Using column `keyab` as input for `col_keyantibiotics`. Use col_keyantibiotics = FALSE to prevent this.
-#> [Criterion] Inclusion based on key antibiotics, ignoring I.
-#> => Found 15,158 first weighted isolates (75.8% of total)
-
isolate
@@ -667,8 +667,8 @@
1
-2010-01-10
-T7
+2010-01-18
+F5
B_ESCHR_COL
S
S
@@ -679,8 +679,8 @@
2
-2010-02-24
-T7
+2010-02-13
+F5
B_ESCHR_COL
S
S
@@ -692,19 +692,31 @@
3
2010-04-04
-T7
+F5
B_ESCHR_COL
R
S
S
-R
+S
FALSE
TRUE
+4
-2010-04-14
-T7
+2010-04-28
+F5
+B_ESCHR_COL
+R
+S
+S
+S
+FALSE
+FALSE
+
+
-5
+2010-08-22
+F5
B_ESCHR_COL
S
S
@@ -713,85 +725,73 @@
FALSE
TRUE
-
5
-2010-05-20
-T7
-B_ESCHR_COL
-S
-S
-S
-S
-FALSE
-TRUE
-
6
-2010-09-24
-T7
+2010-10-07
+F5
B_ESCHR_COL
S
S
S
S
FALSE
-FALSE
+TRUE
7
-2010-10-10
-T7
+2010-10-15
+F5
B_ESCHR_COL
-S
-S
-S
+R
+R
+R
S
FALSE
-FALSE
+TRUE
8
-2010-11-17
-T7
+2010-11-24
+F5
B_ESCHR_COL
+R
+I
S
-S
-S
-S
-FALSE
+R
FALSE
+TRUE
-9
-2010-12-16
-T7
+2011-05-09
+F5
B_ESCHR_COL
S
S
S
S
-FALSE
-FALSE
-
-
+10
-2011-04-02
-T7
-B_ESCHR_COL
-I
-S
-S
-S
TRUE
TRUE
+
10
+2011-05-17
+F5
+B_ESCHR_COL
+R
+R
+R
+R
+FALSE
+TRUE
+filter_first_isolate()
, there’s a shortcut for this new algorithm too:
+
date
patient_id
hospital
@@ -815,43 +816,14 @@
-
-2017-11-01
-W7
-Hospital D
-B_STRPT_PNE
-S
-S
-S
-R
-F
-Gram positive
-Streptococcus
-pneumoniae
-TRUE
-
-
-2012-09-25
-R9
-Hospital A
-B_STRPT_PNE
-S
-S
-S
-R
-F
-Gram positive
-Streptococcus
-pneumoniae
-TRUE
-
-
2013-05-22
-V2
-Hospital A
+1
+2014-11-27
+T8
+Hospital B
B_ESCHR_COL
+R
S
-S
-S
+R
S
F
Gram negative
@@ -860,50 +832,85 @@
TRUE
-
-2017-03-29
-W6
-Hospital C
-B_ESCHR_COL
-S
-S
-S
-S
-F
-Gram negative
-Escherichia
-coli
-TRUE
-
-
-2017-09-07
-N7
-Hospital C
-B_STPHY_AUR
-S
-S
-S
-S
-F
-Gram positive
-Staphylococcus
-aureus
-TRUE
-
-
+2012-09-27
-B7
+4
+2014-03-17
+O9
Hospital B
B_ESCHR_COL
S
S
S
S
-M
+F
Gram negative
Escherichia
coli
TRUE
+
+5
+2012-10-08
+R4
+Hospital C
+B_STRPT_PNE
+S
+S
+S
+R
+F
+Gram positive
+Streptococcus
+pneumoniae
+TRUE
+
+
+8
+2016-05-04
+V6
+Hospital A
+B_STPHY_AUR
+R
+S
+R
+R
+F
+Gram positive
+Staphylococcus
+aureus
+TRUE
+
+
+9
+2016-06-27
+Z9
+Hospital B
+B_ESCHR_COL
+R
+S
+S
+S
+F
+Gram negative
+Escherichia
+coli
+TRUE
+
+
10
+2015-06-28
+K1
+Hospital D
+B_STPHY_AUR
+S
+S
+S
+S
+M
+Gram positive
+Staphylococcus
+aureus
+TRUE
+dplyr
way, which is easier readable:genus
and species
from a data.frame
(15,158 x 13)genus
and species
from a data.frame
(15,100 x 13)
-Length: 15,158 (of which NA: 0 = 0.00%)
+Length: 15,100 (of which NA: 0 = 0.00%)
Unique: 4
Longest: 24
The functions portion_S()
, portion_SI()
, portion_I()
, portion_IR()
and portion_R()
can be used to determine the portion of a specific antimicrobial outcome. As per the EUCAST guideline of 2019, we calculate resistance as the portion of R (portion_R()
) and susceptibility as the portion of S and I (portion_SI()
). These functions can be used on their own:
Or can be used in conjuction with group_by()
and summarise()
, both from the dplyr
package:
data_1st %>%
group_by(hospital) %>%
@@ -990,19 +997,19 @@ Longest: 24
Hospital A
-0.4757516
+0.4588551
Hospital B
-0.4728817
+0.4665288
Hospital C
-0.4581554
+0.4804318
Hospital D
-0.4717349
+0.4791059
@@ -1020,23 +1027,23 @@ Longest: 24
Hospital A
-0.4757516
-4557
+0.4588551
+4472
Hospital B
-0.4728817
-5181
+0.4665288
+5318
Hospital C
-0.4581554
-2342
+0.4804318
+2223
Hospital D
-0.4717349
-3078
+0.4791059
+3087
@@ -1056,27 +1063,27 @@ Longest: 24
Escherichia
-0.9216000
-0.8910667
-0.9924000
+0.9219877
+0.8928667
+0.9931873
Klebsiella
-0.8250000
-0.9018750
-0.9893750
+0.8236017
+0.9053473
+0.9883221
Staphylococcus
-0.9215634
-0.9175751
-0.9936187
+0.9235925
+0.9227882
+0.9962466
Streptococcus
-0.6081846
+0.6167479
0.0000000
-0.6081846
+0.6167479
@@ -1180,17 +1187,17 @@ Longest: 24
select(A, D) %>% # and select these only
as.matrix() %>% # transform to good old matrix for fisher.test()
fisher.test() # do Fisher's Exact Test
-#>
-#> Fisher's Exact Test for Count Data
-#>
-#> data: .
-#> p-value = 0.03104
-#> alternative hypothesis: true odds ratio is not equal to 1
-#> 95 percent confidence interval:
-#> 0.2111489 0.9485124
-#> sample estimates:
-#> odds ratio
-#> 0.4488318
As can be seen, the p value is 0.03, which means that the fosfomycin resistances found in hospital A and D are really different.
