mirror of
https://github.com/msberends/AMR.git
synced 2025-07-10 17:01:52 +02:00
styled, unit test fix
This commit is contained in:
68
R/pca.R
68
R/pca.R
@ -9,7 +9,7 @@
|
||||
# (c) 2018-2022 Berends MS, Luz CF et al. #
|
||||
# Developed at the University of Groningen, the Netherlands, in #
|
||||
# collaboration with non-profit organisations Certe Medical #
|
||||
# Diagnostics & Advice, and University Medical Center Groningen. #
|
||||
# Diagnostics & Advice, and University Medical Center Groningen. #
|
||||
# #
|
||||
# This R package is free software; you can freely use and distribute #
|
||||
# it for both personal and commercial purposes under the terms of the #
|
||||
@ -24,42 +24,44 @@
|
||||
# ==================================================================== #
|
||||
|
||||
#' Principal Component Analysis (for AMR)
|
||||
#'
|
||||
#'
|
||||
#' Performs a principal component analysis (PCA) based on a data set with automatic determination for afterwards plotting the groups and labels, and automatic filtering on only suitable (i.e. non-empty and numeric) variables.
|
||||
#' @param x a [data.frame] containing [numeric] columns
|
||||
#' @param ... columns of `x` to be selected for PCA, can be unquoted since it supports quasiquotation.
|
||||
#' @inheritParams stats::prcomp
|
||||
#' @details The [pca()] function takes a [data.frame] as input and performs the actual PCA with the \R function [prcomp()].
|
||||
#'
|
||||
#'
|
||||
#' The result of the [pca()] function is a [prcomp] object, with an additional attribute `non_numeric_cols` which is a vector with the column names of all columns that do not contain [numeric] values. These are probably the groups and labels, and will be used by [ggplot_pca()].
|
||||
#' @return An object of classes [pca] and [prcomp]
|
||||
#' @importFrom stats prcomp
|
||||
#' @export
|
||||
#' @examples
|
||||
#' @examples
|
||||
#' # `example_isolates` is a data set available in the AMR package.
|
||||
#' # See ?example_isolates.
|
||||
#'
|
||||
#' \donttest{
|
||||
#' if (require("dplyr")) {
|
||||
#' # calculate the resistance per group first
|
||||
#' resistance_data <- example_isolates %>%
|
||||
#' group_by(order = mo_order(mo), # group on anything, like order
|
||||
#' genus = mo_genus(mo)) %>% # and genus as we do here;
|
||||
#' filter(n() >= 30) %>% # filter on only 30 results per group
|
||||
#' summarise_if(is.rsi, resistance) # then get resistance of all drugs
|
||||
#'
|
||||
#' # calculate the resistance per group first
|
||||
#' resistance_data <- example_isolates %>%
|
||||
#' group_by(
|
||||
#' order = mo_order(mo), # group on anything, like order
|
||||
#' genus = mo_genus(mo)
|
||||
#' ) %>% # and genus as we do here;
|
||||
#' filter(n() >= 30) %>% # filter on only 30 results per group
|
||||
#' summarise_if(is.rsi, resistance) # then get resistance of all drugs
|
||||
#'
|
||||
#' # now conduct PCA for certain antimicrobial agents
|
||||
#' pca_result <- resistance_data %>%
|
||||
#' pca(AMC, CXM, CTX, CAZ, GEN, TOB, TMP, SXT)
|
||||
#'
|
||||
#' pca_result <- resistance_data %>%
|
||||
#' pca(AMC, CXM, CTX, CAZ, GEN, TOB, TMP, SXT)
|
||||
#'
|
||||
#' pca_result
|
||||
#' summary(pca_result)
|
||||
#'
|
||||
#'
|
||||
#' # old base R plotting method:
|
||||
#' biplot(pca_result)
|
||||
#' # new ggplot2 plotting method using this package:
|
||||
#' ggplot_pca(pca_result)
|
||||
#'
|
||||
#'
|
||||
#' if (require("ggplot2")) {
|
||||
#' ggplot_pca(pca_result) +
|
||||
#' scale_colour_viridis_d() +
|
||||
@ -70,7 +72,7 @@
|
||||
pca <- function(x,
|
||||
...,
|
||||
retx = TRUE,
|
||||
center = TRUE,
|
||||
center = TRUE,
|
||||
scale. = TRUE,
|
||||
tol = NULL,
|
||||
rank. = NULL) {
|
||||
@ -80,19 +82,20 @@ pca <- function(x,
|
||||
meet_criteria(scale., allow_class = "logical", has_length = 1)
|
||||
meet_criteria(tol, allow_class = "numeric", has_length = 1, allow_NULL = TRUE)
|
||||
meet_criteria(rank., allow_class = "numeric", has_length = 1, allow_NULL = TRUE)
