1
0
mirror of https://github.com/msberends/AMR.git synced 2025-09-06 04:09:39 +02:00

styled, unit test fix

This commit is contained in:
2022-08-28 10:31:50 +02:00
parent 4cb1db4554
commit 4d050aef7c
147 changed files with 10897 additions and 8169 deletions

View File

@@ -9,7 +9,7 @@
# (c) 2018-2022 Berends MS, Luz CF et al. #
# Developed at the University of Groningen, the Netherlands, in #
# collaboration with non-profit organisations Certe Medical #
# Diagnostics & Advice, and University Medical Center Groningen. #
# Diagnostics & Advice, and University Medical Center Groningen. #
# #
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
@@ -35,15 +35,15 @@
#' @param antifungal names of antifungal agents for **fungi**, case-insensitive. Set to `NULL` to ignore. See *Details* for the default agents.
#' @param only_rsi_columns a [logical] to indicate whether only columns must be included that were transformed to class `<rsi>` (see [as.rsi()]) on beforehand (defaults to `FALSE`)
#' @param ... ignored, only in place to allow future extensions
#' @details
#' @details
#' The [key_antimicrobials()] and [all_antimicrobials()] functions are context-aware. This means that the `x` argument can be left blank if used inside a [data.frame] call, see *Examples*.
#'
#'
#' The function [key_antimicrobials()] returns a [character] vector with 12 antimicrobial results for every isolate. The function [all_antimicrobials()] returns a [character] vector with all antimicrobial results for every isolate. These vectors can then be compared using [antimicrobials_equal()], to check if two isolates have generally the same antibiogram. Missing and invalid values are replaced with a dot (`"."`) by [key_antimicrobials()] and ignored by [antimicrobials_equal()].
#'
#'
#' Please see the [first_isolate()] function how these important functions enable the 'phenotype-based' method for determination of first isolates.
#'
#' The default antimicrobial agents used for **all rows** (set in `universal`) are:
#'
#'
#' - Ampicillin
#' - Amoxicillin/clavulanic acid
#' - Cefuroxime
@@ -52,7 +52,7 @@
#' - Trimethoprim/sulfamethoxazole
#'
#' The default antimicrobial agents used for **Gram-negative bacteria** (set in `gram_negative`) are:
#'
#'
#' - Cefotaxime
#' - Ceftazidime
#' - Colistin
@@ -61,17 +61,17 @@
#' - Tobramycin
#'
#' The default antimicrobial agents used for **Gram-positive bacteria** (set in `gram_positive`) are:
#'
#'
#' - Erythromycin
#' - Oxacillin
#' - Rifampin
#' - Teicoplanin
#' - Tetracycline
#' - Vancomycin
#'
#'
#'
#'
#' The default antimicrobial agents used for **fungi** (set in `antifungal`) are:
#'
#'
#' - Anidulafungin
#' - Caspofungin
#' - Fluconazole
@@ -84,7 +84,7 @@
#' @examples
#' # `example_isolates` is a data set available in the AMR package.
#' # See ?example_isolates.