diff --git a/docs/articles/AMR_files/figure-html/plot 1-1.png b/docs/articles/AMR_files/figure-html/plot 1-1.png index 4e242fe4d733ec583c8196c1a52e189cfcbd9be6..91255b9ca09d959f40a81366ce0649a662b268eb 100644 GIT binary patch literal 36095 zcmeFa2UL~mmMw~9Sz-dzLQ6@t6+{6+1tf!l3Wx}jL4pW~fC7?4qE&813?NxRzyL~= zB$7c7pX8`OT7ih%5AKSwRS=!*fmf&un>bim1+(RVB;TeK}c z_(4czxq(0^5`$5f)AJ>_ebL&BflZbk6{dEtbI1?Y**(EbMNokjEx#Yr#Kj6{iUll# z!BJh|NP`NCebk5SX178iLmZVVxNpJK7YEX-`Ev)-P`br+5jV)_VjsK4Hz9ZYe7hJe zIooA_k#=();2^q*>2=7uP)^y%qd>e0MzsjF-y)kel+)ig`3?~XoXr}QG76O_VzEzr^pM_Q zB|xYX2F5Q9;MPtkgrW_G=?aM%O98DzMnI*slD3Evd0jTQE@` Z+vNjq*0yl43B z?S<~?l7@vbPNpBICx)C2JV&-wwUmpQpWGEX{9wKXK&t_3QxyE$S(2T!axUJZ$n84$ zAPbQkn=c8Q-J6Y&)wkE0Z3^8NW=7GKXo2mC!9{9B9BhG{1=r#bR)!U*U7TPQd>LRI zWu>KJ-yU8|OHYRw^BHpUS-7SF`CIoqdvE|N6iWw`*#Xl-C U{rzazFFr+$sP7tjJUJn8KGEz|F zVuhxjo6&VKv-Kb<>7>;RDFqJd`?zT=5=8b8Kfg=u?$e9FlL8rw*ul0<7SEFOv+Yph zM+G5N^wL>43rOwj$dOI5-|CW@aW^Q5$k9VHW|`zbo5_{4*9eJ6FeGGLq}@#rkeKMk zi<9+G93tV4X3&<&$EK_n?@#>GwA}zBJ$R%XJ=t)`TOhwkT{L_MKYAXq_u$CAFKAvx zxM*V^q!167Pmvxt1kY9AD(9*r^AV_k6G2jlU3|yl%W{v0eaoTKpO2TfAL8ys`Y(Wt z4e8B3fZ&qU4;XF`m|Mdc7)m0ta&eiVh5<7wFF%K={j<%tlXAhXNEZZV6eS^M*cGke4s0TekU~Y} z65Wp(rn6AbLc_xJ(xQQNC{*Z=nt3l_T>!Bu0PE+6 >fx=Mt)&=h{7oE6VR1jtiPEjh9g#=e*+A93Sn?# zA?IkLdV^9^4=GuQ>{l^n k~?hKokFu2E+I z0t98HlRRPrDQ}KntV1S@h;Z>bSM`8&GYA;wIeS$ QRIQKm3tzIN7-HiyTNqRJ^_$A_navs6vs0ZBd zR`+)GA^vo;ugX88oXkJlo)&Oq)3av$_|d*>+$Jh9AO{7I`3Z|du4==McpLU`HJif+ zfKbeX(qLM;;Ls)IP3Z>P0r~va4p$gXt(^Z|iKJcshYufiV65Fx3)%Gj9o}CcBHxb! z5WO)NA_8OljG?#6cMJz_Q#SNC7aJa}vYFAY`edVafHmwlWH}XU`2R=QR3IIydUNy0 zpM6;lIvL;Vps{UPG}YwYy&GK$>&OOI5Fu)KzT_EScBxGPqU;djZVd AJ z#>ZEqkcTo-*>RXN;^N}KW6kNm#Do~m4bzr}*A6*C1$!DDjY>hn%z@xC|Ew)fYkKxl zs4rf;U@9WB90aB4P0;Dz>?VfWWw0f|cd=*U(*o31ElZc0+%htr9j|^%&Y#j-_4zI+ zUp)37f>KkD9}yY2>(=IDwGtVTa2Ir*j%q-{$6DC5MnMsB=?HYo&9d-ly~0GHKzS<) z;#@2IN2L7UYSBUyNd4g(7RT`*Zfjv;{vznY+aD2_nE3!3PnvRQc09bs01TZVOApOp zc|&VgqFp3>pRsI=xzwM-UK %* z^kLJskXFt=k0mjc7)p{n{TKK?pm!Kxx?QFQuFw{zy_iUk5t@!*l_f?AvQpP@KllI! zxEiV`D9B0uv+Bac;|SP5@(kh!5;V+GCX5mTDL-x4{s7bJ?V8ARbch&mRUN^RHZg+a z;8kXwA~L-V?o(2~1)QPH)fb)&KR5_Xhdd<*F9X&p0K`dXCkQe7E(z40MG1jOf=9O+ zOoTwc#!8$4jzsY=A~cl1Htewpw4qd6egat83b_@<0=<+ouQ7z6XPah^@@;Vi7$K4_ z{?)kDp9?}dp;H*sR%j@s2<6LCkgKMy4g;YKx~5107wH78I);#hfE`J9GYPq6@rQeE zG1DAQeaCqNMnSEoX?|Zcot~HZJF0&dv#X@litG_?WU=y{b!{vP=RTM)7d8;%RjsG} zy(Dqln*%k0eik}g1P=rhvz(i?tazX3fEw#1k&>2{7UU)#QImZKF30GmTYi)Q*0mUp zeDHSd1qlmF7Z;aJymW!xo0t(1{%NOO+~&?DZC$QAARkS4Uk=duO)taEczx~7Wpi9K zavxr%^*_Y&bNb-t4t0nAVQqq`3$IPQs;G-Nx5)Fv@-GPCgZwmfbewy>)o^Nc#H~wP z#j5I_bp(aCf9S}Kzuixuv6Z02; E)lOUO>PCUHC*KxZQVs4OQMc*0JeNuG>0@Y6{Ivw>GSb|Rp$fkAOR{j%CN0+uP z2gaZ|Vyz+`XjI>j1@`dplvP$P!r?}2XrP^>( Pm)&FX`U8zX0Ys)oR`Pw0sr7pJkbzBLmpp=a>D&Yz5p~QCd2S(hmW3qz4OyC_K?3 zipx`DGlWH;41y+`;K;}V&^7{vk7p#jLs?h~6-A)&;gQC$jkYK$8RI`92d43=eO`8p z#MeLu5XHZoM8VUtW;gX-SQtjBo?tJ$sHD_5+%rmpN8maW-0;oV63dRu>726KB5ZqU z2$;w%IVdlcJ});U@E?`AQKTi#+#SMq$$I&9whv$r;xJPY;>=X9D8xCm+0awgZ#&Qp zrw0S&M3@lq3z}tKK(xVz1U^C`4^`T&!0+)WJpdTYlp8JiHxS=B>}<2BfsxRQvd3^4 zZ!!XzNn;lz9D**f2ng#YVLj7^24n3xG+Y(4v_Sk#)k%cr57fFly9-eg;1gUKAX-yj zr|S2IBrVWW{F(xVQ18P;WCE^3!$8?i2H|TM#yR-C1KUr*;Oqj|AgOq;A#4x`|KZ_l zxa;Pz8iEFBAglyuKnjzPYyv;xxLpj5Vrq=5c_l8L1+j6naCJpR9$b9jQR1-Vfd~UI zq&2HVO3or>T7wZ-T3SK?^MrM50qbmchVrPh4q`hzW~8AIawZg6SQ3mO2N#E KIwu!9%p$RZoB5JYvt1&;sH zR)7o7Pm0_aR7c=zxTlLZ%Cn}zsEVJ+k@I38*3Yxy7!?|%86!Lq^1EK13DPX65{`u- z9wWHN(|0H<{m9Cdtb*!&F5m~!&Ny-ZqnwHl0TqlyZ39~}v)p?h(N9nTSU`Op3=-Ia zFd>9+B1*$(sIhRR0J9Fm6dw;ylksY@VkuNIzo<PWw9BT5*c zWUjC`4A>sM0|HGTs0?kk8WpAc;o+{Bez-@J!-V31vyrXj8wWSrn_^*RBlDtmYl}QW z_8H1|fC-yeUf8sI5NA!PJQ3IK(NHs!KYQ(#!+`XT4#Yu)r+A_Q#1SMb(!+>dAdubd zpD(7@IT!f)+G;d!Kx{(C#?ePD2^!WY^uZ9(k27oLv3>BgLa5L(5vx8qD+FAh^y`5) zKtJ%rR>I;#EeNx5-#^y~zDRH?v5u=N!SXUde9+EI+MFNQS2bdHLOu!+Fk+XD1#I{u z?Y@C`2u_#)Z#E(y5U)Ng`>4DqD=Idc<)Uvk7wmu)`@s7O{~AI^vMzP?)hEl~a@ap` z6}W=`VcEc-F^rr(yIK-OTB3Mi#e2Xig;c7a=RAscVqp!VqTh-VX>mAF{HUr2JKk4T zDx2>1-Vpx@)rv7pvjcDqq? ySiDd{3=k%8 zOBe*8lLAO6!!a)lq256YdqM2{kf{)QaF9?U^h ;#Yq6#9d@W;=E#@ zz|ZG2(($@@kD{ez-_;c>NmXEJ1! Al__Qv5U;HM+@>CQs%W~GYUJuKG;PW 4 CWjpqL!85OPmlDuqX9o9wrS)UIko zZ~xOzV`3Ij8D2*cP+ZmsB+^_EWK79w23BYAL%fKDZXV&NwJKa|YH1Hi5db*ApvZ-% zUtbIKkBX9kK^Y~y<^I`!