The AMR package for R is an incredible tool for
-antimicrobial resistance (AMR) data analysis, providing extensive
-functionality for working with microbial and antimicrobial properties.
-But what if you’re working in Python and still want to benefit from the
-robust features of AMR?
-
The best way is to access R directly from Python with the help of
-rpy2, a simple yet powerful Python package. You can easily
-call functions from the AMR package to process your own
-data in your own Python environment. This post will guide you through
-setting up rpy2 and show you how to use R functions from
-AMR in Python to supercharge your antimicrobial resistance
-analysis.
-
-
-
What is rpy2?
-
-
rpy2 is a Python library that allows Python users to run
-R code within their Python scripts. Essentially, it acts as a bridge
-between the two languages, allowing you to tap into the rich ecosystem
-of R libraries (like AMR) while maintaining the flexibility
-of Python.
+
The AMR package for R is a powerful tool for
+antimicrobial resistance (AMR) analysis. It provides extensive features
+for handling microbial and antimicrobial data. However, for those who
+work primarily in Python, we now have a more intuitive option available:
+the AMR Python package, which uses rpy2
+internally. This package allows Python users to access all the functions
+from the R AMR package without the need to set up
+rpy2 themselves. Since this Python package is not a true
+‘port’ (which would require all R functions to be rewritten into
+Python), R and the AMR R package are still required to be installed.
+Yet, Python users can now easily work with AMR data directly through
+Python code.
+
In this document, we explain how this works and provide simple
+examples of using the AMR Python package.
-
Key Features of rpy2:
+
How It Works
+
The AMR Python package acts as a wrapper around the
+functions in the AMR R package. The package simplifies the
+process of calling R functions in Python, eliminating the need to
+manually manage the rpy2 setup, which Python uses
+internally to be able to work with the R package. By just using
+import AMR, Python users can directly use the functions
+from the AMR R package as if they were native Python
+functions.
+
Internally, rpy2 is still being used, but all complexity
+is hidden from the user. This approach keeps the Python code clean and
+Pythonic, while still leveraging the full power of the R
+AMR package.
+
+
+
Example of Usage
+
+
Here’s an example that demonstrates how to clean microorganism and
+drug names using the AMR Python package:
+
import pandas as pd
+import AMR
+
+# Sample data
+data = {
+"MOs": ['E. coli', 'ESCCOL', 'esco', 'Esche coli'],
+"Drug": ['Cipro', 'CIP', 'J01MA02', 'Ciproxin']
+}
+df = pd.DataFrame(data)
+
+# Use AMR functions to clean microorganism and drug names
+df['MO_clean'] = AMR.mo_name(df['MOs'])
+df['Drug_clean'] = AMR.ab_name(df['Drug'])
+
+# Display the results
+print(df)
+
+
+
MOs
+
Drug
+
MO_clean
+
Drug_clean
+
+
+
+
E. coli
+
Cipro
+
Escherichia coli
+
Ciprofloxacin
+
+
+
ESCCOL
+
CIP
+
Escherichia coli
+
Ciprofloxacin
+
+
+
esco
+
J01MA02
+
Escherichia coli
+
Ciprofloxacin
+
+
+
Esche coli
+
Ciproxin
+
Escherichia coli
+
Ciprofloxacin
+
+
+
+
+
Explanation
+
-
Seamlessly call R functions from Python.
-
Convert R data structures into Python data structures like pandas
-DataFrames.
-
Leverage the full power of R libraries without leaving your Python
-environment.
+
mo_name: This function standardises
+microorganism names. Here, different variations of Escherichia
+coli (such as “E. coli”, “ESCCOL”, “esco”, and “Esche coli”) are
+all converted into the correct, standardised form, “Escherichia
+coli”.
+
ab_name: Similarly, this function standardises
+antimicrobial names. The different representations of ciprofloxacin
+(e.g., “Cipro”, “CIP”, “J01MA02”, and “Ciproxin”) are all converted to
+the standard name, “Ciprofloxacin”.
+
+
Taxonomic Data Sets Now in Python!
+
+
As a Python user, you might like that the most important data sets of
+the AMR R package, microorganisms,
+antibiotics, clinical_breakpoints, and
+example_isolates, are now available as regular Python data
+frames:
+
AMR.microorganisms
+
+
+
+
+
+
+
+
+
+
+
+
+
mo
+
fullname
+
status
+
kingdom
+
gbif
+
gbif_parent
+
gbif_renamed_to
+
prevalence
+
+
+
+
B_GRAMN
+
(unknown Gram-negatives)
+
unknown
+
Bacteria
+
None
+
None
+
None
+
2.0
+
+
+
B_GRAMP
+
(unknown Gram-positives)
+
unknown
+
Bacteria
+
None
+
None
+
None
+
2.0
+
+
+
B_ANAER-NEG
+
(unknown anaerobic Gram-negatives)
+
unknown
+
Bacteria
+
None
+
None
+
None
+
2.0
+
+
+
B_ANAER-POS
+
(unknown anaerobic Gram-positives)
+
unknown
+
Bacteria
+
None
+
None
+
None
+
2.0
+
+
+
B_ANAER
+
(unknown anaerobic bacteria)
+
unknown
+
Bacteria
+
None
+
None
+
None
+
2.0
+
+
+
…
+
…
+
…
+
…
+
…
+
…
+
…
+
…
+
+
+
B_ZYMMN_POMC
+
Zymomonas pomaceae
+
accepted
+
Bacteria
+
10744418
+
3221412
+
None
+
2.0
+
+
+
B_ZYMPH
+
Zymophilus
+
synonym
+
Bacteria
+
None
+
9475166
+
None
+
2.0
+
+
+
B_ZYMPH_PCVR
+
Zymophilus paucivorans
+
synonym
+
Bacteria
+
None
+
None
+
None
+
2.0
+
+
+
B_ZYMPH_RFFN
+
Zymophilus raffinosivorans
+
synonym
+
Bacteria
+
None
+
None
+
None
+
2.0
+
+
+
F_ZYZYG
+
Zyzygomyces
+
unknown
+
Fungi
+
None
+
7581
+
None
+
2.0
+
+
+
+
AMR.antibiotics
+
+
+
+
+
+
+
+
+
+
+
+
+
ab
+
cid
+
name
+
group
+
oral_ddd
+
oral_units
+
iv_ddd
+
iv_units
+
+
+
+
AMA
+
4649.0
+
4-aminosalicylic acid
+
Antimycobacterials
+
12.00
+
g
+
NaN
+
None
+
+
+
ACM
+
6450012.0
+
Acetylmidecamycin
+
Macrolides/lincosamides
+
NaN
+
None
+
NaN
+
None
+
+
+
ASP
+
49787020.0
+
Acetylspiramycin
+
Macrolides/lincosamides
+
NaN
+
None
+
NaN
+
None
+
+
+
ALS
+
8954.0
+
Aldesulfone sodium
+
Other antibacterials
+
0.33
+
g
+
NaN
+
None
+
+
+
AMK
+
37768.0
+
Amikacin
+
Aminoglycosides
+
NaN
+
None
+
1.0
+
g
+
+
+
…
+
…
+
…
+
…
+
…
+
…
+
…
+
…
+
+
+
VIR
+
11979535.0
+
Virginiamycine
+
Other antibacterials
+
NaN
+
None
+
NaN
+
None
+
+
+
VOR
+
71616.0
+
Voriconazole
+
Antifungals/antimycotics
+
0.40
+
g
+
0.4
+
g
+
+
+
XBR
+
72144.0
+
Xibornol
+
Other antibacterials
+
NaN
+
None
+
NaN
+
None
+
+
+
ZID
+
77846445.0
+
Zidebactam
+
Other antibacterials
+
NaN
+
None
+
NaN
+
None
+
+
+
ZFD
+
NaN
+
Zoliflodacin
+
None
+
NaN
+
None
+
NaN
+
None
+
+
+
+
+
-
Setting Up rpy2
+
Installation
-
Before diving into the examples, you’ll need to install both R and
-rpy2. Here’s a step-by-step guide on setting things up.
-
-
Step 1: Install R
-
-
Ensure that R is installed on your system. R has minimal dependencies
-and is very simple to install:
To install rpy2, simply run the following command in
-your terminal:
-
pip install rpy2
-
-
-
Step 4: Test rpy2 Installation
-
-
To ensure everything is set up correctly, you can test your
-installation by running the following Python script, which essentially
-runs R in the background:
-
import rpy2.robjects as ro
-
-# Test a simple R function from Python
-ro.r('1 + 1')
-
If this returns 2, you’re good to go!
+
+
Install AMR Python Package
+
+
Since the Python package is available on the official Python Package Index, you can
+just run:
+
pip install AMR
Working with AMR in Python
-
Now that we have rpy2 set up, let’s walk through some
-practical examples of using the AMR package within
-Python.
+
Now that we have everything set up, let’s walk through some practical
+examples of using the AMR package within Python.
-
Example 1: Converting Taxonomic Data
+
Example 1: Calculating AMR
-
Let’s start by converting taxonomic user input to valid taxonomy
-using the AMR package, from within Python:
-
import pandas as pd
-import rpy2.robjects as ro
-from rpy2.robjects.packages import importr
-from rpy2.robjects import pandas2ri
-
-# Load the AMR package from R
-amr = importr('AMR')
-
-# Example user dataset in Python
-data = pd.DataFrame({
-'microorganism': ['E. coli', 'S. aureus', 'P. aeruginosa', 'K. pneumoniae']
-})
-
-# Apply mo_name() from the AMR package to the 'microorganism' column
-ro.globalenv['r_data'] = data
-ro.r('r_data$mo_name <- mo_name(r_data$microorganism)')
-
-# Retrieve and print the modified R DataFrame in Python
-result = ro.r('r_data')
-result = pandas2ri.rpy2py(result)
-print(result)
-
In this example, a Python dataset with microorganism names like
-E. coli and S. aureus is passed to the R function
-mo_name(). The result is an updated DataFrame
-that includes the standardised microorganism names based on the
-mo_name() function from the AMR package.