#'
#'
#' # output of the `key_antimicrobials()` function could be like this:
#' strainA <- "SSSRR.S.R..S"
#' strainB <- "SSSIRSSSRSSS"
@@ -107,7 +107,7 @@
#' # and first WEIGHTED isolates
#' first_weighted = first_isolate(col_keyantimicrobials = "keyab")
#' )
#'
#'
#' # Check the difference in this data set, 'weighted' results in more isolates:
#' sum(my_patients$first_regular, na.rm = TRUE)
#' sum(my_patients$first_weighted, na.rm = TRUE)
@@ -115,14 +115,22 @@
#' }
key_antimicrobials <- function(x = NULL,
col_mo = NULL,
universal = c("ampicillin", "amoxicillin/clavulanic acid", "cefuroxime",
"piperacillin/tazobactam", "ciprofloxacin", "trimethoprim/sulfamethoxazole"),
gram_negative = c("gentamicin", "tobramycin", "colistin",
"cefotaxime", "ceftazidime", "meropenem"),
gram_positive = c("vancomycin", "teicoplanin", "tetracycline",
"erythromycin", "oxacillin", "rifampin"),
antifungal = c("anidulafungin", "caspofungin", "fluconazole",
"miconazole", "nystatin", "voriconazole"),
universal = c(
"ampicillin", "amoxicillin/clavulanic acid", "cefuroxime",
"piperacillin/tazobactam", "ciprofloxacin", "trimethoprim/sulfamethoxazole"
),
gram_negative = c(
"gentamicin", "tobramycin", "colistin",
"cefotaxime", "ceftazidime", "meropenem"
),
gram_positive = c(
"vancomycin", "teicoplanin", "tetracycline",
"erythromycin", "oxacillin", "rifampin"
),
antifungal = c(
"anidulafungin", "caspofungin", "fluconazole",
"miconazole", "nystatin", "voriconazole"
),
only_rsi_columns = FALSE,
...) {
if (is_null_or_grouped_tbl(x)) {
@@ -137,11 +145,11 @@ key_antimicrobials <- function(x = NULL,
meet_criteria(gram_positive, allow_class = "character", allow_NULL = TRUE)
meet_criteria(antifungal, allow_class = "character", allow_NULL = TRUE)
meet_criteria(only_rsi_columns, allow_class = "logical", has_length = 1)
# force regular data.frame, not a tibble or data.table
x <- as.data.frame(x, stringsAsFactors = FALSE)
cols <- get_column_abx(x, info = FALSE, only_rsi_columns = only_rsi_columns, fn = "key_antimicrobials")
# try to find columns based on type
# -- mo
if (is.null(col_mo)) {
@@ -156,68 +164,79 @@ key_antimicrobials <- function(x = NULL,
gramstain <- mo_gramstain(x.mo, language = NULL)
kingdom <- mo_kingdom(x.mo, language = NULL)
}
AMR_string <- function(x, values, name, filter, cols = cols) {
if (is.null(values)) {
return(rep(NA_character_, length(which(filter))))
}
values_old_length <- length(values)
values <- as.ab(values, flag_multiple_results = FALSE, info = FALSE)
values <- cols[names(cols) %in% values]
values_new_length <- length(values)
if (values_new_length < values_old_length &
any(filter, na.rm = TRUE) &
message_not_thrown_before("key_antimicrobials", name)) {
warning_("in `key_antimicrobials()`: ",
ifelse(values_new_length == 0,
"No columns available ",
paste0("Only using ", values_new_length, " out of ", values_old_length, " defined columns ")),
"as key antimicrobials for ", name, "s. See ?key_antimicrobials.")
any(filter, na.rm = TRUE) &
message_not_thrown_before("key_antimicrobials", name)) {
warning_(
"in `key_antimicrobials()`: ",
ifelse(values_new_length == 0,
"No columns available ",
paste0("Only using ", values_new_length, " out of ", values_old_length, " defined columns ")
),
"as key antimicrobials for ", name, "s. See ?key_antimicrobials."
)
}
generate_antimcrobials_string(x[which(filter), c(universal, values), drop = FALSE])
}
if (is.null(universal)) {
universal <- character(0)
} else {
universal <- as.ab(universal, flag_multiple_results = FALSE, info = FALSE)
universal <- cols[names(cols) %in% universal]
}
key_ab <- rep(NA_character_, nrow(x))
key_ab[which(gramstain == "Gram-negative")] <- AMR_string(x = x,
values = gram_negative,
name = "Gram-negative",
filter = gramstain == "Gram-negative",
cols = cols)
key_ab[which(gramstain == "Gram-positive")] <- AMR_string(x = x,
values = gram_positive,
name = "Gram-positive",
filter = gramstain == "Gram-positive",
cols = cols)
key_ab[which(kingdom == "Fungi")] <- AMR_string(x = x,
values = antifungal,
name = "antifungal",
filter = kingdom == "Fungi",
cols = cols)
key_ab[which(gramstain == "Gram-negative")] <- AMR_string(
x = x,
values = gram_negative,
name = "Gram-negative",
filter = gramstain == "Gram-negative",
cols = cols
)
key_ab[which(gramstain == "Gram-positive")] <- AMR_string(
x = x,
values = gram_positive,
name = "Gram-positive",
filter = gramstain == "Gram-positive",
cols = cols
)
key_ab[which(kingdom == "Fungi")] <- AMR_string(
x = x,
values = antifungal,
name = "antifungal",
filter = kingdom == "Fungi",
cols = cols
)
# back-up - only use `universal`
key_ab[which(is.na(key_ab))] <- AMR_string(x = x,
values = character(0),
name = "",
filter = is.na(key_ab),
cols = cols)
key_ab[which(is.na(key_ab))] <- AMR_string(
x = x,
values = character(0),
name = "",
filter = is.na(key_ab),
cols = cols
)
if (length(unique(key_ab)) == 1) {
warning_("in `key_antimicrobials()`: no distinct key antibiotics determined.")