<3QTG7apE|tkmNd0-%hbS%*r~zo#|;)7rXa2NKld? FHv$DE+_)| d}nkkrhOAWHq; zW^i*EO&i23lnkvKHLwBHI%L-0l+lln819^h-3`)Wi)1JR%PN$eCInY0(KDlZEXAKi zHu0mr4!C><*%RF`3MwiB8TEg#;L*Xwsxl=H_9YBB7Gv_ZJ;4e(gvf)8cM6P?1AI`< z9)THQ1BDe>AH8trSA_@TL?D=Y;Bn+G3ZvreE-KSWXkBaBqXW^W6$yodYpdK|3(R)0 zuNQJZbR Xh zO^#7&!gJ}X=S!RRB~XQS^x2bZv9op~y6B^Vf?X^C%In{QN@ErX9FAWgYdDSLeYs)% zz5D(t>0?-RTSGYO?zDjTm1*r7jmwISJrB~28tsXnNiIi)*ZZmoLOuWl^M$7F(g3U~ z6i`l&6?wgF+?-%A^c+8n-b8Z@2TUY|xDFXov>kKtL*IOOZHs`RzTMth5?}xoN$$tu z4ZUAUiu6cGNdLiiSC+*i|DY(Y6np`;5rh`3|19%cK@XJE L9yC5MdEoJUVb`^6;OGwT~p0L~gr7gk0{h)`|O2$#g$#Vs?d zI4hq3-E2lBOZ|9b(UGr=a4nwyT2?jRz>-^=`iHQkx_7y9cWbyL`!o=jFrXWgEUtb! z_#>{xR783MaAuhH+3TC5-fa%K73hEe>7{RvytY(lqm|)kr>r-z2SMC>Usgt}Gw`K4 zT?t-TSlFZfv?f7&7~-0MZe*5FFHDXt*TT5@C!k!Oj$_Fpk(b2bT=yO2_u*th0fiW5 z@Q~3lF&kJ#Z5dDIhitMxwy8cckUV-IkD~r=;sMlf5iT>-4@k*nJDvRpI3rzJaDy=w zL5a&>-LEB$3<)(1n7|Owr0)PpvWSF09E;Vo1r@HkS#pvay)oD@X`xUG{)#ittXGFO z{7Owhl@5S`j5=0^2nx=a9rq81SL49EucUy$Uwr_36qt6pua-A;yHzS_?u?E`JIKRs zwWrL1S>mKgA*PI&c-gEyF;b-V1&t4jONmbakh=YCl6iasq=9X+uxaVV9p#5(UKATd zjfF5D5OT08Y^qG2% VkkD6w?BrOw9*3ho@@#1 zej0Aglf4LzLmUU-Btf1HN9^{4b+hpkhuJ23CIYgga+l1!e8l@=-(FND-Yj4k&b2UO zI6w*GKm9ThX&c(O!Q&CMX%PSQG}LxvVd*Wmh0lK=@eT~f1MarV+f+E8t9)-S^o$!L zRfYJ3=W8kJw+nrP&c|o14ettycx5z&s4T(ve~3BB%)^sjG7H88D4*WO`SCXt_grvQ z+3U$FaSlMu(vV{z+*PADv-6G#kOk3t8yycJ&~^}i5f$RmRg?sS9 tH?1ku;4(ph3I&cpc24#z!^fYK-&=UJV6einyK26V;0~< zH~s!8riaxYXc=4;&8KKem1ypT)`K7lG^o 4n7FGB<_fGUtS(=V;+tv69%fmkBvb37Q=BGK4QK1iA5fv5fupQ9Z9<#FTzA9 zc>vwTIQoz@Kw$e29S8NSdTbtKC4zm;k}cyNzJ1JzD#;1h>5+myq73pjA^YEqI>0Ud zV>@8_9@OO&AUyP!J9qA2H4;`sj`2YOV!GqLcdeW+)}Y-kmlrUfLo8SmlwWfmlL$-p zBKpP#z!*;>Rzg3-Fgg}9Yop1w5ZjVMMeN5ii$x1<@M&u?ILwa^5fy3*$ChB4(RR|- znCA~%ov4@52cX;bW%5@DqJYq(5`r`m9u_7JF$|MVWInXp@=U+H|{^7)%IzLKMJs z6Vn4Ka|FWRoA&0pLg1Qc>hmsv^4QcfcycNNv5Zs^AqyaBk#vZ6c>wvq{UrkaADA6- z{P^)QAY6o?VHCKtP;iSvCWpZ87a7@xI757Cq#Gk$9M%MK9+D`$eZ+!Ktn7Ff4c_ZF z?2Z?>Zo$By`P#zc!GBc8PPHu em*(n zZJ{^J_U{zb%`*;8es`zh_*UPN&6&SdfE~1Oq^|uXv BrrFn0r2MGWL h~+F+ZT_fYdDUQDjxoE+psBv2c45<>+&GwLWLBdeHe zNsqTQ7yt<@whnt>< Pf~`+anO|F|qS5Qf14 z9*y6_KHgHjwmmJx@`Oyyof|cGv@~voePkAX!u;qbVbftvW$mA7%FMTm9X!Mw7)Ew- zcQkmRrhzha{D4EYrqk21&lqu2?MIvNPOAH7rZ)$?Esx1fo#MSyVH&qBiT>ERHJS@y zPnTa>J=>ndyj!@rVqn{f66qI6Gx3rJKYKQto0)Ott_?cFofK J`y 8k~>;CamjsLd9`p-T``G2nXw@xzo4^H8~xSxq$&rH-2Qg=l_hVe=Z z$b>*7BlHeJF=TGM3@}0}$$-V+7J10jD4d~INkf{N$C(ds@}08mTC;hVBw( K7uR4Jr!XG*wZj<|AR+=WZ`o3Z0wO+v)LFpJ!DC1TjOf4%?%Ihumv9ON_7B$* z@)S-O$wwMTtynqqKo8IxsVFt(!`+EYr^Fn*7g3ik-n$Ry8$*wSodw93C~d_3jT?lT zMKTP^_*Z~MBXLLp%mTsbu5b+|>16)Pd8IQyX^f+$kY356OXD%&r^NN)7~DlnrSl zl*Q$rL?=?Xb&iG6!F9M??1@_U4L*RNdt_v2M8XH_N3~j({`>duq?;QD2_ON$Dqy%Y zgi&(^)VIm{asz;a{}Ql{%N)ig?7aY7!i(@mC9KsW&oH1~E8el2k8c6J+j8{4I>21T zM37j{_%K3+cv6Wvh(vW^_LMwZ(ET~0i mE8&FCR8fVAB{b{p;1ZrDF=eG 4;q5WwrMtR>139UX+mslB3 zqLmw{olV+p28M7aQC}0N(uMHhmj|OaD`P=el~>z3C?al52=Zs6X6%p1Gsf*gZ&OY@ z4*Ph|y=E=20&eqnKV4bo!lz*2-bWi79&I1r`BRE{{GX@DH8f^W0IP6IIM`vj qet1;}u3lQY-e`1y;>_jh2!_2@|jGApbp z-qQn( ?p=PYH8vbsk!@Ev)aB|k*gU1#C)9zwP7bK0gUfM zOO5`kPXKqZK`B(yzfq$OKPw|e2y1#rrs^I(KGGgdy2TVkU^h+A71o8|*XfX(yAy9$ zT}7tc-=BC|s7$+H9<`e~f~&%>!7Td?XU*_4`s-*;5F3M8PHOs^?F2HTUtg9UjION} zO?Py3nh*6> vqHs16M~k$ zzk{{NAc)oq^y>f+PX~diVC9O2gKL#z6dbuzTAyrp26IK1**>BWWwn(i?z;2LYP} zXU<`Z5bX|LHz2d#-d-Re(#e3Rz?VIWU4 Of2H z+b%S9qbR`5@1dxye7B?vOWxapjkrz`SicwalQELgoW}VU#IFs{H! $eIbGe!Y(;EhO`B&xl7{X z)Njj&?2!sR9HebM=fG V% zu73rXa(Ccz|AV~#zxmY{|5rn{ttw8dEYpB0-knV~t$(bC<4O$E5>(e9lgMtcd~X=P ze^FI%yPBZhsXdm*v r%32qT7wl?(6Jh)zAKsi}!yFS<5< z;6xC&u(0rdo}_B?o)&wm5~udNJCEHDlSKN1kNbHj+|XGxopR;~LrRA!kT9fyXy(fJ z9Cp`>MtQ6^%r*_iQf~Axf+mgL(3Re4Zw_n)@Fz 7hPFMz_4 FpBy~A)^pcW`r`vh`w>2q1GSZF1}u@u+1cN21z=M{k5V`8@% zoD$UAXsIeUWmxNQG)Yg!jXT8O|M7VFBm1iy*_Ld!==!_P)H%wgeE^XP&4@VrAk8PG z ~m=v)XcP#d>%vn0ur+Ty-3MV|# zQA12mk~=OX2OJl}81rX;TADE;x4m0@@d;v^-JLwXM&Vd?%Xca3h0RR22N&O|uq=Mh zr)6^NT;& 26LiN|L{PXYLnlO1#4bf0-dT}hM}ntA(03oq?-+>@g-;sF__|L z9#n33dtUh{CH*hk`0U2}uQwW;v(?yq&Q?