+
import AMR
+import pandas as pd
+
+df = AMR.example_isolates
+result = AMR.resistance(df["AMX"])
+print(result)
+
[0.59555556]
-
Example 2: Generating an Antibiogram
+
Example 2: Generating Antibiograms
One of the core functions of the AMR package is
generating an antibiogram, a table that summarises the antimicrobial
susceptibility of bacterial isolates. Here’s how you can generate an
antibiogram from Python:
-
# Run an antibiogram in R from Python
-ro.r('result <- antibiogram(example_isolates, antibiotics = c(aminoglycosides(), carbapenems()))')
-
-# Retrieve the result in Python
-result = ro.r('as.data.frame(result)')
-print(result)
-
In this example, we generate an antibiogram by selecting
-aminoglycosides and carbapenems, two classes of antibiotics, and then
-convert the resulting R data frame into a Python-readable format.
-
-
-
Example 3: Filtering Data Based on Gram-Negative Bacteria
-
-
Let’s say you want to filter the dataset for Gram-negative bacteria
-and display their resistance to certain antibiotics:
-
# Filter for Gram-negative bacteria with intrinsic resistance to cefotaxime
-ro.r('result <- example_isolates[which(mo_is_gram_negative() & mo_is_intrinsic_resistant(ab = "cefotax")), c("bacteria", aminoglycosides(), carbapenems())]')
-
-# Retrieve the filtered result in Python
-result = ro.r('as.data.frame(result)')
-print(result)
You can easily customise the antibiogram by passing different
-antibiotics or microorganism transformations, as shown below:
-
# Customise the antibiogram with different settings
-ro.r('result <- antibiogram(example_isolates, antibiotics = c("TZP", "TZP+TOB", "TZP+GEN"), mo_transform = "gramstain")')
-
-# Retrieve and print the result
-result = ro.r('as.data.frame(result)')
-print(result)
-
Here, we use piperacillin/tazobactam (TZP) in combination with
-tobramycin (TOB) and gentamicin (GEN) to see how they perform against
-various Gram-negative bacteria.
In this example, we generate an antibiogram by selecting various
+antibiotics.
Conclusion
-
Using rpy2, you can easily integrate the power of R’s
-AMR package into your Python workflows. Whether you are
-generating antibiograms, analyzing resistance data, or performing
-complex filtering, rpy2 gives you the flexibility to run R
-code without leaving the Python environment. This makes it a perfect
-solution for teams working across both R and Python.
+
With the AMR Python package, Python users can now
+effortlessly call R functions from the AMR R package. This
+eliminates the need for complex rpy2 configurations and
+provides a clean, easy-to-use interface for antimicrobial resistance
+analysis. The examples provided above demonstrate how this can be
+applied to typical workflows, such as standardising microorganism and
+antimicrobial names or calculating resistance.
+
By using import AMR, you can seamlessly integrate the
+robust features of the R AMR package into your Python
+workflows. Whether you’re cleaning data or analysing resistance
+patterns, the AMR Python package makes it easy to work with
+AMR data in Python.
This page will be updated shortly, to give explicit examples of how
-to work ideally with the AMR package, for those who are
-used to working in dplyr or other tidyverse packages.
(this beta version will eventually become v3.0. We’re happy to reach a new major milestone soon, which will be all about the new One Health support! Install this beta using the instructions here.)
-
A New Milestone: AMR v3.0 with One Health Support (= Human + Veterinary + Environmental)
+
A New Milestone: AMR v3.0 with One Health Support (= Human + Veterinary + Environmental)
This package now supports not only tools for AMR data analysis in clinical settings, but also for veterinary and environmental microbiology. This was made possible through a collaboration with the University of Prince Edward Island’s Atlantic Veterinary College, Canada. To celebrate this great improvement of the package, we also updated the package logo to reflect this change.
-
Breaking
+
Breaking
Removed all functions and references that used the deprecated rsi class, which were all replaced with their sir equivalents over a year ago
-
New
+
New
One Health implementation
Function as.sir() now has extensive support for veterinary breakpoints from CLSI. Use breakpoint_type = "animal" and set the host argument to a variable that contains animal species names.
@@ -90,12 +90,16 @@
New function rescale_mic(), which allows users to rescale MIC values to a manually set range. This is the powerhouse behind the scale_*_mic() functions, but it can be used independently to, for instance, compare equality in MIC distributions by rescaling them to the same range first.
+Support for Python
+
While using R for the heavy lifting, our ‘AMR’ Python Package was developed to run the AMR R package natively in Python. The Python package will always have the same version number as the R package, as it is built automatically with every code change.
+
+
Other
New function mo_group_members() to retrieve the member microorganisms of a microorganism group. For example, mo_group_members("Strep group C") returns a vector of all microorganisms that belong to that group.
-
Changed
+
Changed
SIR interpretation
It is now possible to use column names for argument ab, mo, and uti: as.sir(..., ab = "column1", mo = "column2", uti = "column3"). This greatly improves the flexibility for users.
Users can now set their own criteria (using regular expressions) as to what should be considered S, I, R, SDD, and NI.
@@ -125,6 +129,7 @@
Sorting of MIC values (using sort()) was fixed in the same manner; <0.001 now gets sorted before 0.001, and >0.001 gets sorted after 0.001.
Intermediate log2 levels used for MIC plotting are now more common values instead of following a strict dilution range
+
Disks of 0 to 5 mm are now allowed, the newly allowed range for disk diffusion (as.disk()) is now between 0 and 50 mm
custom_eucast_rules() now supports multiple antibiotics and antibiotic groups to be affected by a single rule
@@ -147,14 +152,14 @@
Improved algorithm of first_isolate() when using the phenotype-based method, to prioritise records with the highest availability of SIR values
-
Other
+
Other
Greatly improved vctrs integration, a Tidyverse package working in the background for many Tidyverse functions. For users, this means that functions such as dplyr’s bind_rows(), rowwise() and c_across() are now supported for e.g. columns of class mic. Despite this, this AMR package is still zero-dependent on any other package, including dplyr and vctrs.
Greatly updated and expanded documentation
Added Larisse Bolton, Jordan Stull, Matthew Saab, and Javier Sanchez as contributors, to thank them for their valuable input
Stopped support for SAS (.xpt) files, since their file structure and extremely inefficient and requires more disk space than GitHub allows in a single commit.
-
Older Versions
+
Older Versions
This changelog only contains changes from AMR v3.0 (October 2024) and later.
This transforms a vector to a new class disk, which is a disk diffusion growth zone size (around an antibiotic disk) in millimetres between 6 and 50.
+
This transforms a vector to a new class disk, which is a disk diffusion growth zone size (around an antibiotic disk) in millimetres between 0 and 50.
@@ -83,7 +83,7 @@
Details
Interpret disk values as SIR values with as.sir(). It supports guidelines from EUCAST and CLSI.
-
Disk diffusion growth zone sizes must be between 6 and 50 millimetres. Values higher than 50 but lower than 100 will be maximised to 50. All others input values outside the 6-50 range will return NA.
+
Disk diffusion growth zone sizes must be between 0 and 50 millimetres. Values higher than 50 but lower than 100 will be maximised to 50. All others input values outside the 0-50 range will return NA.
NA_disk_ is a missing value of the new disk class.
diff --git a/reference/as.mic.html b/reference/as.mic.html
index c418146a..71aac1a3 100644
--- a/reference/as.mic.html
+++ b/reference/as.mic.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/as.mo.html b/reference/as.mo.html
index b9a0f98b..fda60551 100644
--- a/reference/as.mo.html
+++ b/reference/as.mo.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/as.sir.html b/reference/as.sir.html
index 0e07965e..9b2607ec 100644
--- a/reference/as.sir.html
+++ b/reference/as.sir.html
@@ -21,7 +21,7 @@ All breakpoints used for interpretation are available in our clinical_breakpoint
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
@@ -727,8 +727,8 @@ A microorganism is categorised as "Resistant" when there is a high likelihood of
#>#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with#> all the details of the breakpoint interpretations.
-#> Interpreting MIC values: column 'nitrofuratoin' (NIT, nitrofurantoin),
-#> EUCAST 2024...
+#> Interpreting disk diffusion zones: column 'nitrofuratoin' (NIT,
+#> nitrofurantoin), EUCAST 2024...#> OK #> ℹ Assuming value "urine" in column 'specimen' reflects a urinary tract#> infection.
@@ -736,8 +736,8 @@ A microorganism is categorised as "Resistant" when there is a high likelihood of
#>#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with#> all the details of the breakpoint interpretations.
-#> Interpreting MIC values: column 'nitrofuratoin' (NIT, nitrofurantoin),
-#> EUCAST 2024...