|
||||
|
||||
|
||||
# unset data.table, tibble, etc.
|
||||
# also removes groups made by dplyr::group_by
|
||||
x <- as.data.frame(x, stringsAsFactors = FALSE)
|
||||
x.bak <- x
|
||||
|
||||
|
||||
# defuse R expressions, this replaces rlang::enquos()
|
||||
dots <- substitute(list(...))
|
||||
if (length(dots) > 1) {
|
||||
new_list <- list(0)
|
||||
for (i in seq_len(length(dots) - 1)) {
|
||||
new_list[[i]] <- tryCatch(eval(dots[[i + 1]], envir = x),
|
||||
error = function(e) stop(e$message, call. = FALSE))
|
||||
error = function(e) stop(e$message, call. = FALSE)
|
||||
)
|
||||
if (length(new_list[[i]]) == 1) {
|
||||
if (is.character(new_list[[i]]) & new_list[[i]] %in% colnames(x)) {
|
||||
# this is to support quoted variables: df %pm>% pca("mycol1", "mycol2")
|
||||
@ -103,30 +106,33 @@ pca <- function(x,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
x <- as.data.frame(new_list, stringsAsFactors = FALSE)
|
||||
if (any(vapply(FUN.VALUE = logical(1), x, function(y) !is.numeric(y)))) {
|
||||
warning_("in `pca()`: be sure to first calculate the resistance (or susceptibility) of variables with antimicrobial test results, since PCA works with numeric variables only. See Examples in ?pca.", call = FALSE)
|
||||
}
|
||||
|
||||
|
||||
# set column names
|
||||
tryCatch(colnames(x) <- as.character(dots)[2:length(dots)],
|
||||
error = function(e) warning("column names could not be set"))
|
||||
|
||||
error = function(e) warning("column names could not be set")
|
||||
)
|
||||
|
||||
# keep only numeric columns
|
||||
x <- x[, vapply(FUN.VALUE = logical(1), x, function(y) is.numeric(y)), drop = FALSE]
|
||||
# bind the data set with the non-numeric columns
|
||||
x <- cbind(x.bak[, vapply(FUN.VALUE = logical(1), x.bak, function(y) !is.numeric(y) & !all(is.na(y))), drop = FALSE], x)
|
||||
}
|
||||
|
||||
x <- pm_ungroup(x) # would otherwise select the grouping vars
|
||||
|
||||
x <- pm_ungroup(x) # would otherwise select the grouping vars
|
||||
x <- x[rowSums(is.na(x)) == 0, ] # remove columns containing NAs
|
||||
|
||||
|
||||
pca_data <- x[, which(vapply(FUN.VALUE = logical(1), x, function(x) is.numeric(x))), drop = FALSE]
|
||||
|
||||
message_("Columns selected for PCA: ", vector_and(font_bold(colnames(pca_data), collapse = NULL), quotes = TRUE),
|
||||
". Total observations available: ", nrow(pca_data), ".")
|
||||
|
||||
|
||||
message_(
|
||||
"Columns selected for PCA: ", vector_and(font_bold(colnames(pca_data), collapse = NULL), quotes = TRUE),
|
||||
". Total observations available: ", nrow(pca_data), "."
|
||||
)
|
||||
|
||||
if (getRversion() < "3.4.0") {
|
||||
# stats::prcomp prior to 3.4.0 does not have the 'rank.' argument
|
||||
pca_model <- prcomp(pca_data, retx = retx, center = center, scale. = scale., tol = tol)
|
||||
|
Reference in New Issue
Block a user