__^!4FM)1Ow?-rL4X{y!wF(OTbuN2P1v zTGn9yNe4{*H>zc~iTskwAY2C}1SPx30X-%h$O0lxZw!^vaAUkLmJTeBvJfmLv`$QJ zgq+R@McV)L=H0#8SA=VzQJZS7cqp`DwQxHiyeDnG-HVBI6SXh&ij+QQSU3YW7|u#L zMsJLBK@jLpI5~E#Hh*x59LtBI&pxbR)B05&Bj_%kUp^;@959Kq+H5fKhlG3n0l#YV zTeb0vs8B#eqEI1N6(SmvJLo_`TsPC&fc^^ Q zE2AGi4d~c-_a~2QYW_yKE8SV0O?e{)Miv;^SMEQD67W6X1hWG{iJ^aLj>91Ur)z(D zT6f*eDG)eO&w<_3g*Ff>vpxD;=`=K} H%Ke j*8%jiJb8{B`8B*kjS%O$t6i8 zr2tT?z=+#l=;?^3fD#wV)#GqMCGuLtf02hb0M3x65h{HsBot8F1Ht^Kzgx5YYc4KZ z!WTz}k(dIoQ>tP5K`29MX=ztfrXau~yb|({QP>05M7BXD`!UhBywHNta^8Ryacu=7 zsvks?7Og2l3?tM^&_hA!0u=Wmd>K(>5~7EqUl+|UVlyz21~MoQn4>cm7E6TgE8-ts zxl{7w;Ij7e{$lc`(BP(qfxR~YQeXN+4DVWtawwZ+(ELLm&jkkpk|Zz?D?vrFVw_{1 zoxU3P7mshIYLUacaBhH_f*N!jx9SyVm1NO`!fzKEoIodCV*3wl=}wiD&Y1(#w(np^ zX%iD~-}ST@(>dHAM?&BxZPgDC0*NC4?gUix&`G=u_CP~C%`kq5{0?ksOgO !Z3@$Nfb7ld~tdX#cLrW6`=L?nApxb~aln)#OR3sK0$*^9e`9}DISj)R# z*h_&^6O({Z{L=^`LPq|8j&d^|5$UKxW`Z{EcJl`G@JK%xSs@zI$e@U|b GnEk9wG3hm3sbe$$X{lkrXjnEy557E(cEoP# zML4<%qa4H>(knpbB>Iw=y^5~ya|@<9yy9u;YB2zv14l>(R4hU_aQwPu28?9*_#z+g zN)teZNqU D7CtE)qbHD+#McycYn}MH6CCU_0TV?!+PUyHCUykR-C; z {YG4U~cQ6J{I9eBW9CjeS5?U3}I$@pWV00?>(FIL^ zAaTdRwj=iB1l2btnoZK{g(Q=-T0QKDn~*OUXT(2RFL1m7#8gl4!nQrp#CfnsE0zf< zRHqLC--Zbr2Y~>gxCG85FWYYlHiLzY)Jhsb+fVsqDc4S7dd%DIixtB>Nk}G@@%F$e z;C=z#YY?;r5}={t9wi^|zb)D)IBwu#s09leSUs`K0azxYs&d(fjJE_w2h9IbtRBvd zFC67AHy`qyx-WG2&VKEWw*GJy#iEh&2`)n-79k(;gZM{$8cmMR#<6n`B7 sw~3CA-^5G@UxY!i`xanW 456XdFcO4p1)JmkGe<9e# z=f}q&Fzl${=!nLt^lg9@O=o;@d8MTDK{LN2L}pF;9Mgtu>`h|M4@DTD;Vz@U?2h0b zBOb#*Xdr$%{E&T4h0g-eGQ#fRPDwln9KAsFu)?{CDiR`Ds`38V4HsW#7-{qQP{ROr z6WVAdIMVotL{x 4{`r*Pn(4mLW1;R9ga^BjO_{J=OmqzRuDN5atsVpjCg22NpO5r^rM >YOt(2v^wIT0Mw($83-Ng!Si>TJ2Ni{)lW@e<*rjq;eIBV`b8k?GQKJhi^ z$VZ!m6LtwfUvG}Nc?5F`KKKMVJ)$QO=z$AVjF61~L^f@DR9Lt}R<^2j;XN7tbL>){ zuKU8-Lc+o=hO-+mNXdJrx|>_Jnb22R;|w*Kl|CAg_`>5Mt-jgWS<#E>_wI@R^_Lfs z;llO0IKVeewP|lqf~S3jVcpLplk^k?em2)uCpJ@XZ~J*q5d`z)%a^;^40LzPIXA-0 zOTk^p%f&1(;-=umuAHfReYSu6o|Q9p k@I4zZX)@W*qI<*&b`CYj|jj^MoCNmHql0qLD< zM!H!BS{9eDTxl=#+Py8->)Muv4GNKp_m3o;a3W%z%MzIx87QMMsACFo4ADIP!UYo= zZ45`C>crh+N7RfIqz{XF`JIW5HUt%@uC4@rnP#7GRrwcxEG-ol5_)lb&cMJRoEwkm zL2Js}o-l6M_F@yk@gr72Zd*xdT}-uSQxNUAl6EM~e)8Xs$SZsUMfs@iv0Zkms;V9y z9+>&LM$$HJHFcE+24SEeXCR?t-|GGK%YX1z!<#QT)|^Jad}|$K;td$i&f(-m 8P1Dt%Gm$;8A&G#n)$*G2q*EFoi}e&ie!5 v_Fv#b1BDhjl*7wd>o7~n w9c)-+div9Dy=T8d?J_3RYj bhswcp&CmjyVi? zVBO) vKf9sr}NsO?#xZz6=2p1}j2Pt)KL)*TV!GVy5{3y#ZYx&Zpxo>i6|5+40 z(v$D*cFMetA;qbScUVfwZp F?e{qI8%0fHsCjQXm6G>)7-&B?=_FeeP>2I85ujO+JOT(_<} C+O5k?5c6_B9d02=JiBzj6fx1fbd27{-S#9nLc*hGZQ_LZuOjGR?`s z;p!3h2l@Fo)Pg^ji0#axDFuwVP|J|IA^#ly`AKv54yKo+q^136D|$b$vkMz^hyMtj zT84xe^b@*j8FJM@X7IG;V}{22^oCv>E`0@Pd5$;Lc{HuG@bU3Mr2nhlwgfiW8XBS8 z_85!-R=UaU8*jDJXT2luUIg nDafh(h4b0e>(QHAP&9*3xNt?&k z#r_4gC;KLpyUL=2kXB;b`$LoT;)RB>NMgHAi=#M~WV%Eyp122-fiO#w)E|vj&9J z_M@`bFhM(gUw6~piRE3)YPQ#QNUmW`wI>}ext$=q$&G6aOXIkCQ_a9~SteC`eL)^#Z^4o8}A@P6P+G=fS+5GO^m!6(NET7j5 z1cq2zT-%txIttwN4WodIiwg%^Cs|rlw4$W4s !e=Cm=C-!kRmO*GnZg*~4W_H; z#iK}!`ppMitVte<{Xz&hSiRP!CXC(?590$Ki0c29k3)j!*^x9&t(#@# mEF1x z3g_Q?TIyzBw{CXo``q6@1K}b*{!%JjQ?>*jC_^ny @P%IaxX_Kizz+Ubb} zK|H&o|9+sPIia9EvEbRoGmDleKBvn*D7pTyR 2D@4fboriT>xvYTN-vvjYe3wE9@q~B1UyZD{rUy+I!RJ+gL$rw4hdv? znVW4h$G%1q8P46`C9f!80avEzs3>T0gYmL9Ha1wX($Z2uLoL6= MmWbP!n|x;*amx@j!pgK# T2iZb~=IzE+Qr_Z`56ZGGraqW5)5hdh&-uz-?tZU?;X{TO=8L*L$wZ~?>Htc`&u zA!%;`xxh(c2miTq=1%zQ1b)JbeP){a__5;l?b#(IwygKdsNMCqB!f>F Uv4@~h&I^$^`Ej?)At z#q@m`4uEMb`qbDp!eNmyF|>3uY=!;;kl_YMi3f%r>!2FqTS!O 9%SDvg9kXr{ z-H 0dkxzzj(-Z583u`6-hX;JNQNXuq{+B{z2t zY`Z%;I&i!YU-6LYut5P?_3vnf=oHD@9?^?MMN`0vUX+#w1qERu3Ety*n5ARWqk!)I z@@4 af+Tj-&Nd}ApaYJl$Af>MYg+4I@LurUx zq_?*hF)1}A1=goqJjteNioizNwH8ix${2>lZ4Z?mfFppZEVB}TRbcDv-o5*wZ+)aK z3$CAq)eh_)Z~XAO9gMgWZ-EAVCyEj%G!TA(_kG5_D}H^msOaps-D()w88#V-q;VE? zIKkTR1!xh6yZHN$y{z}QR03!m(hz$gVm*E|{az&j={NEb8#OXrqpyM=JJk^l98Hef zCh21XZO(N&bm5p&i2lkLe?>(_V?zVV3aouWotrM%XNU;YGJszE0s<1(on@~fKIJQP zqG7c85^k#IsnfFt#>TND_CWAm^8_w{#jw?L 4;z;q4MU*@?IpkQAMH)W13z~Tz7Zz%3X>m}|xmd3n*mTC19fP-_ zFA31JakLn_ahFFcY)1AygVHxeL=HhRi-t^4@#X-EE7zB((``*ng~KMEuQ<6;#ijfL zi^Ur0M41L?h;iQsmQFM)y#q{inbvX=x1Oq?