+#> Interpreting disk diffusion zones: column 'nitrofuratoin' (NIT,
+#> nitrofurantoin), EUCAST 2024...#> OK #>#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
@@ -785,16 +785,16 @@ A microorganism is categorised as "Resistant" when there is a high likelihood of
#># A tibble: 57 × 16#> datetime index ab_given mo_given host_given ab mo #>*<dttm><int><chr><chr><chr><ab><mo>
-#> 1 2024-10-10 14:42:40 4 AMX B_STRPT… human AMX B_STRPT_PNMN
-#> 2 2024-10-10 14:42:47 4 genta Escheri… human GEN B_[ORD]_ENTRBCTR
-#> 3 2024-10-10 14:42:47 4 genta Escheri… human GEN B_[ORD]_ENTRBCTR
-#> 4 2024-10-10 14:42:48 4 genta Escheri… cattle GEN B_ESCHR_COLI
-#> 5 2024-10-10 14:42:48 4 genta Escheri… cattle GEN B_ESCHR_COLI
-#> 6 2024-10-10 14:42:40 3 AMX B_STRPT… human AMX B_STRPT_PNMN
-#> 7 2024-10-10 14:42:47 3 tobra Escheri… human TOB B_[ORD]_ENTRBCTR
-#> 8 2024-10-10 14:42:47 3 tobra Escheri… human TOB B_[ORD]_ENTRBCTR
-#> 9 2024-10-10 14:42:48 3 tobra Escheri… horses TOB B_ESCHR_COLI
-#>10 2024-10-10 14:42:48 3 tobra Escheri… horses TOB B_ESCHR_COLI
+#> 1 2024-10-15 15:21:30 4 AMX B_STRPT… human AMX B_STRPT_PNMN
+#> 2 2024-10-15 15:21:37 4 genta Escheri… human GEN B_[ORD]_ENTRBCTR
+#> 3 2024-10-15 15:21:37 4 genta Escheri… human GEN B_[ORD]_ENTRBCTR
+#> 4 2024-10-15 15:21:38 4 genta Escheri… cattle GEN B_ESCHR_COLI
+#> 5 2024-10-15 15:21:38 4 genta Escheri… cattle GEN B_ESCHR_COLI
+#> 6 2024-10-15 15:21:30 3 AMX B_STRPT… human AMX B_STRPT_PNMN
+#> 7 2024-10-15 15:21:37 3 tobra Escheri… human TOB B_[ORD]_ENTRBCTR
+#> 8 2024-10-15 15:21:37 3 tobra Escheri… human TOB B_[ORD]_ENTRBCTR
+#> 9 2024-10-15 15:21:38 3 tobra Escheri… horses TOB B_ESCHR_COLI
+#>10 2024-10-15 15:21:38 3 tobra Escheri… horses TOB B_ESCHR_COLI #># ℹ 47 more rows#># ℹ 9 more variables: host <chr>, method <chr>, input <dbl>, outcome <sir>,#># notes <chr>, guideline <chr>, ref_table <chr>, uti <lgl>,
diff --git a/reference/atc_online.html b/reference/atc_online.html
index dbcee126..d90bbcfd 100644
--- a/reference/atc_online.html
+++ b/reference/atc_online.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/av_from_text.html b/reference/av_from_text.html
index 5b023002..7de7a69a 100644
--- a/reference/av_from_text.html
+++ b/reference/av_from_text.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/av_property.html b/reference/av_property.html
index 4f0d567f..fb3a76eb 100644
--- a/reference/av_property.html
+++ b/reference/av_property.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/availability.html b/reference/availability.html
index e476fc11..2b9bee98 100644
--- a/reference/availability.html
+++ b/reference/availability.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/bug_drug_combinations.html b/reference/bug_drug_combinations.html
index 99c08d83..7a991a5e 100644
--- a/reference/bug_drug_combinations.html
+++ b/reference/bug_drug_combinations.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/clinical_breakpoints.html b/reference/clinical_breakpoints.html
index 60ebbb95..ed4eb19b 100644
--- a/reference/clinical_breakpoints.html
+++ b/reference/clinical_breakpoints.html
@@ -21,7 +21,7 @@ Use as.sir() to transform MICs or disks measurements to SIR values.">AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/count.html b/reference/count.html
index d1e3b05d..93fdecd0 100644
--- a/reference/count.html
+++ b/reference/count.html
@@ -9,7 +9,7 @@ count_resistant() should be used to count resistant isolates, count_susceptible(
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/custom_eucast_rules.html b/reference/custom_eucast_rules.html
index edc79113..15701018 100644
--- a/reference/custom_eucast_rules.html
+++ b/reference/custom_eucast_rules.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/dosage.html b/reference/dosage.html
index 4ca0e0fb..2256e5bd 100644
--- a/reference/dosage.html
+++ b/reference/dosage.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/eucast_rules.html b/reference/eucast_rules.html
index 1ee9dbcb..52f6d886 100644
--- a/reference/eucast_rules.html
+++ b/reference/eucast_rules.html
@@ -9,7 +9,7 @@ To improve the interpretation of the antibiogram before EUCAST rules are applied
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/example_isolates.html b/reference/example_isolates.html
index ef93eb76..22259f1d 100644
--- a/reference/example_isolates.html
+++ b/reference/example_isolates.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/example_isolates_unclean.html b/reference/example_isolates_unclean.html
index 9a67acbb..1774513a 100644
--- a/reference/example_isolates_unclean.html
+++ b/reference/example_isolates_unclean.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/export_ncbi_biosample.html b/reference/export_ncbi_biosample.html
index 6aae1793..2089c922 100644
--- a/reference/export_ncbi_biosample.html
+++ b/reference/export_ncbi_biosample.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/first_isolate.html b/reference/first_isolate.html
index c5e1e927..e554f1e7 100644
--- a/reference/first_isolate.html
+++ b/reference/first_isolate.html
@@ -9,7 +9,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/g.test.html b/reference/g.test.html
index aa459b96..c5941a04 100644
--- a/reference/g.test.html
+++ b/reference/g.test.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/get_episode.html b/reference/get_episode.html
index 19ca010d..84692a4f 100644
--- a/reference/get_episode.html
+++ b/reference/get_episode.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/ggplot_pca.html b/reference/ggplot_pca.html
index 720e00ea..010a3845 100644
--- a/reference/ggplot_pca.html
+++ b/reference/ggplot_pca.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/ggplot_sir.html b/reference/ggplot_sir.html
index 35371502..d2b68d28 100644
--- a/reference/ggplot_sir.html
+++ b/reference/ggplot_sir.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/guess_ab_col.html b/reference/guess_ab_col.html
index 897c7b00..218dc857 100644
--- a/reference/guess_ab_col.html
+++ b/reference/guess_ab_col.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/index.html b/reference/index.html
index 6720d7c3..fa1571bd 100644
--- a/reference/index.html
+++ b/reference/index.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/intrinsic_resistant.html b/reference/intrinsic_resistant.html
index 869097bf..f3788f58 100644
--- a/reference/intrinsic_resistant.html
+++ b/reference/intrinsic_resistant.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/italicise_taxonomy.html b/reference/italicise_taxonomy.html
index ee9060cd..8abf22d2 100644
--- a/reference/italicise_taxonomy.html
+++ b/reference/italicise_taxonomy.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/join.html b/reference/join.html
index 7d2a9816..63cf1811 100644
--- a/reference/join.html
+++ b/reference/join.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/key_antimicrobials.html b/reference/key_antimicrobials.html
index ed119a3a..7140188d 100644
--- a/reference/key_antimicrobials.html
+++ b/reference/key_antimicrobials.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/kurtosis.html b/reference/kurtosis.html
index c223a947..057a8909 100644
--- a/reference/kurtosis.html
+++ b/reference/kurtosis.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/like.html b/reference/like.html
index 5a6c98dd..94758bf7 100644
--- a/reference/like.html
+++ b/reference/like.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/mdro.html b/reference/mdro.html
index 8c03b910..93ac345c 100644
--- a/reference/mdro.html
+++ b/reference/mdro.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/mean_amr_distance.html b/reference/mean_amr_distance.html
index ac626615..0cda616b 100644
--- a/reference/mean_amr_distance.html
+++ b/reference/mean_amr_distance.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/microorganisms.codes.html b/reference/microorganisms.codes.html
index ad84d363..3e7626d8 100644
--- a/reference/microorganisms.codes.html
+++ b/reference/microorganisms.codes.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/microorganisms.groups.html b/reference/microorganisms.groups.html
index 7a4ebfb3..2cb96b2d 100644
--- a/reference/microorganisms.groups.html
+++ b/reference/microorganisms.groups.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/microorganisms.html b/reference/microorganisms.html
index b6c7fc70..6364a636 100644
--- a/reference/microorganisms.html
+++ b/reference/microorganisms.html
@@ -9,7 +9,7 @@ This data set is carefully crafted, yet made 100% reproducible from public and a
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/mo_matching_score.html b/reference/mo_matching_score.html
index 550e9870..19e7d3e6 100644
--- a/reference/mo_matching_score.html
+++ b/reference/mo_matching_score.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/mo_property.html b/reference/mo_property.html
index a4d8341e..629dab0c 100644
--- a/reference/mo_property.html
+++ b/reference/mo_property.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/mo_source.html b/reference/mo_source.html
index ea2cabaf..010a4a0e 100644
--- a/reference/mo_source.html
+++ b/reference/mo_source.html
@@ -9,7 +9,7 @@ This is the fastest way to have your organisation (or analysis) specific codes p
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/pca.html b/reference/pca.html
index 4a625a9d..3500bcb0 100644
--- a/reference/pca.html
+++ b/reference/pca.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/plot.html b/reference/plot.html
index 6125b0ae..63eefb71 100644
--- a/reference/plot.html
+++ b/reference/plot.html
@@ -9,7 +9,7 @@ Especially the scale_*_mic() functions are relevant wrappers to plot MIC values