}
key_ab
}
@@ -233,13 +252,15 @@ all_antimicrobials <- function(x = NULL,
}
meet_criteria(x, allow_class = "data.frame") # also checks dimensions to be >0
meet_criteria(only_rsi_columns, allow_class = "logical", has_length = 1)
# force regular data.frame, not a tibble or data.table
x <- as.data.frame(x, stringsAsFactors = FALSE)
cols <- get_column_abx(x, only_rsi_columns = only_rsi_columns, info = FALSE,
sort = FALSE, fn = "all_antimicrobials")
generate_antimcrobials_string(x[ , cols, drop = FALSE])
cols <- get_column_abx(x,
only_rsi_columns = only_rsi_columns, info = FALSE,
sort = FALSE, fn = "all_antimicrobials"
)
generate_antimcrobials_string(x[, cols, drop = FALSE])
}
generate_antimcrobials_string <- function(df) {
@@ -249,26 +270,32 @@ generate_antimcrobials_string <- function(df) {
if (NROW(df) == 0) {
return(character(0))
}
tryCatch({
do.call(paste0,
lapply(as.list(df),
function(x) {
x <- toupper(as.character(x))
x[!x %in% c("R", "S", "I")] <- "."
paste(x)
}))
},
error = function(e) rep(strrep(".", NCOL(df)), NROW(df)))
tryCatch(
{
do.call(
paste0,
lapply(
as.list(df),
function(x) {
x <- toupper(as.character(x))
x[!x %in% c("R", "S", "I")] <- "."
paste(x)
}
)
)
},
error = function(e) rep(strrep(".", NCOL(df)), NROW(df))
)
}
#' @rdname key_antimicrobials
#' @export
antimicrobials_equal <- function(y,
z,
type = c("points", "keyantimicrobials"),
ignore_I = TRUE,
points_threshold = 2,
...) {
z,
type = c("points", "keyantimicrobials"),
ignore_I = TRUE,
points_threshold = 2,
...) {
meet_criteria(y, allow_class = "character")
meet_criteria(z, allow_class = "character")
stop_if(missing(type), "argument \"type\" is missing, with no default")
@@ -289,10 +316,10 @@ antimicrobials_equal <- function(y,
uniq <- unique(c(y, z))
uniq_list <- lapply(uniq, key2rsi)
names(uniq_list) <- uniq
y <- uniq_list[match(y, names(uniq_list))]
z <- uniq_list[match(z, names(uniq_list))]
determine_equality <- function(a, b, type, points_threshold, ignore_I) {
if (length(a) != length(b)) {
# incomparable, so not equal
@@ -302,7 +329,7 @@ antimicrobials_equal <- function(y,
NA_ind <- which(is.na(a) | is.na(b))
a[NA_ind] <- NA_real_
b[NA_ind] <- NA_real_
if (type == "points") {
# count points for every single character:
# - no change is 0 points
@@ -320,14 +347,18 @@ antimicrobials_equal <- function(y,
all(a == b, na.rm = TRUE)
}
}
out <- unlist(mapply(FUN = determine_equality,
y,
z,
MoreArgs = list(type = type,
points_threshold = points_threshold,
ignore_I = ignore_I),
SIMPLIFY = FALSE,
USE.NAMES = FALSE))
out <- unlist(mapply(
FUN = determine_equality,
y,
z,
MoreArgs = list(
type = type,
points_threshold = points_threshold,
ignore_I = ignore_I
),
SIMPLIFY = FALSE,
USE.NAMES = FALSE
))
out[is.na(y) | is.na(z)] <- NA
out
}