&Ha3^f@d=8v4 ;7*Y)-F4968KR`i572v{lB zl$IVw@J3$b2A(2n1}2kqb?J1vmX?;c_Xw2nk53Xcf%oEv;E3_;v#{7){BvZ)g%zWd zoGb1!W8JhIZuM5HGa49^0pHFd1|mJv($Ud(K8DF#0Lex$sSwZTno7U}#{tsRW3ED| z3i<7off=%ie2cV_l8-v2*nHO&^G?qA@AfX?5^z3lctc)#$Bu%$ydhj8IF7LcCerbS zWR4nuZX{b9G{^C)4)M Dwg%eT_jYu&4kQ{AmF~={gA~7>Dq@&}Ig@pwbALDexAMmUM zjo_T)30>VtRCL^c?^m&9Qe&KKkL9PNlzBS4y1J$%T$DkB5)+|{3JaG~;he_OU4b<@ zv}ArwP$J+Y|3Usfxa%cv%^x`V51L;$H28p7su76+fn&W}oN)} ZdgPtqMrwO8fL;HLtQnM(QDtneht5lUr=OCOiis2R2+e;4O>{( zQb5K**WSJpV~@`195yt3h14NAIr&s*sI`qvW@aWdj>yqX_wD26;mHTEnLTcr{00n0 zd!PZopRxl63P^+u-vFI)27wtN6H#r+qD9Ee3XYmvTN8@x&h|hrBoL@J-uHM93=AOa zLIsR$a+L;<88{f<`QC=BFC=I_5D!DwCBS(aeJ1qb8%?Q536S*g2?&UVop& Skj}mkc-foSi2B>dm@zwxhH|Cv*yON%nX|R`k zx!rF-5(>`Z#q}9@av^TdCE$};?&t51dBod*yC^HSR#sNNed`5|IW{wyMTU5gIwg 6SRECiG7X{m3)K8 z3*|@_&AITU4(=ldhc5{A#ZR6fGeADwCP5bAnQ62(hK8P10L2&4EjcL(Nh+eCW!82v zF#{tbwPPJ2Z|FQ4Wfc_{+VG1*gwJ C?hiy*&c2Qs4Nqas*o*(huzkuj^C+V@SmKha^5u*FZ2J9 hIpLN6_ayAc9L3*D^R--E?FsU;dfI!nvNaBc{uh&c&+Y&K literal 36002 zcmeFa2UL|=nl_4MS)dj{5h#`5k(^5qK}iZK0+J+4Diu&s2_iXJdXz#$BnwC|AX$PU zAW0D=Nl-yVBqt>YNs{ifvASpa-s$ ABt>YIXB8XuKmnGQ}sZO1E~K#1`%SS3a)0Te>05=)RD-=sKsp&sV)s&WU@XlK%GN zWf^VJT!xPHMA~yXRoZL%SEU( zWy2aP)*m esJdhlYlj zl=iKBonWLb4i5_p3kuqx^daknii3j#`O*7_W(A?4q5HRIISsyl#kt;7lru2*T+1%1 zwvo}Th=`^SFDO)|kGXd3ACzg5DwzK(uKWM>4gaSv> C_%`gQ9bXhc8x z?fIq35Prq4^~&cyK2A2njHQY9J2l{8|MO;vo`{l#Ui`ME{8WQ7qx@r5(btiZiFtW> zC+lLnUj?XZX)#hPt*w`O_!TQFD+L7vk}^Lg91O!Gy2y7onU }l-rKA zyR(ea(&RV;89Dasq-LIabN8b@xzDH@)|~cfW(7~; -r218)=5=k`dY|BQd$$)VvD^5$}AL 6`3|3<%c>$RqbnstvHIbx9b zAgo%plgb<}Vtgdu6PIt{J!jSWntJ(WY;0^y42P0{fWV;)4h`3=9k~N$8H1-{5%p z@@0TL`|QyI=V83ZM!&N6=_Xq}M8 ^!ACEJW&yhRUOl zmrsm*%CD23F*PuF-;k_Zy-wu@d%k^V>8DSh@F}w?sSnkPf9@?=o-b)iH;IUh+ E9&XSkT##nj^w5m TawV%E8G{ RN@Z!> zY%2RfLtC=lauc4+tl_o}eEZ+1$Ny=0`Y-7K|Hpn}q3a38i+e)6>S6-qsavWG+>W1M zTs3RhL(50Acd~o!-!x6*yFbwAG >j)pD$I%s-cN*p7`+}Zj}GTWAc}t#uSKu zG5=zV2c6WDUTOrsV|CffJ^yFBG@ISfs%Ojh{_k%^vpn$6zZd_1G&RXXjNk45@;DyM zgNJUWcl&nu*I(yTIx;zXbyuKqgI}M6U{tw?l4R5&z0i^lF$J3W?Hx%fzU=1@DK9aI zoz09LsJ-LM`SF8t((0NMtamnRQ1ADR)2AmI&;H(Q^ye#k?kAEj>1hF)Q+I!4pAt}1 zETI&rpQ)%FIAm^aeuD81!_W!VW_tM>m*2}3bA%=jY#n&A5XE&X0M*xqUrI_!Qc{wt zZE9MG_VtRBfkM3*!%?J|zxNS8uI0di1AhDOK7Z=p)!wvz{k_@tB$nY5tZ(Mi+y8_2 z;tb?pedF!hBWxvpO!hPyH#H8Dp7*apQ~$&y`4{20f6*tBX+U$THhVPxQI@av2{&o2 zvqKaVGO515T}S^~@cA#g_ K7PN%j5j%GP@zY^4a0Gxl@V R(W6HvYohe?7XTEV4y2?4utc7WHJ Qo WTfI;rPlfL=hv-U7wfY$_fd*8_P1}};-hYRPE C0tqbwwi@_wZP7&h5oj`q849Hh=MA*TM8$15N^<>o?(! zxW&cAsW-#I^u4{*jsUso>guYisZC5yo@ub&x9@qhUGZk6r1Ktc0Mg9dza;SAwpRj= z$bR%l+ODk-fGaW1``e>Bg@Vai*~G( |J}Po8J9$lKDHlU^&x_f!+sMB z%N3^SoLxLXRx=~5SFT) hIXTfdPjajJ 5K^ dRnBtH*@Uf* zFpWDukemogH9@2Gr6qS%l|N>aQj)|=JX(;j5bsOe!otGTn{jb*hj@h2jx;|ysRf8{ z9JBiCm&CY-M{|URPI#$FVfE!$Rt5)bl{RpDtQDtVS2%vKccQDS3+wHD(!I+%m)F0s z+}SggtT=z` EzIw^a=*{P>w6=u*k`k=>5kjs`);rAYVHhFfAg1dTUg_=GG;~ld&gcd*1dlH zGeyLrxUlpNxYQM RLF2A+($X`S` }3 z8|LUeQs50bBm(AREQ&AAKyW$PIU|+++8BP#+eYuCpWriS= gDWWkvb<`$;Lw zI{xxiz*dZkSCwF*spt4hsaEryL5Ch=Y@@9BVq{%7Wu1pWRGZR_A7PAf6;M&QZ^#^f zc5xM{?I3n$ugRKE^4LHpqeQ2|;nXlY-aTV-4iAl6 {pUCLR02887Qf(Oz3^q^ zQt)&=ca=y%J7XUd(~<)J%=>@Z??0<={Woj){|7NRf=&9+H=UvWJbx-okiO>p^zc>> zI;VKI*V`NF_J0ZwNJ24+weGAvEAk!u^PERZ$JbVmO*A`oez@UIR>;+%hX<6M4OGz7 z$g6+jdQ@Ta*@6A>w^`>r(XBfA%nl~rH8IUb3(xL5L++4}lvJie?Px{4KEdeA1Yzh} zTbyZpGqZieJ*=$#+u!`wdSHBXu%>%dVE)#Duik@A<+(4=&{CrQXqh;JhSo*Pm%|)b z9 tK`Jm$wNN>WLe>`J| H^17)4$4x}eh@^?Xyj1d(;?52u;tOGMgInG^sMbKAW=Al5jwRYR*B$?Lwsq=W~@ z9mTNovfy4TqW{K6x-N{D3ws)Ktt$UrW}7G`~NVNy&^pzIN-`OY)`rHWDGZW*@5T z`Q`%|=0zVLpPn2k7_E(!pZ}ef^N^O7-R$$8o}Nz^-f3v$Kj-_v&CU~j9i5}*dED|s z|I}cUFVn$5PI>pQpP5P_##o>@zT#x7-%F SEng3F<7! 9zBjHxXf-w^$zZ;VmfyoIKu(XOxlF zx2pJ3Pne FLt+!u8QYLW@Wy_&Q;v2+mFFIKeVJD!wC z{6)t8H{9GF=ONcun@>`i%)O=>f$4^4zP96PSO4_$t=*1&A9K$5U%Q5h@O9`>UF`WP z!9ay?rxpX|u5PuJ>A&r04%mjr#Ky`Bs5uR7R~~X;%37-wy`x9nU(ibvh+DF}II4*8 z#B%HH@9*#H)5M3AF>5Wn6!+HQy6iJi$?x&?^Z28<#UXK@xoY$xe}DhU$;k+Di=_(g zK+jQ+c8@O!5d-&hlVaspu0LAxWGxg }s+3cX3OP(F~0rS+}}&2Q=QE zFI_J#hY!UJ-YjL);84zCsHe9Ru(HYALp12n!kDij`_5DKJIdKZ(%eed@_PbTuV)iu zm$W`i*9kQ`f2?