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/proportion.html b/reference/proportion.html
index 5185cfed..6f4fa4f1 100644
--- a/reference/proportion.html
+++ b/reference/proportion.html
@@ -9,7 +9,7 @@ resistance() should be used to calculate resistance, susceptibility() should be
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/random.html b/reference/random.html
index 96053903..cf6c97b7 100644
--- a/reference/random.html
+++ b/reference/random.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/resistance_predict.html b/reference/resistance_predict.html
index 4b197d8a..f761671b 100644
--- a/reference/resistance_predict.html
+++ b/reference/resistance_predict.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/skewness.html b/reference/skewness.html
index ed16ea26..b236a671 100644
--- a/reference/skewness.html
+++ b/reference/skewness.html
@@ -9,7 +9,7 @@ When negative ('left-skewed'): the left tail is longer; the mass of the distribu
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/reference/translate.html b/reference/translate.html
index da75ee6c..99457543 100644
--- a/reference/translate.html
+++ b/reference/translate.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9094
+ 2.1.1.9095
diff --git a/search.json b/search.json
index 7aaf332b..25d3ab41 100644
--- a/search.json
+++ b/search.json
@@ -1 +1 @@
-[{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"How to conduct AMR data analysis","text":"Conducting AMR data analysis unfortunately requires -depth knowledge different scientific fields, makes hard right. least, requires: Good questions (always start !) reliable data thorough understanding (clinical) epidemiology, understand clinical epidemiological relevance possible bias results thorough understanding (clinical) microbiology/infectious diseases, understand microorganisms causal infections implications pharmaceutical treatment, well understanding intrinsic acquired microbial resistance Experience data analysis microbiological tests results, understand determination limitations MIC values interpretations SIR values Availability biological taxonomy microorganisms probably normalisation factors pharmaceuticals, defined daily doses (DDD) Available (inter-)national guidelines, profound methods apply course, instantly provide knowledge experience. AMR package, aimed providing (1) tools simplify antimicrobial resistance data cleaning, transformation analysis, (2) methods easily incorporate international guidelines (3) scientifically reliable reference data, including requirements mentioned . AMR package enables standardised reproducible AMR data analysis, application evidence-based rules, determination first isolates, translation various codes microorganisms antimicrobial agents, determination (multi-drug) resistant microorganisms, calculation antimicrobial resistance, prevalence future trends.","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"preparation","dir":"Articles","previous_headings":"","what":"Preparation","title":"How to conduct AMR data analysis","text":"tutorial, create fake demonstration data work . can skip Cleaning data already data ready. start analysis, try make structure data generally look like :","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"needed-r-packages","dir":"Articles","previous_headings":"Preparation","what":"Needed R packages","title":"How to conduct AMR data analysis","text":"many uses R, need additional packages AMR data analysis. package works closely together tidyverse packages dplyr ggplot2 RStudio. tidyverse tremendously improves way conduct data science - allows natural way writing syntaxes creating beautiful plots R. also use cleaner package, can used cleaning data creating frequency tables. AMR package contains data set example_isolates_unclean, might look data users extracted laboratory systems: AMR data analysis, like microorganism column contain valid, --date taxonomy, antibiotic columns cleaned SIR values well.","code":"library(dplyr) library(ggplot2) library(AMR) # (if not yet installed, install with:) # install.packages(c(\"dplyr\", \"ggplot2\", \"AMR\")) example_isolates_unclean #> # A tibble: 3,000 × 8 #> patient_id hospital date bacteria AMX AMC CIP GEN #> #> 1 J3 A 2012-11-21 E. coli R I S S #> 2 R7 A 2018-04-03 K. pneumoniae R I S S #> 3 P3 A 2014-09-19 E. coli R S S S #> 4 P10 A 2015-12-10 E. coli S I S S #> 5 B7 A 2015-03-02 E. coli S S S S #> 6 W3 A 2018-03-31 S. aureus R S R S #> 7 J8 A 2016-06-14 E. coli R S S S #> 8 M3 A 2015-10-25 E. coli R S S S #> 9 J3 A 2019-06-19 E. coli S S S S #> 10 G6 A 2015-04-27 S. aureus S S S S #> # ℹ 2,990 more rows # we will use 'our_data' as the data set name for this tutorial our_data <- example_isolates_unclean"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"taxonomy-of-microorganisms","dir":"Articles","previous_headings":"Preparation","what":"Taxonomy of microorganisms","title":"How to conduct AMR data analysis","text":".mo(), users can transform arbitrary microorganism names codes current taxonomy. AMR package contains --date taxonomic data. specific, currently included data retrieved 24 Jun 2024. codes AMR packages come .mo() short, still human readable. importantly, .mo() supports kinds input: first character codes denote taxonomic kingdom, Bacteria (B), Fungi (F), Protozoa (P). AMR package also contain functions directly retrieve taxonomic properties, name, genus, species, family, order, even Gram-stain. start mo_ use .mo() internally, still arbitrary user input can used: Now can thus clean data: Apparently, uncertainty translation taxonomic codes. Let’s check : ’s good.","code":"as.mo(\"Klebsiella pneumoniae\") #> Class 'mo' #> [1] B_KLBSL_PNMN as.mo(\"K. pneumoniae\") #> Class 'mo' #> [1] B_KLBSL_PNMN as.mo(\"KLEPNE\") #> Class 'mo' #> [1] B_KLBSL_PNMN as.mo(\"KLPN\") #> Class 'mo' #> [1] B_KLBSL_PNMN mo_family(\"K. pneumoniae\") #> [1] \"Enterobacteriaceae\" mo_genus(\"K. pneumoniae\") #> [1] \"Klebsiella\" mo_species(\"K. pneumoniae\") #> [1] \"pneumoniae\" mo_gramstain(\"Klebsiella pneumoniae\") #> [1] \"Gram-negative\" mo_ref(\"K. pneumoniae\") #> [1] \"Trevisan, 1887\" mo_snomed(\"K. pneumoniae\") #> [[1]] #> [1] \"1098101000112102\" \"446870005\" \"1098201000112108\" \"409801009\" #> [5] \"56415008\" \"714315002\" \"713926009\" our_data$bacteria <- as.mo(our_data$bacteria, info = TRUE) #> ℹ Microorganism translation was uncertain for four microorganisms. Run #> mo_uncertainties() to review these uncertainties, or use #> add_custom_microorganisms() to add custom entries. mo_uncertainties() #> Matching scores are based on the resemblance between the input and the full #> taxonomic name, and the pathogenicity in humans. See ?mo_matching_score. #> #> -------------------------------------------------------------------------------- #> \"E. coli\" -> Escherichia coli (B_ESCHR_COLI, 0.688) #> Also matched: Enterococcus crotali (0.650), Escherichia coli coli #> (0.643), Escherichia coli expressing (0.611), Enterobacter cowanii #> (0.600), Enterococcus columbae (0.595), Enterococcus camelliae (0.591), #> Enterococcus casseliflavus (0.577), Enterobacter cloacae cloacae #> (0.571), Enterobacter cloacae complex (0.571), and Enterobacter cloacae #> dissolvens (0.565) #> -------------------------------------------------------------------------------- #> \"K. pneumoniae\" -> Klebsiella pneumoniae (B_KLBSL_PNMN, 0.786) #> Also matched: Klebsiella pneumoniae ozaenae (0.707), Klebsiella #> pneumoniae pneumoniae (0.688), Klebsiella pneumoniae rhinoscleromatis #> (0.658), Klebsiella pasteurii (0.500), Klebsiella planticola (0.500), #> Kingella potus (0.400), Kluyveromyces pseudotropicale (0.386), #> Kluyveromyces pseudotropicalis (0.363), Kosakonia pseudosacchari #> (0.361), and Kluyveromyces pseudotropicalis pseudotropicalis (0.361) #> -------------------------------------------------------------------------------- #> \"S. aureus\" -> Staphylococcus aureus (B_STPHY_AURS, 0.690) #> Also matched: Staphylococcus aureus aureus (0.643), Staphylococcus #> argenteus (0.625), Staphylococcus aureus anaerobius (0.625), #> Staphylococcus auricularis (0.615), Salmonella Aurelianis (0.595), #> Salmonella Aarhus (0.588), Salmonella Amounderness (0.587), #> Staphylococcus argensis (0.587), Streptococcus australis (0.587), and #> Salmonella choleraesuis arizonae (0.562) #> -------------------------------------------------------------------------------- #> \"S. pneumoniae\" -> Streptococcus pneumoniae (B_STRPT_PNMN, 0.750) #> Also matched: Streptococcus pseudopneumoniae (0.700), Streptococcus #> phocae salmonis (0.552), Serratia proteamaculans quinovora (0.545), #> Streptococcus pseudoporcinus (0.536), Staphylococcus piscifermentans #> (0.533), Staphylococcus pseudintermedius (0.532), Serratia #> proteamaculans proteamaculans (0.526), Streptococcus gallolyticus #> pasteurianus (0.526), Salmonella Portanigra (0.524), and Streptococcus #> periodonticum (0.519) #> #> Only the first 10 other matches of each record are shown. Run #> print(mo_uncertainties(), n = ...) to view more entries, or save #> mo_uncertainties() to an object."