$U^~dBl)?6j?t)u9)P06~6gAWTH0!2Z&bjJYqzmC+!dpZw&5Hovv z+v&YA?S}?5|K;fR1wLv$xJl~6r#9%3e*2HVxqBc`amm%eVLZcoD%D8D83WhYxrx)Q zC&*`c#z%{1BZa!}@=q}?ZEipm!eU~zH8oy~Q%&vO^TR!qQ@@ePzHK5{OaAexH(g!+ z;+o+ l%C0_m{g)j!4N0IX zAWOY{eGd{6hI3=CtY_nU7XbZ!sTYIQCtVULQqpxz7=z}5Ni_5+-*KX+lC16a5}%mE zo%b+Z-UNDw9^ygm wgf&{~j6w6Mkb^ha-D;$o zs7&wEj3+-i)^Qw?CH}<3i&5{Hg6s?2$v(?Vz*K7~5KY7NWnDw~wc1dI={nmyM$>QF z@_0=~w~Ki6t=SSxoTfjXOtkoii;K@^e=`#md;0k<80)$#U=XvlF2&4Bv!Cw;s;Q|B zoK0K4@bPpa2W~B_dbwM1iF>Z|3Y+-{J8qBZA-AbULuI;hcE{I1l!p1GEQY3UFpZc> ztHn!9`5%42!+)ox$e~nGS(!im@eE_}z9i+9p)Li>yuMjdi4KdnKhDQ{PWfbvlL3@u zWjddQZZ4F;f(%y8-Myhg)gj3$SnN=m%x=g~nM#5F&8_C7OXg~NZbgU~XSW|znC-ZH z_wHQ)T9wACuJPH9=a-e~FmH}#9Y2t+Vp3ebu&}^X+I%uD##4)aC&%~CXB9n4h{RPU z%mU)wO!xvuhnx{WAqe$+dq>Te)BRLfFPKs#V bDBGbcYaR; zN N&0lvXR4O$oO9MLhdunc4U8 zwr-cm6iLax!mqeA9@vs|#?UGT?HisIzwmMgt)k4VW_9>uo{fG-r6-78HQi#DVOo6r z `S_hpPppUIl$Mr; z@i8=avjUo*-khN7AdCJK^cYWdZnEE(>8Z=;(zDf!WyiC;8a=xMq}#xY(Kuz%Y@sL8 zHrq9K1zk3NkOgOJrrl?m%B-2Bt>84!(Bs?r!gn+`2%adGTk+So>iPMo9kuc^pB#nt z;I6%b4W~p0YA;;Ucql!QDX?4|i-0&8=vQ%=2Z7#S?`?@;n5x>yg5nfx{rZ;9(W9_Z zq-^x0zQF21XRKs=m#C#U>m4XJQPJaz&o6l&fM)_SfI^(_*~zRWH;xKVC3oSy4K%Cs zLA0%!cOH6{!ne=&CVa!i%t#lZG66c-7LLD~@MW-Gr?@;<7cv@=|K&k+is{s3pwGg+ zvt~c< n?v|CQWWT$Gf=2KySKK_f=HgMz1<8m zbk*vgc$S~H<7T0PaQ?=P8z#->hU`e*nT(<*|5oiGMSNjWQd6sXeEJ<~BE$U{P^jT@ z48NWCWHcCdtZSDa=#f0;5VK!d*GqpckD)BG@Jj1^mL``L=bIWgxla$xbzEjNcdU_u z;sD@KNec6yWxoaG0Moy(F0RCNyz69~*OMseCMEd| 8+UhXswkCwL%R`G~vK?SE(=#<)C|RCa7892Haz6zA-1&>5*EwXLU{0VWw%=C` zsftKUn4nJG$Jni80TSe4wkrEF$d5fgj7Gugzlh=v^VD_hIS|I!^K50<#NFkAC1`>J z&g%>_;@-^z_W9}a{INKr|;f77_jH&H!Cf-&=}WW z#qv6Eovfy=ombH0VAE!panGRk7P?Iq&lHVf+3|{srUO$$k8@jIoGHJ)S@#|R&77_s zzoRqu1L7zQB;5ms##i9(zFTNaqGnIO8kT(1_c}}_T&iJ4?9S6~1ru+-g&gQA2NM$3 z+9-an2=x_Xn|k`P{n&BZN8{p+El-`!D4Vwpd5oOREFMs6t6>%nz2K_ouDCAu_Sli$ zQi5e?gV^s|#4TIJ |%XleDx#un!egJ$8py}h?*2C*8XZw%ID{f zCk-;Z=0BTp#Wzp>m-sLLgtQKlgPC*jBWW|}`CA=mFoNh60Wvi4E3z_^YC=LnR?92t zE}H4KUB=H=Y50;({IAMk)a(8H%dgv5{pFVzCN&B*qP7u;zxVP-j5m}7+q}-JfIL=K zRxgidxyqU6ntej)0_niagVdSP627&`W3-6P|0S8(uQ=&6bU2m;QTyWEA+yen2l|+1 zn8{6lII&V>$gD(%8q6u!b78vqBq9cHFvn6SPE812N1>A*ivQ!M?;l@PTgxe7d8ovD zQFG6i`%q4r+&+vql`Ktl2P$f6X=!O_w4#mS8n4oCHOMt 1JCA^ zHfnJ%kb2~TDc4qI6gF-O_1KH635khyQBs3IzyaFNbOK1Y0ssdg2o-jR{U-viJorx0 zYE;b4+g5sh9uy$VaAu`j(0G6^g`0*jNFuBznZG?p6%Z>~m_W69e6~3oqX)QVpIwTs zKMERzUit)T5Fr+r)Fs~rQmcm1#5AFZ18rhD)>Kr;pnPT&j68*${y41^YRrkO4^Xa( z@vjs7-T<$=cO&^Q1VNMZVC8xQFvO_8!pC0Mn^8DXwT8{KKIcpmngavJp0A_r%kNF> z%pO^5OtF#R2wFtl=99M_dV*A}EiFka0 xe?%2Lk!1w)e@^$* zeu6A6_H|eC$B76Cd~Qg72h1T4mH!2!VqspME6VhIN(t^aM03w+Bn*JuRn^r^iaqBT zy~i%gjuuLai`&)5??ZQ+$CF@0y#iYyRf~vFNbk(O%e8I&HVldda^ebz31%~!Zs&Cd zGvVC>jltG}84#+dG)I8%81Rxf$nnU-RBImQ*+>QzU741C%T9-`vel7CB{~F36cUn> zKEG8Lmj}^_^_p%*rJWjSoxiEfU<_fFaFxVZ_mpq%`3~Ru)q7!9y4_Qf)qm>CyMCAl zi*d_yaVEC;y)7V95cEQv7!()Ao?oU#f VGm$GQ|R zSvX%A%nK|5S@qG$It-M{6ur6q^EG%{77$55S{HHEXr_sA7z0d!Mf8`2F18YZ)Ns?o zdb>LWL_`i-3s|KFoVu_wW30QlmS@W`{>(~;#54uxGtc){S-M%NfINX+xK~hosZ7VS zK2X;(-`F#dghC7$qcC2^Y_;RLOYvmPnTPp&)G>@=Sj;>=3D(nk3Kbco#}*~tm8FQ% z^Z-DdKzzbw=z{~gPQ=tiLHnW@)qb)@+6TQ4yxUx2zbkS}GgGCZ>&T-)`=1E3!`1U+ zTCJzNj*>cq-eV=Gir~#lHVe56pX<7Jk0#{}Uspse;LuwxW4mEqRu}a^N}hBS(To z4lBe5MMux)mMo^1x;_DPg&dEm!BsJPn&$gGZ=aiewU+<3HtS&$nIe4rMKM>`FVeQA za!bo4UfWsydGB4rn@&Nl7Ppw}3DIJpq`?kJ>* hJ0ghfQycc1U!jW9g|kZ_M{@$ @zqi*5z_@Y`W?K95(##7*w)>%O_z5_ I=U z6}mb4vx*YqXQG$Q!qdUpnq+c9> 5y9w>>wJx~uWuwv| zo{hb$gTh5kV%-OlE6Jx?xx0T`rFjnT2*|gBr| LK^<9C}Ab$Bt53?|Z3YB9R3k%gAfxVOiqYca}<-_r& zDHUV-39!~^H_9i_8(pKV)KOVXF9r(Ic3Bg5R*b-4I~`GBPt=!0jp*>7)%f5Jc;~23 z31w&r4kC3mob$`vQ1c^HQ}-@Eeub$9-S)X!7dS2TKzTiP){SP =Y!=HCZ*G-zreo0!ypeJ+V<&b zh=@=GjZj7Fyr&;6PEWkrYKIFs@wxsE2yt(<%JpA@qN2Xdlq?r57(AdA$lqhV_-%@% z$_MhCp>YXroh$)pL8NScGQaR4^H`-}UHt{3&Cx_X1lrDoLd+lQdVH!exbkI^&b^dR zAIOT2+ehTiYP-7*H*Y{t>p7$S>IMg9-CN5}h?C+4L)nON7NRLif3jE3wtstH6^a(- z<|N7i+AwaMlw44I0DPyC@%`t$s{Yu(EfhNQ`As*T!ZEsI4M{qr1vD34yLK%WH5w>C zCu*0L>@ZdfY6EHfVKGyrwMkmP{?Jsrt#bYBhZBK|Kx03@Pu!`xQoMf3LC2V04)vsm zLal0CIRkV*5e9}{Y+VzDPGaz`1M}#-Bc3<-QmbJMbTT1Ue?sFcn|vC=NM*ktqWKMF zX&%}lFunKUH?V`=fyfQ~ETWgCFC+6A zAtEB2{PJOBWveozzgZj3ub ?gM!y>A$G8~Je%bcq^YVw# zh46?7x*@nUA;Ak>4773dU1D9CA2Sd_m(5iU|Ci `)~)M4HFjL z0O0xt(R)y4lXZn77&+zgs*atswESfMg5D}sN9a`3!&Zn|=Dl}}M5YrJ7n7AbNrRiP zFqm5kU018PywIZ->6Kh>eFT-0!v*164i`OvjJ{SeBKb%a)qh?QaP~4gfl=_RC@~lL z27n?F>tWg)+ktERYe><2XLwSYdC@oGa~6BLK_)}tCF8MPyzp1}pL=V)NT33Jx%Uo5 z`Kl>wSEm*Zyg~igb|!lf^TOHU`4M43!ODsXf>=@42|Wkh#eIJrZkeIk>i5@l$^C~< zQ3q+Z96>~Sm+dDRtE$l8;9#OMVM4+QfMx}}K=6G}WeAu1=Q|Kl*bm8KiWScFMQ=@$ z#f#%9Qd9CWeNdKB$AO=~T)`}SnZS8{CPL!iRczX{iKqRSO|2vN?TdSKW>%FCG^XP5 zb8$Mp-T}>Y0Miu`A9AXl`1GSY$z%q4zrutzbK6M7z<@Kb+?Ro4i;@un3ug2Modx8g z2h?i9lhA9gW42{xjwRi@@pQC!UdYfD?Vj* Cz>pQlhbUYR4&fDbYnE!13gq36|+}iymfHjdXh l8bwW zKniG19g_06)Qw1X6oh?@jQxjWzWNH^fOsu{S**SsbR)Gh0~|hz0c^vGLPb^>vei0Y z6yYPqwccoUUjPO_qC 9bS^IV=w!>pt*rAA%pzQJ|Kg2Iwp7IsNuNXw+4v zr%r>;z _c6J_z!h#85!=7zKCu-35#K&m{M6|1Qa`-zV6Msy0H1 z0?ZFg`_Pz}B9uT# B|3mAgF*m857cX(u^+i#AGY++C; z{w-(NvrQ^`uwIT2;T0YJsPcqU$dc5Y+D@BsOzc2&drjAPp1%b>8|^Hc;iHSBIMGvx zi!|hSRe}hksNi%INl8Z(7?O(4UO R~KvjSlup>-5JqeDmd z{u+X5l$HP^o3P+?{%{OE`Ab$gr$@`V+;ogLo}A2J+9QVSg5j3jlBI8hVbvtM-lLg7 ze?pP%uBuJNpsvr~3E+H+?A &_!g%V zzoGH0pPH?$?Mf*RV=Tg|s7&1Y5PTHs{g-RP4+*PPrn4(qbPjl`{_ip~a(A5-%Yj=w z-m3Cn@j19_sufFEyC2Qr=*|?c#eRW$0h?*s^8mjTD&~*A!q>iNJ3htRAW>m~FbCSr za%}V^xOUqE%~GhC>-)Fs9BZzKmG=m?vsQhdd $le7EvHOkJ-N&Tr9jlA|k2wy|2SU^Zf z&30}3woj3br(1TpH_@J&wqdpB@wxZ-tntgy_G}f(Pe1>nJ@ }>g7=}Ny$lc<8;$vAYLzdMg(2+6ux`ce|JLtE`DHpko|b-xVWnW{ERIw z?<-XfZE>L4>n62c=4g&h7}PzyTa_ +}dM4Mahl?a@7lY4% zHcC)`weNT)q;=SOJCNK%9T$XhDu3#)i8fr)@kb>C6p^C-da6Etz(l~uz>RoG-#Ot( znT}yA!f-SJcdb{IlWuy2$sBdOr<>7=V1tFR)=}@=DrVS;oJu5!qERjlaTpvM6b!e( zpF8&nj@W8OxlGKB*RNl1;650dA?Gsk3DmI<(!99v9J(S%ekSTZ*tC#wa9rFnknSfS zQuJ4VDIt$5YN9LEKkAPtQ5_Hu^#|xFAW)vOV{lPDVJ-bkkpn^3P1K~PSXx@@ZC-_P z%hMi5$X3*ijDIBiFKDq_QPF3zuLds>6ISKfh)A8f*soAY{L8!XGfjn ISaD zY5{+_o;B>ylBeVMT?X=d3=6`}YtRHzMk|r~L1|QoP9!AVF*_NzeB1NlU1xPU2-}Zg zcM)CX Wuwn637`D#)0sIyS1dcTn#s4iX<8WrVEEIO1lr(Z2`O&6C9 zYhpVN5#&dJ9jGE38ygS}NTH385Bvd05NX3>_)VJWj9sf#HjjFecvIA+E#f+4qMfq& z527yhXX*c{cG7!_(XWJa>f@oBI6^`o@{uoxvk`1~=qul5Mtz`9dBYxbdb H?%UTdx`VG^NdR>qT~LeWMg$Wh03l^MR2JxZH4p%n z;h M;*)Hlc06EXsMdx(3JMWbG$IZftp&YJL&;3Aki zTNP)YGb+(RMM^Gc-v4Ykw_O4MA8KIozx%Wc!ygHs6kOKci_6H!>$--C3Mb^m)IcKv z2+(eA-b_H9nwW22R-oGB*)M%fR220QkS8pf#EakA6-~V-p2oIB8jTQs!n(F-;=)r+ zCss-Yz%_*mAtH&jhLwe-6|jav1vsB)c^fc+SqB5(LSHNn2nVwg>?=4t{5`Np&+2U~ z0~bcy _3PLdH8a}o19l7?_0cepWM3C1stMtP+6S>1g5rzHb$IjQ?i;c< z @UU6E5wlvHD!$Hk`KulAD= z{6#(rtN#@yByZ0+j94sxYr=exquRgIkZ$~3_I*5^q0dsNL@$E`O^_Wl4^ltC0aQcy z^pi?Z#@CDG{RWd7>{tMKOw6mrnRX%_qwaiOJ~3L`eJ_P!X*`ai`~zhu`j;Q|8VuI3 zFzKw)N!=zYaCG0kmseEMbFQ6feA;z%YD4<_jQ8QR2R3YCOMBMjEi9IoWw1AW`?aA8 zhTr#RFD?BNxA68yrHeN!14d`K3a?7`w|UgYNQS)T?~mOY2o(yQnG1v+gh$%;lPjb; zLg2GHF_;mq_J|MM;8HAxV*V#!hJpv6Cwb<58nKEHFoq5+;8X?>7Xuayt(=zKey_9h zG!}p}MvJ^E>deF4P#MAITQPwlCx}@TFM!^~N}YLM&gEl@Cp6&^6CF(+I^OgO(-y=~ zFi+q(AZ=lXx&X?SR dX&q&t 3}7sBvAS $Q7MY5>$j{wio~ z)Ix&z6_GMQbGcf+akF9=;J12Z-$YK zA85*eB~+JzCWObZo>c_93%4kGdxDk-oo{n?=S*^65fXT+tEz~ezg0;F%7e@36K=fe zddg$$#^vQr=rSSR9}E`_Rn^E}k0~uLE&5kOzz@v}P8gaJ0f_Kkn(H@td@5+x4*y1Y zFOyQUfTc<;gmM77u(KyIM&>X>T;-M^Y#=ufno@$X4+ICoh*7A>>0qW1_Yu`08onYD z?nbv&ZrhixC061gb;SRpVF3tHAu5YwXX^btUZ57D89<#o;GWgr|GOH02kOhA2LP3D zyO6Ll#DKL7v+QL~RYa{1^%{Tyetj_!7IB f2m*q} z#J55AKV0MshzZ>>q}5sM&OtRJg&m6$WB8RwxhV3)Jwi7_cp#%>>8V~X{^@bg0WPE+ zVGB^GP~}NFjrR=Uj4Y=s;dC2lYm@DgttPLf?i{II9af#N57(`#tE~;~p6zg?L;{Eu zl(nVyGPx_QH;ta&)%zuggq+IOzyRy5j)?HIK>(UU#k915>S85*y}TQnTrmd)b|?41 zGZEBJhbtz#=c{wgtsUJ&X+fCDInE4e@Z{jj411FFRFAin-KcW;7)+848_!%Cij`Mn z)Z4S7ZJy_O8vx{x1(O00N_0LZziZ 2<|& zBSr1h?8f{ObxnOKcZesbtaIJ^^}=s!agj5_EiRyvh`HsVP7^ojV89mM_dm*aTwD#H z1O>;?CWM2-A=f1M*6>@1aMyOas!Wf`WlHDm$2N&=Yhh;80f9nn<$D`I^c=0}_eeQ2 zm7)p*cN&kUZ)|^yth4#!6GYL9-I*2&WRn4GiyJ^wpMbt!51+A1Ha5+oq (vQ z>XvL+J*g`xNp;bygg)D0!|2=SEHe&S=btGADd;=Oq+BO*ZM<4 5shQ|yM|v3* zW`FD570-?*irvPMiatxw=Te5^^;WG6U}I%<^;RVA$Xt7Vp&JDbI*=KPlJnF43w zYH2L)@Ks~+ImB`S%IQi*dID2{f8)(y2D!0kL?&Dz3Bd5k5wa=fpe+J-v;u|~yv<*> zIKHMHv50UXtxq;Rz!s49n>G?Fil`$b1X7`p@@y3<`AZf j zN?wvN8F8A#B4(t>0jQu<3}UGxxH t<{sK;DN)gutiRe#1NA5B(3)#3x{I2*GA}wrHb! zTt+-G4;X&=wF6<^mf;(tDGdz`SUI?xS$MlGFmcd}TF^&;GGm=To<_Y*%eL0eKmKx5 zObAPQFlFNFd!JML!