},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"antibiotic-results","dir":"Articles","previous_headings":"Preparation","what":"Antibiotic results","title":"How to conduct AMR data analysis","text":"column antibiotic test results must also cleaned. AMR package comes three new data types work test results: mic minimal inhibitory concentrations (MIC), disk disk diffusion diameters, sir SIR data interpreted already. package can also determine SIR values based MIC disk diffusion values, read .sir() page. now, just clean SIR columns data using dplyr: basically cleaning, time start data inclusion.","code":"# method 1, be explicit about the columns: our_data <- our_data %>% mutate_at(vars(AMX:GEN), as.sir) # method 2, let the AMR package determine the eligible columns our_data <- our_data %>% mutate_if(is_sir_eligible, as.sir) # result: our_data #> # A tibble: 3,000 × 8 #> patient_id hospital date bacteria AMX AMC CIP GEN #> #> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S #> 2 R7 A 2018-04-03 B_KLBSL_PNMN R I S S #> 3 P3 A 2014-09-19 B_ESCHR_COLI R S S S #> 4 P10 A 2015-12-10 B_ESCHR_COLI S I S S #> 5 B7 A 2015-03-02 B_ESCHR_COLI S S S S #> 6 W3 A 2018-03-31 B_STPHY_AURS R S R S #> 7 J8 A 2016-06-14 B_ESCHR_COLI R S S S #> 8 M3 A 2015-10-25 B_ESCHR_COLI R S S S #> 9 J3 A 2019-06-19 B_ESCHR_COLI S S S S #> 10 G6 A 2015-04-27 B_STPHY_AURS S S S S #> # ℹ 2,990 more rows"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"first-isolates","dir":"Articles","previous_headings":"Preparation","what":"First isolates","title":"How to conduct AMR data analysis","text":"need know isolates can actually use analysis without repetition bias. conduct analysis antimicrobial resistance, must include first isolate every patient per episode (Hindler et al., Clin Infect Dis. 2007). , easily get overestimate underestimate resistance antibiotic. Imagine patient admitted MRSA found 5 different blood cultures following weeks (yes, countries like Netherlands blood drawing policies). resistance percentage oxacillin isolates overestimated, included MRSA . clearly selection bias. Clinical Laboratory Standards Institute (CLSI) appoints follows: (…) preparing cumulative antibiogram guide clinical decisions empirical antimicrobial therapy initial infections, first isolate given species per patient, per analysis period (eg, one year) included, irrespective body site, antimicrobial susceptibility profile, phenotypical characteristics (eg, biotype). first isolate easily identified, cumulative antimicrobial susceptibility test data prepared using first isolate generally comparable cumulative antimicrobial susceptibility test data calculated methods, providing duplicate isolates excluded. M39-A4 Analysis Presentation Cumulative Antimicrobial Susceptibility Test Data, 4th Edition. CLSI, 2014. Chapter 6.4 AMR package includes methodology first_isolate() function able apply four different methods defined Hindler et al. 2007: phenotype-based, episode-based, patient-based, isolate-based. right method depends goals analysis, default phenotype-based method case method properly correct duplicate isolates. Read methods first_isolate() page. outcome function can easily added data: 91% suitable resistance analysis! can now filter filter() function, also dplyr package: future use, two syntaxes can shortened: end 2 724 isolates analysis. Now data looks like: Time analysis.","code":"our_data <- our_data %>% mutate(first = first_isolate(info = TRUE)) #> ℹ Determining first isolates using an episode length of 365 days #> ℹ Using column 'bacteria' as input for col_mo. #> ℹ Using column 'date' as input for col_date. #> ℹ Using column 'patient_id' as input for col_patient_id. #> ℹ Basing inclusion on all antimicrobial results, using a points threshold #> of 2 #> => Found 2,724 'phenotype-based' first isolates (90.8% of total where a #> microbial ID was available) our_data_1st <- our_data %>% filter(first == TRUE) our_data_1st <- our_data %>% filter_first_isolate() our_data_1st #> # A tibble: 2,724 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S TRUE #> 2 R7 A 2018-04-03 B_KLBSL_PNMN R I S S TRUE #> 3 P3 A 2014-09-19 B_ESCHR_COLI R S S S TRUE #> 4 P10 A 2015-12-10 B_ESCHR_COLI S I S S TRUE #> 5 B7 A 2015-03-02 B_ESCHR_COLI S S S S TRUE #> 6 W3 A 2018-03-31 B_STPHY_AURS R S R S TRUE #> 7 M3 A 2015-10-25 B_ESCHR_COLI R S S S TRUE #> 8 J3 A 2019-06-19 B_ESCHR_COLI S S S S TRUE #> 9 G6 A 2015-04-27 B_STPHY_AURS S S S S TRUE #> 10 P4 A 2011-06-21 B_ESCHR_COLI S S S S TRUE #> # ℹ 2,714 more rows"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"analysing-the-data","dir":"Articles","previous_headings":"","what":"Analysing the data","title":"How to conduct AMR data analysis","text":"base R summary() function gives good first impression, comes support new mo sir classes now data set:","code":"summary(our_data_1st) #> patient_id hospital date #> Length:2724 Length:2724 Min. :2011-01-01 #> Class :character Class :character 1st Qu.:2013-04-07 #> Mode :character Mode :character Median :2015-06-03 #> Mean :2015-06-09 #> 3rd Qu.:2017-08-11 #> Max. :2019-12-27 #> bacteria AMX AMC #> Class :mo Class:sir Class:sir #> :0 %S :41.6% (n=1133) %S :52.6% (n=1432) #> Unique:4 %SDD : 0.0% (n=0) %SDD : 0.0% (n=0) #> #1 :B_ESCHR_COLI %I :16.4% (n=446) %I :12.2% (n=333) #> #2 :B_STPHY_AURS %R :42.0% (n=1145) %R :35.2% (n=959) #> #3 :B_STRPT_PNMN %NI : 0.0% (n=0) %NI : 0.0% (n=0) #> CIP GEN first #> Class:sir Class:sir Mode:logical #> %S :52.5% (n=1431) %S :61.0% (n=1661) TRUE:2724 #> %SDD : 0.0% (n=0) %SDD : 0.0% (n=0) #> %I : 6.5% (n=176) %I : 3.0% (n=82) #> %R :41.0% (n=1117) %R :36.0% (n=981) #> %NI : 0.0% (n=0) %NI : 0.0% (n=0) glimpse(our_data_1st) #> Rows: 2,724 #> Columns: 9 #> $ patient_id \"J3\", \"R7\", \"P3\", \"P10\", \"B7\", \"W3\", \"M3\", \"J3\", \"G6\", \"P4\"… #> $ hospital \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\",… #> $ date 2012-11-21, 2018-04-03, 2014-09-19, 2015-12-10, 2015-03-02… #> $ bacteria \"B_ESCHR_COLI\", \"B_KLBSL_PNMN\", \"B_ESCHR_COLI\", \"B_ESCHR_COL… #> $ AMX R, R, R, S, S, R, R, S, S, S, S, R, S, S, R, R, R, R, S, R,… #> $ AMC I, I, S, I, S, S, S, S, S, S, S, S, S, S, S, S, S, R, S, S,… #> $ CIP S, S, S, S, S, R, S, S, S, S, S, S, S, S, S, S, S, S, S, S,… #> $ GEN S, S, S, S, S, S, S, S, S, S, S, R, S, S, S, S, S, S, S, S,… #> $ first TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,… # number of unique values per column: sapply(our_data_1st, n_distinct) #> patient_id hospital date bacteria AMX AMC CIP #> 260 3 1854 4 3 3 3 #> GEN first #> 3 1"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"availability-of-species","dir":"Articles","previous_headings":"Analysing the data","what":"Availability of species","title":"How to conduct AMR data analysis","text":"just get idea species distributed, create frequency table count() based name microorganisms:","code":"our_data %>% count(mo_name(bacteria), sort = TRUE) #> # A tibble: 4 × 2 #> `mo_name(bacteria)` n #> #> 1 Escherichia coli 1518 #> 2 Staphylococcus aureus 730 #> 3 Streptococcus pneumoniae 426 #> 4 Klebsiella pneumoniae 326 our_data_1st %>% count(mo_name(bacteria), sort = TRUE) #> # A tibble: 4 × 2 #> `mo_name(bacteria)` n #> #> 1 Escherichia coli 1321 #> 2 Staphylococcus aureus 682 #> 3 Streptococcus pneumoniae 402 #> 4 Klebsiella pneumoniae 319"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"select-and-filter-with-antibiotic-selectors","dir":"Articles","previous_headings":"Analysing the data","what":"Select and filter with antibiotic selectors","title":"How to conduct AMR data analysis","text":"Using -called antibiotic class selectors, can select filter columns based antibiotic class antibiotic results :","code":"our_data_1st %>% select(date, aminoglycosides()) #> ℹ For aminoglycosides() using column 'GEN' (gentamicin) #> # A tibble: 2,724 × 2 #> date GEN #> #> 1 2012-11-21 S #> 2 2018-04-03 S #> 3 2014-09-19 S #> 4 2015-12-10 S #> 5 2015-03-02 S #> 6 2018-03-31 S #> 7 2015-10-25 S #> 8 2019-06-19 S #> 9 2015-04-27 S #> 10 2011-06-21 S #> # ℹ 2,714 more rows our_data_1st %>% select(bacteria, betalactams()) #> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC' #> (amoxicillin/clavulanic acid) #> # A tibble: 2,724 × 3 #> bacteria AMX AMC #> #> 1 B_ESCHR_COLI R I #> 2 B_KLBSL_PNMN R I #> 3 B_ESCHR_COLI R S #> 4 B_ESCHR_COLI S I #> 5 B_ESCHR_COLI S S #> 6 B_STPHY_AURS R S #> 7 B_ESCHR_COLI R S #> 8 B_ESCHR_COLI S S #> 9 B_STPHY_AURS S S #> 10 B_ESCHR_COLI S S #> # ℹ 2,714 more rows our_data_1st %>% select(bacteria, where(is.sir)) #> # A tibble: 2,724 × 5 #> bacteria AMX AMC CIP GEN #> #> 1 B_ESCHR_COLI R I S S #> 2 B_KLBSL_PNMN R I S S #> 3 B_ESCHR_COLI R S S S #> 4 B_ESCHR_COLI S I S S #> 5 B_ESCHR_COLI S S S S #> 6 B_STPHY_AURS R S R S #> 7 B_ESCHR_COLI R S S S #> 8 B_ESCHR_COLI S S S S #> 9 B_STPHY_AURS S S S S #> 10 B_ESCHR_COLI S S S S #> # ℹ 2,714 more rows # filtering using AB selectors is also possible: our_data_1st %>% filter(any(aminoglycosides() == \"R\")) #> ℹ For aminoglycosides() using column 'GEN' (gentamicin) #> # A tibble: 981 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 J5 A 2017-12-25 B_STRPT_PNMN R S S R TRUE #> 2 X1 A 2017-07-04 B_STPHY_AURS R S S R TRUE #> 3 B3 A 2016-07-24 B_ESCHR_COLI S S S R TRUE #> 4 V7 A 2012-04-03 B_ESCHR_COLI S S S R TRUE #> 5 C9 A 2017-03-23 B_ESCHR_COLI S S S R TRUE #> 6 R1 A 2018-06-10 B_STPHY_AURS S S S R TRUE #> 7 S2 A 2013-07-19 B_STRPT_PNMN S S S R TRUE #> 8 P5 A 2019-03-09 B_STPHY_AURS S S S R TRUE #> 9 Q8 A 2019-08-10 B_STPHY_AURS S S S R TRUE #> 10 K5 A 2013-03-15 B_STRPT_PNMN S S S R TRUE #> # ℹ 971 more rows our_data_1st %>% filter(all(betalactams() == \"R\")) #> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC' #> (amoxicillin/clavulanic acid) #> # A tibble: 462 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE #> 2 R10 A 2013-12-20 B_STPHY_AURS R R S S TRUE #> 3 R7 A 2015-10-25 B_STPHY_AURS R R S S TRUE #> 4 R8 A 2019-10-25 B_STPHY_AURS R R S S TRUE #> 5 B6 A 2016-11-20 B_ESCHR_COLI R R R R TRUE #> 6 I7 A 2015-08-19 B_ESCHR_COLI R R S S TRUE #> 7 N3 A 2014-12-29 B_STRPT_PNMN R R R S TRUE #> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE #> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE #> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE #> # ℹ 452 more rows # even works in base R (since R 3.0): our_data_1st[all(betalactams() == \"R\"), ] #> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC' #> (amoxicillin/clavulanic acid) #> # A tibble: 462 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE #> 2 R10 A 2013-12-20 B_STPHY_AURS R R S S TRUE #> 3 R7 A 2015-10-25 B_STPHY_AURS R R S S TRUE #> 4 R8 A 2019-10-25 B_STPHY_AURS R R S S TRUE #> 5 B6 A 2016-11-20 B_ESCHR_COLI R R R R TRUE #> 6 I7 A 2015-08-19 B_ESCHR_COLI R R S S TRUE #> 7 N3 A 2014-12-29 B_STRPT_PNMN R R R S TRUE #> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE #> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE #> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE #> # ℹ 452 more rows"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"generate-antibiograms","dir":"Articles","previous_headings":"Analysing the data","what":"Generate antibiograms","title":"How to conduct AMR data analysis","text":"Since AMR v2.0 (March 2023), easy create different types antibiograms, support 20 different languages. four antibiogram types, proposed Klinker et al. (2021, DOI 10.1177/20499361211011373), supported new antibiogram() function: Traditional Antibiogram (TA) e.g, susceptibility Pseudomonas aeruginosa piperacillin/tazobactam (TZP) Combination Antibiogram (CA) e.g, sdditional susceptibility Pseudomonas aeruginosa TZP + tobramycin versus TZP alone Syndromic Antibiogram (SA) e.g, susceptibility Pseudomonas aeruginosa TZP among respiratory specimens (obtained among ICU patients ) Weighted-Incidence Syndromic Combination Antibiogram (WISCA) e.g, susceptibility Pseudomonas aeruginosa TZP among respiratory specimens (obtained among ICU patients ) male patients age >=65 years heart failure section, show use antibiogram() function create antibiogram types. starters, included example_isolates data set looks like:","code":"example_isolates #> # A tibble: 2,000 × 46 #> date patient age gender ward mo PEN OXA FLC AMX #> #> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA #> # ℹ 1,990 more rows #> # ℹ 36 more variables: AMC , AMP , TZP , CZO , FEP , #> # CXM , FOX , CTX , CAZ , CRO , GEN , #> # TOB , AMK , KAN , TMP , SXT , NIT , #> # FOS , LNZ , CIP , MFX , VAN , TEC , #> # TCY , TGC , DOX , ERY , CLI , AZM , #> # IPM , MEM , MTR , CHL , COL , MUP , …"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"traditional-antibiogram","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Traditional Antibiogram","title":"How to conduct AMR data analysis","text":"create traditional antibiogram, simply state antibiotics used. antibiotics argument antibiogram() function supports (combination) previously mentioned antibiotic class selectors: Notice antibiogram() function automatically prints right format using Quarto R Markdown (page), even applies italics taxonomic names (using italicise_taxonomy() internally). also uses language OS either English, Chinese, Czech, Danish, Dutch, Finnish, French, German, Greek, Italian, Japanese, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish, Swedish, Turkish, Ukrainian. next example, force language Spanish using language argument:","code":"antibiogram(example_isolates, antibiotics = c(aminoglycosides(), carbapenems())) #> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin) #> ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem) antibiogram(example_isolates, mo_transform = \"gramstain\", antibiotics = aminoglycosides(), ab_transform = \"name\", language = \"es\") #> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"combined-antibiogram","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Combined Antibiogram","title":"How to conduct AMR data analysis","text":"create combined antibiogram, use antibiotic codes names plus + character like :","code":"antibiogram(example_isolates, antibiotics = c(\"TZP\", \"TZP+TOB\", \"TZP+GEN\"))"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"syndromic-antibiogram","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Syndromic Antibiogram","title":"How to conduct AMR data analysis","text":"create syndromic antibiogram, syndromic_group argument must used. can column data, e.g. ifelse() calculations based certain columns:","code":"antibiogram(example_isolates, antibiotics = c(aminoglycosides(), carbapenems()), syndromic_group = \"ward\") #> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin) #> ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"weighted-incidence-syndromic-combination-antibiogram-wisca","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Weighted-Incidence Syndromic Combination Antibiogram (WISCA)","title":"How to conduct AMR data analysis","text":"create WISCA, must state combination therapy antibiotics argument (similar Combination Antibiogram), define syndromic group syndromic_group argument (similar Syndromic Antibiogram) cases predefined based clinical demographic characteristics (e.g., endocarditis 75+ females). next example simplification without clinical characteristics, just gives idea WISCA can created:","code":"wisca <- antibiogram(example_isolates, antibiotics = c(\"AMC\", \"AMC+CIP\", \"TZP\", \"TZP+TOB\"), mo_transform = \"gramstain\", minimum = 10, # this should be >= 30, but now just as example syndromic_group = ifelse(example_isolates$age >= 65 & example_isolates$gender == \"M\", \"WISCA Group 1\", \"WISCA Group 2\")) wisca"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"plotting-antibiograms","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Plotting antibiograms","title":"How to conduct AMR data analysis","text":"Antibiograms can plotted using autoplot() ggplot2 packages, since AMR package provides extension function: calculate antimicrobial resistance sensible way, also correcting results, use resistance() susceptibility() functions.","code":"autoplot(wisca)"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"resistance-percentages","dir":"Articles","previous_headings":"Analysing the data","what":"Resistance percentages","title":"How to conduct AMR data analysis","text":"functions resistance() susceptibility() can used calculate antimicrobial resistance susceptibility. specific analyses, functions proportion_S(), proportion_SI(), proportion_I(), proportion_IR() proportion_R() can used determine proportion specific antimicrobial outcome. functions contain minimum argument, denoting minimum required number test results returning value. functions otherwise return NA. default minimum = 30, following CLSI M39-A4 guideline applying microbial epidemiology. per EUCAST guideline 2019, calculate resistance proportion R (proportion_R(), equal resistance()) susceptibility proportion S (proportion_SI(), equal susceptibility()). functions can used : can used conjunction group_by() summarise(), dplyr package: Author: Dr. Matthijs Berends, 26th Feb 2023","code":"our_data_1st %>% resistance(AMX) #> [1] 0.4203377 our_data_1st %>% group_by(hospital) %>% summarise(amoxicillin = resistance(AMX)) #> # A tibble: 3 × 2 #> hospital amoxicillin #> #> 1 A 0.340 #> 2 B 0.551 #> 3 C 0.370"},{"path":"https://msberends.github.io/AMR/articles/AMR_for_Python.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"AMR for Python","text":"AMR package R incredible tool antimicrobial resistance (AMR) data analysis, providing extensive functionality working microbial antimicrobial properties. ’re working Python still want benefit robust features AMR? best way access R directly Python help rpy2, simple yet powerful Python package. can easily call functions AMR package process data Python environment. post guide setting rpy2 show use R functions AMR Python supercharge antimicrobial resistance analysis.","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR_for_Python.html","id":"what-is-rpy2","dir":"Articles","previous_headings":"","what":"What is rpy2?","title":"AMR for Python","text":"rpy2 Python library allows Python users run R code within Python scripts. Essentially, acts bridge two languages, allowing tap rich ecosystem R libraries (like AMR) maintaining flexibility Python.","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR_for_Python.html","id":"key-features-of-rpy2","dir":"Articles","previous_headings":"What is rpy2?","what":"Key Features of rpy2:","title":"AMR for Python","text":"Seamlessly call R functions Python. Convert R data structures Python data structures like pandas DataFrames. Leverage full power R libraries without leaving Python environment.","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR_for_Python.html","id":"setting-up-rpy2","dir":"Articles","previous_headings":"","what":"Setting Up rpy2","title":"AMR for Python","text":"diving examples, ’ll need install R rpy2. ’s step--step guide setting things .","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR_for_Python.html","id":"step-1-install-r","dir":"Articles","previous_headings":"Setting Up rpy2","what":"Step 1: Install R","title":"AMR for Python","text":"Ensure R installed system. R minimal dependencies simple install: Ubuntu / Debian:sudo apt install r-base Fedora:sudo dnf install R CentOS/RHEL:sudo yum install R Arch Linux:sudo pacman -S r macOS (Homebrew):brew install r Systems: Visit CRAN download page.","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR_for_Python.html","id":"step-2-install-the-amr-package-in-r","dir":"Articles","previous_headings":"Setting Up rpy2","what":"Step 2: Install the AMR package in R","title":"AMR for Python","text":"Linux macOS, open Terminal run: systems, open R console install AMR package running: system, can also install latest development version AMR package setting repos beta channel:","code":"Rscript -e 