#Gm2EnBtSZ PnSjATQYw#_R6m&rI^>_^YeF22HzCU zyvqDp%F1#}_{;0BEysU1F5V(3A#8>nFP~~0Q1+n+=-Ze5W;t^Bk#%F&0ya-QC~{HS zxHWTXHW!d8 t|P}JsgkfIQg zlmWP}+Ea#^i;M>hTn*_~J>&T_2Gq{Y2z|(nmsv{pB#t010Ma7MCSr7R=;{LPN-YWd zMno*c-U{bO3jEo`#e{^&DuMw&38qe(8l&9U-URmJux0&dNoW)&ek2S%vVjqD61%z} z<+nS>X}m7QhB(QTCpw|iFi_i&Wm>7aagTux0^pH?r)=GI7U9e}L?=ihop2FE0w5kO zq0P+LF9QTEVat9Dd_Z^tK)?t98mc`?eFed94$BxKf?Gk|`|B4^fJK4A`XDk9+ R5+{{$W*IiID78Mrq6AqrDigX?PPxWI zR#q|7S@;=*{K6&Ba5kB)zzQXqGt!X?C{o{Dxw!$@UHA!8DWMaVikQ#Le23{MKO@&c zKnvw?)Xvl3PF820oM{qc^)JE`1%Z|WKr?|T2GooM$O5vys(K`)ikOWzkP3DOx cVv5lG> >x-^a c`*cz?$6blrN1Pvw3+Nt1Y&-~CC^0V^ zu|EK2iUOV&lM+Hj$Cn2&UDfrHD*Rg2S7d_9h>#FT_>)Yfz^X<3^PAB|kVgfSo&Wm9 z5sD@Dnerjp0+T>CMG?OUQWXexf?feINz`N5?z;f8(T))I_=GwSLV{ &kq=Kms%f3N!-T!9o|-0Z|&2hwV LYRr(5GDO8RbabL)Gs%}R@r~$+U*ZT`^hT2c^GS)#05wg9y?{R z0L@@Jcx306O$jPr{Tcoaa=?2qzRLNA$z&!I{hk RCyjF>e-!K7ST@{0~@b~5Om;&%%bW$ o z&T91yR2E)|(EV3Z@I=^%0}3FyfD%ts6mU;5 &kLc9m8Yg>zkH7{kDf}B0-fURTxr!BJQ}Ls18a^J7UL-6dt67 zyvI-@d8(>EqFAT|Y-z-TXHpVjEtq<5f)??NRL-cKU+_C3H`Z#(bdn_B6(%)r-dKe4 zpdBdF0p^i2eePz05#m qE8@D&f<0L@pCJ}hX} zRptlLi#O2@kr!!VT+)$!0ly%6=%5xH6}1Nt4Kp;N {M990xUB`WpG}xX( zyl%J`I@x{LVZ*FsguS^Al`H$bKf|9C_a65TmO_l0crRC&_%x#QOkLp`TVOX4Itif( zFe^hMB3uX~K#5}+I@&y+ScteIzzinx=cWvcH7-Zg{@3Jpj}AXKcQ;V#&&wYB)UqJp z?4sI37l3z}V3Eo^Q??uVXu>XndodH{rZRlYQYJ`D5J!C>HAk|R4Z4?U85t;tA%dW2 z^J4GD!US4GFt6VkEw$niS^Xg90_idrbFjjTRp_$0a8AX>T@k}0RRWHK&$zz@*=Y=2 z>_Y$tYetTaoELW|x-S4TV>uWf> _)bC4B+vro&uH#lY`oh9%N}ujdj}-UI zjccm`Gt9KLwHL}42%aY$4^Ri2Z9y%8_)VWbM3NRed`R}fFO%=s(!v~t3R&>sC0Ri$ zta3yfG%H_fs~-j39`8moxB)2%RRQmFs;hb#8WFSq1(MT~m9Hm79ULrNG)~^bS%g(s zUk0F^q%?0A@z%N}4+(Zcvk=jjz@%p?MUqgR-VcUsERHe)5yWntyu7i$^8HRli HG?kSlNjFL`qB7`bi*K^YK*9D)YD_o?kJgMh;e&2Xd95n?dCyRfQa` zfZpUEp&;laj#IYAkEXvgOy=R#vv+%gdvhE1f%&dU*ZBwc4I`6RB-u1EV*o%iR??{{ zXtkc1-v=(t0a*j*w({5y3Ct#6R;qDhDW0qn-OHKoPrSm04{u9YsnOj*N>#M_6asH_ zokRdea}mmV?q}ESr+z?9_3%3xY)JC&H%050bGTCm-_0HphqaYe3{GPMTbGq5%NmDZ zVNSYWM|!A;mg$yBV5i}O)y!<}kl2eF=uHXWLU9U9kE@Wtc^!qgQAh BupR| zC^l-YxJ9w2{$?y i z2PsV7Rua&EYn5r+M(4#c1F`QSOeD6-K}8^i7CJSL+Qh^JAvQ2jxE*wZx7z02v0Oy* z>@LU}u{C{i{d$fgtI=Y%5(^v=u zg6{7G5?BP<97cyD9884uOnv-wbYPpNhl>DxBRgXcA@BU#vx`T1(ZZe~g}FfqCgB*7 zSwCgqv^9imLYKo798TW+uI88vw+)b}5nzV%V~ImuKi&W!Mn3CKX;Y%!Q{d(}Y*5A8 zSqX%{%7PF>n(NS>cpTNxp>Jr$qJ%xK9jM6anhfOpIZzc_ctNda4j!lfxFQ|32QZuX zt;}qFet50OsbVhKpig2*iT(pVgrYivECkL*AzSfqw1iPMvGCZ$%?l9 ^JaWv*52Ml%#rF3KNa*_y%m_Xtvgo#5`UWBX=$3Bfz8`%;FPz<4iI2CUS0fP%b zWMIU2b{U9JsHpgR9PEOSj>#P2TJUFKVbQoPvx75`P3tGYFTli{xHGU8oaFKe&6@NF z)Zo*2;Bf7VTGyYvHiftnl9QqW0x~!tj!~xLB57{WQ-OWk!B- >PtGPX0!0B8CB+#8_KV*Wkk jru}aLwr(`R0U7Qd2#>guL=2Tx!%)#EnUrC;f*vmp5$!~zoyb*VU{dWi- zVEE8 lv&30Ihd%ZNm}_eGv`&Y=HOVuQhzi%WzU+X2aN9*CR6d9cjj zt`Vd@7WTfx)0oKmZtjDMJMUKA&^OMu6_BrrUQV?*ax|O&J^R#5_7!Q(vj$V5&B~0i z#ZTVO7)xHYN)qILmnmXx$>-1bdZO`GkntBBciFY;CPr5M6Ia%{Um| 2sNzon0!vwd6_xySpqVz=@ zn*!-S64KxztypFRkz3~So?cmydb%WmPHsb_orwY@=7DgsTAPy-cF2=}10MM_N_E%Z zDep_c&W%ifv6-pF%0irf1a4h3&@VV_5#AY{0$=d1h=M|nfymx^YbR+2G=E%&DTc)R zFzKi8CxEpexSg-xM@#l~Kt5RX({fr7;`UlLWLWrs{Ba-LZ+Cj2sAkJQegs3VAF$$f zL2Qk3uyx+JRXa6Y@fT&O?F4ymPX-Hs-KXg+d~raji=2`2cTT<)k$B1`b@s!rtp57V zofD};hr$wZYn8T2yh)pj=sXg+uUc(vynbUS!TguV$|I8Q8?L|Jn9?UDx^zVdA*@%| z?-o6;T;<*MBfEzV#CH9k*mZ6PghWS25Ao?;;`n;kRzLSd;BY|1i_F7!hn>nY7lMK! zMHGImK502}2>J?Qu1a(uIQp~Zze-f==GuO(Wz_CoD>F^@Nkg|6k~Livl0DK3LHta1 zwDwx(djHRh4eeXSeUC-%ZyEgK*c>;vq_O93;dK?Cf&d=rWWe-O$BKTl3|D!!N>5p5 zK^M@7=9$k*toC0fuKx3f2>;I^EC2YsCMEnIJDT~w*;DPRwB38f6Z!_({DxwJbD 88)`^9chqm@Jtz$KyAXPeI>hCz%rqLKrLkUdok=a5tLhC@XhlBMXV zs3?R I@BVu zoJNuZ#YXI*8e8&lVaZQ3o{vMAfrm&49ofBsWD^|)85^9ATZI~0TkDPUE2`TIp+Ui` zdJS>C32#-lMi3?dp3RZ%CFCfWlBKB(q0gv>G?|9_gBS0`$9Dj_tfL@XEzRoB5&_={ zDv2)>`ntgqCl~=agetq2Y^ppyP(IOHE&S*uUc6UAZ%|zisi$Ca>aYxWwYq%cit0^X zl3_tMJhv*8IUBwwfd~jTnb?YervtW56myL1wer-dd<3d4#%0?qCdlt7+RhnBPN8ei z#bXkB_-N~@a=;nsb00VPzl8pvJ>5)HC!`>> j4u`1s$@x(c4QpiHhr2kHTzkIY1!dwahUewPQ3RSxz*qJ@)v z4`AUCaK %P6S}}XDNk~hy zU`2`p;1o6SMruH>x5mn4c)uQ_RCiy2)IGLiqZi81O`_fe6*a6!^~Ysh3Nlt=DR}^^ zOUioFF#Y!{V%v