'install.packages(\"AMR\")' install.packages(\"AMR\") install.packages(\"AMR\", repos = \"https://msberends.r-universe.dev\")"},{"path":"https://msberends.github.io/AMR/articles/AMR_for_Python.html","id":"step-3-install-rpy2-in-python","dir":"Articles","previous_headings":"Setting Up rpy2","what":"Step 3: Install rpy2 in Python","title":"AMR for Python","text":"install rpy2, simply run following command terminal:","code":"pip install rpy2"},{"path":"https://msberends.github.io/AMR/articles/AMR_for_Python.html","id":"step-4-test-rpy2-installation","dir":"Articles","previous_headings":"Setting Up rpy2","what":"Step 4: Test rpy2 Installation","title":"AMR for Python","text":"ensure everything set correctly, can test installation running following Python script, essentially runs R background: returns 2, ’re good go!","code":"import rpy2.robjects as ro # Test a simple R function from Python ro.r('1 + 1')"},{"path":"https://msberends.github.io/AMR/articles/AMR_for_Python.html","id":"working-with-amr-in-python","dir":"Articles","previous_headings":"","what":"Working with AMR in Python","title":"AMR for Python","text":"Now rpy2 set , let’s walk practical examples using AMR package within Python.","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR_for_Python.html","id":"example-1-converting-taxonomic-data","dir":"Articles","previous_headings":"Working with AMR in Python","what":"Example 1: Converting Taxonomic Data","title":"AMR for Python","text":"Let’s start converting taxonomic user input valid taxonomy using AMR package, within Python: example, Python dataset microorganism names like E. coli S. aureus passed R function mo_name(). result updated DataFrame includes standardised microorganism names based mo_name() function AMR package.","code":"import pandas as pd import rpy2.robjects as ro from rpy2.robjects.packages import importr from rpy2.robjects import pandas2ri # Load the AMR package from R amr = importr('AMR') # Example user dataset in Python data = pd.DataFrame({ 'microorganism': ['E. coli', 'S. aureus', 'P. aeruginosa', 'K. pneumoniae'] }) # Apply mo_name() from the AMR package to the 'microorganism' column ro.globalenv['r_data'] = data ro.r('r_data$mo_name <- mo_name(r_data$microorganism)') # Retrieve and print the modified R DataFrame in Python result = ro.r('r_data') result = pandas2ri.rpy2py(result) print(result)"},{"path":"https://msberends.github.io/AMR/articles/AMR_for_Python.html","id":"example-2-generating-an-antibiogram","dir":"Articles","previous_headings":"Working with AMR in Python","what":"Example 2: Generating an Antibiogram","title":"AMR for Python","text":"One core functions AMR package generating antibiogram, table summarises antimicrobial susceptibility bacterial isolates. ’s can generate antibiogram Python: example, generate antibiogram selecting aminoglycosides carbapenems, two classes antibiotics, convert resulting R data frame Python-readable format.","code":"# Run an antibiogram in R from Python ro.r('result <- antibiogram(example_isolates, antibiotics = c(aminoglycosides(), carbapenems()))') # Retrieve the result in Python result = ro.r('as.data.frame(result)') print(result)"},{"path":"https://msberends.github.io/AMR/articles/AMR_for_Python.html","id":"example-3-filtering-data-based-on-gram-negative-bacteria","dir":"Articles","previous_headings":"Working with AMR in Python","what":"Example 3: Filtering Data Based on Gram-Negative Bacteria","title":"AMR for Python","text":"Let’s say want filter dataset Gram-negative bacteria display resistance certain antibiotics: example uses AMR functions mo_is_gram_negative() mo_is_intrinsic_resistant() filter dataset returns subset bacteria resistance data.","code":"# Filter for Gram-negative bacteria with intrinsic resistance to cefotaxime ro.r('result <- example_isolates[which(mo_is_gram_negative() & mo_is_intrinsic_resistant(ab = \"cefotax\")), c(\"bacteria\", aminoglycosides(), carbapenems())]') # Retrieve the filtered result in Python result = ro.r('as.data.frame(result)') print(result)"},{"path":"https://msberends.github.io/AMR/articles/AMR_for_Python.html","id":"example-4-customising-the-antibiogram","dir":"Articles","previous_headings":"Working with AMR in Python","what":"Example 4: Customising the Antibiogram","title":"AMR for Python","text":"can easily customise antibiogram passing different antibiotics microorganism transformations, shown : , use piperacillin/tazobactam (TZP) combination tobramycin (TOB) gentamicin (GEN) see perform various Gram-negative bacteria.","code":"# Customise the antibiogram with different settings ro.r('result <- antibiogram(example_isolates, antibiotics = c(\"TZP\", \"TZP+TOB\", \"TZP+GEN\"), mo_transform = \"gramstain\")') # Retrieve and print the result result = ro.r('as.data.frame(result)') print(result)"},{"path":"https://msberends.github.io/AMR/articles/AMR_for_Python.html","id":"conclusion","dir":"Articles","previous_headings":"","what":"Conclusion","title":"AMR for Python","text":"Using rpy2, can easily integrate power R’s AMR package Python workflows. Whether generating antibiograms, analyzing resistance data, performing complex filtering, rpy2 gives flexibility run R code without leaving Python environment. makes perfect solution teams working across R Python.","code":""},{"path":"https://msberends.github.io/AMR/articles/EUCAST.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"How to apply EUCAST rules","text":"EUCAST rules? European Committee Antimicrobial Susceptibility Testing (EUCAST) states website: EUCAST expert rules tabulated collection expert knowledge intrinsic resistances, exceptional resistance phenotypes interpretive rules may applied antimicrobial susceptibility testing order reduce errors make appropriate recommendations reporting particular resistances. Europe, lot medical microbiological laboratories already apply rules (Brown et al., 2015). package features latest insights intrinsic resistance unusual phenotypes (v3.1, 2016). Moreover, eucast_rules() function use purpose can also apply additional rules, like forcing ampicillin = R isolates amoxicillin/clavulanic acid = R.","code":""},{"path":"https://msberends.github.io/AMR/articles/EUCAST.html","id":"examples","dir":"Articles","previous_headings":"","what":"Examples","title":"How to apply EUCAST rules","text":"rules can used discard impossible bug-drug combinations data. example, Klebsiella produces beta-lactamase prevents ampicillin (amoxicillin) working . words, practically every strain Klebsiella resistant ampicillin. Sometimes, laboratory data can still contain strains ampicillin susceptible ampicillin. antibiogram available identification available, antibiogram re-interpreted based identification (namely, Klebsiella). EUCAST expert rules solve , can applied using eucast_rules(): convenient function mo_is_intrinsic_resistant() uses guideline, allows check one specific microorganisms antibiotics: EUCAST rules can used correction, can also used filling known resistance susceptibility based results antimicrobials drugs. process called interpretive reading, basically form imputation, part eucast_rules() function well:","code":"oops <- data.frame( mo = c( \"Klebsiella\", \"Escherichia\" ), ampicillin = \"S\" ) oops #> mo ampicillin #> 1 Klebsiella S #> 2 Escherichia S eucast_rules(oops, info = FALSE) #> mo ampicillin #> 1 Klebsiella R #> 2 Escherichia S mo_is_intrinsic_resistant( c(\"Klebsiella\", \"Escherichia\"), \"ampicillin\" ) #> [1] TRUE FALSE mo_is_intrinsic_resistant( \"Klebsiella\", c(\"ampicillin\", \"kanamycin\") ) #> [1] TRUE FALSE data <- data.frame( mo = c( \"Staphylococcus aureus\", \"Enterococcus faecalis\", \"Escherichia coli\", \"Klebsiella pneumoniae\", \"Pseudomonas aeruginosa\" ), VAN = \"-\", # Vancomycin AMX = \"-\", # Amoxicillin COL = \"-\", # Colistin CAZ = \"-\", # Ceftazidime CXM = \"-\", # Cefuroxime PEN = \"S\", # Benzylenicillin FOX = \"S\", # Cefoxitin stringsAsFactors = FALSE ) data eucast_rules(data)"},{"path":"https://msberends.github.io/AMR/articles/MDR.html","id":"type-of-input","dir":"Articles","previous_headings":"","what":"Type of input","title":"How to determine multi-drug resistance (MDR)","text":"mdro() function takes data set input, regular data.frame. tries automatically determine right columns info isolates, name species columns results antimicrobial agents. See help page info set right settings data command ?mdro. WHONET data (data), settings automatically set correctly.","code":""},{"path":"https://msberends.github.io/AMR/articles/MDR.html","id":"guidelines","dir":"Articles","previous_headings":"","what":"Guidelines","title":"How to determine multi-drug resistance (MDR)","text":"mdro() function support multiple guidelines. can select guideline guideline parameter. Currently supported guidelines (case-insensitive): guideline = \"CMI2012\" (default) Magiorakos AP, Srinivasan et al. “Multidrug-resistant, extensively drug-resistant pandrug-resistant bacteria: international expert proposal interim standard definitions acquired resistance.” Clinical Microbiology Infection (2012) (link) guideline = \"EUCAST3.2\" (simply guideline = \"EUCAST\") European international guideline - EUCAST Expert Rules Version 3.2 “Intrinsic Resistance Unusual Phenotypes” (link) guideline = \"EUCAST3.1\" European international guideline - EUCAST Expert Rules Version 3.1 “Intrinsic Resistance Exceptional Phenotypes Tables” (link) guideline = \"TB\" international guideline multi-drug resistant tuberculosis - World Health Organization “Companion handbook guidelines programmatic management drug-resistant tuberculosis” (link) guideline = \"MRGN\" German national guideline - Mueller et al. (2015) Antimicrobial Resistance Infection Control 4:7. DOI: 10.1186/s13756-015-0047-6 guideline = \"BRMO\" Dutch national guideline - Rijksinstituut voor Volksgezondheid en Milieu “WIP-richtlijn BRMO (Bijzonder Resistente Micro-Organismen) (ZKH)” (link) Please suggest (country-specific) guidelines letting us know: https://github.com/msberends/AMR/issues/new.","code":""},{"path":"https://msberends.github.io/AMR/articles/MDR.html","id":"custom-guidelines","dir":"Articles","previous_headings":"Guidelines","what":"Custom Guidelines","title":"How to determine multi-drug resistance (MDR)","text":"can also use custom guideline. Custom guidelines can set custom_mdro_guideline() function. great importance custom rules determine MDROs hospital, e.g., rules dependent ward, state contact isolation variables data. familiar case_when() dplyr package, recognise input method set rules. Rules must set using R considers ‘formula notation’: row/isolate matches first rule, value first ~ (case ‘Elderly Type ’) set MDRO value. Otherwise, second rule tried . maximum number rules unlimited. can print rules set console overview. Colours help reading console supports colours. outcome function can used guideline argument mdro() function: rules set (custom object case) exported shared file location using saveRDS() collaborate multiple users. custom rules set imported using readRDS().","code":"custom <- custom_mdro_guideline( CIP == \"R\" & age > 60 ~ \"Elderly Type A\", ERY == \"R\" & age > 60 ~ \"Elderly Type B\" ) custom #> A set of custom MDRO rules: #> 1. If CIP is \"R\" and age is higher than 60 then: Elderly Type A #> 2. If ERY is \"R\" and age is higher than 60 then: Elderly Type B #> 3. Otherwise: Negative #> #> Unmatched rows will return NA. #> Results will be of class 'factor', with ordered levels: Negative < Elderly Type A < Elderly Type B x <- mdro(example_isolates, guideline = custom) table(x) #> x #> Negative Elderly Type A Elderly Type B #> 1070 198 732"},{"path":"https://msberends.github.io/AMR/articles/MDR.html","id":"examples","dir":"Articles","previous_headings":"","what":"Examples","title":"How to determine multi-drug resistance (MDR)","text":"mdro() function always returns ordered factor predefined guidelines. example, output default guideline Magiorakos et al. returns factor levels ‘Negative’, ‘MDR’, ‘XDR’ ‘PDR’ order. next example uses example_isolates data set. data set included package contains full antibiograms 2,000 microbial isolates. reflects reality can used practise AMR data analysis. test MDR/XDR/PDR guideline data set, get: Frequency table Class: factor > ordered (numeric) Length: 2,000 Levels: 4: Negative < Multi-drug-resistant (MDR) < Extensively drug-resistant … Available: 1,729 (86.45%, NA: 271 = 13.55%) Unique: 2 another example, create data set determine multi-drug resistant TB: column names automatically verified valid drug names codes, worked exactly way: data set now looks like : can now add interpretation MDR-TB data set. can use: shortcut mdr_tb(): Create frequency table results: Frequency table Class: factor > ordered (numeric) Length: 5,000 Levels: 5: Negative < Mono-resistant < Poly-resistant < Multi-drug-resistant <… Available: 5,000 (100%, NA: 0 = 0%) Unique: 5","code":"library(dplyr) # to support pipes: %>% library(cleaner) # to create frequency tables example_isolates %>% mdro() %>% freq() # show frequency table of the result #> Warning: in mdro(): NA introduced for isolates where the available percentage of #> antimicrobial classes was below 50% (set with pct_required_classes) # random_sir() is a helper function to generate # a random vector with values S, I and R my_TB_data <- data.frame( rifampicin = random_sir(5000), isoniazid = random_sir(5000), gatifloxacin = random_sir(5000), ethambutol = random_sir(5000), pyrazinamide = random_sir(5000), moxifloxacin = random_sir(5000), kanamycin = random_sir(5000) ) my_TB_data <- data.frame( RIF = random_sir(5000), INH = random_sir(5000), GAT = random_sir(5000), ETH = random_sir(5000), PZA = random_sir(5000), MFX = random_sir(5000), KAN = random_sir(5000) ) head(my_TB_data) #> rifampicin isoniazid gatifloxacin ethambutol pyrazinamide moxifloxacin #> 1 I R S S S S #> 2 S S I R R S #> 3 R I I I R I #> 4 I S S S S S #> 5 I I I S I S #> 6 R S R S I I #> kanamycin #> 1 R #> 2 I #> 3 S #> 4 I #> 5 I #> 6 I mdro(my_TB_data, guideline = \"TB\") my_TB_data$mdr <- mdr_tb(my_TB_data) #> ℹ No column found as input for col_mo, assuming all rows contain #> Mycobacterium tuberculosis. freq(my_TB_data$mdr)"},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/PCA.html","id":"transforming","dir":"Articles","previous_headings":"","what":"Transforming","title":"How to conduct principal component analysis (PCA) for AMR","text":"PCA, need transform AMR data first. example_isolates data set package looks like: Now transform data set resistance percentages per taxonomic order genus:","code":"library(AMR) library(dplyr) glimpse(example_isolates) #> Rows: 2,000 #> Columns: 46 #> $ date 2002-01-02, 2002-01-03, 2002-01-07, 2002-01-07, 2002-01-13, 2… #> $ patient \"A77334\", \"A77334\", \"067927\", \"067927\", \"067927\", \"067927\", \"4… #> $ age 65, 65, 45, 45, 45, 45, 78, 78, 45, 79, 67, 67, 71, 71, 75, 50… #> $ gender \"F\", \"F\", \"F\", \"F\", \"F\", \"F\", \"M\", \"M\", \"F\", \"F\", \"M\", \"M\", \"M… #> $ ward \"Clinical\", \"Clinical\", \"ICU\", \"ICU\", \"ICU\", \"ICU\", \"Clinical\"… #> $ mo \"B_ESCHR_COLI\", \"B_ESCHR_COLI\", \"B_STPHY_EPDR\", \"B_STPHY_EPDR\",… #> $ PEN R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, S,… #> $ OXA NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ FLC NA, NA, R, R, R, R, S, S, R, S, S, S, NA, NA, NA, NA, NA, R, R… #> $ AMX NA, NA, NA, NA, NA, NA, R, R, NA, NA, NA, NA, NA, NA, R, NA, N… #> $ AMC I, I, NA, NA, NA, NA, S, S, NA, NA, S, S, I, I, R, I, I, NA, N… #> $ AMP NA, NA, NA, NA, NA, NA, R, R, NA, NA, NA, NA, NA, NA, R, NA, N… #> $ TZP NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ CZO NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, NA,… #> $ FEP NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ CXM I, I, R, R, R, R, S, S, R, S, S, S, S, S, NA, S, S, R, R, S, S… #> $ FOX NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, NA,… #> $ CTX NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, S, S… #> $ CAZ NA, NA, R, R, R, R, R, R, R, R, R, R, NA, NA, NA, S, S, R, R, … #> $ CRO NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, S, S… #> $ GEN NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ TOB NA, NA, NA, NA, NA, NA, S, S, NA, NA, NA, NA, S, S, NA, NA, NA… #> $ AMK NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ KAN NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ TMP R, R, S, S, R, R, R, R, S, S, NA, NA, S, S, S, S, S, R, R, R, … #> $ SXT R, R, S, S, NA, NA, NA, NA, S, S, NA, NA, S, S, S, S, S, NA, N… #> $ NIT NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R,… #> $ FOS NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ LNZ R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R, R, R, N… #> $ CIP NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, NA, NA, NA, NA, S, S… #> $ MFX NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ VAN R, R, S, S, S, S, S, S, S, S, NA, NA, R, R, R, R, R, S, S, S, … #> $ TEC R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R, R, R, N… #> $ TCY R, R, S, S, S, S, S, S, S, I, S, S, NA, NA, I, R, R, S, I, R, … #> $ TGC NA, NA, S, S, S, S, S, S, S, NA, S, S, NA, NA, NA, R, R, S, NA… #> $ DOX NA, NA, S, S, S, S, S, S, S, NA, S, S, NA, NA, NA, R, R, S, NA… #> $ ERY R, R, R, R, R, R, S, S, R, S, S, S, R, R, R, R, R, R, R, R, S,… #> $ CLI R, R, NA, NA, NA, R, NA, NA, NA, NA, NA, NA, R, R, R, R, R, NA… #> $ AZM R, R, R, R, R, R, S, S, R, S, S, S, R, R, R, R, R, R, R, R, S,… #> $ IPM NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, S, S… #> $ MEM NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ MTR NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ CHL NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ COL NA, NA, R, R, R, R, R, R, R, R, R, R, NA, NA, NA, R, R, R, R, … #> $ MUP NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ RIF R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R, R, R, N… resistance_data <- example_isolates %>% group_by( order = mo_order(mo), # group on anything, like order genus = mo_genus(mo) ) %>% # and genus as we do here summarise_if(is.sir, resistance) %>% # then get resistance of all drugs select( order, genus, AMC, CXM, CTX, CAZ, GEN, TOB, TMP, SXT ) # and select only relevant columns head(resistance_data) #> # A tibble: 6 × 10 #> # Groups: order [5] #> order genus AMC CXM CTX CAZ GEN TOB TMP SXT #> #> 1 (unknown order) (unknown ge… NA NA NA NA NA NA NA NA #> 2 Actinomycetales Schaalia NA NA NA NA NA NA NA NA #> 3 Bacteroidales Bacteroides NA NA NA NA NA NA NA NA #> 4 Campylobacterales Campylobact… NA NA NA NA NA NA NA NA #> 5 Caryophanales Gemella NA NA NA NA NA NA NA NA #> 6 Caryophanales Listeria NA NA NA NA NA NA NA NA"},{"path":"https://msberends.github.io/AMR/articles/PCA.html","id":"perform-principal-component-analysis","dir":"Articles","previous_headings":"","what":"Perform principal component analysis","title":"How to conduct principal component analysis (PCA) for AMR","text":"new pca() function automatically filter rows contain numeric values selected variables, now need : result can reviewed good old summary() function: Good news. first two components explain total 93.3% variance (see PC1 PC2 values Proportion Variance. can create -called biplot base R biplot() function, see antimicrobial resistance per drug explain difference per microorganism.","code":"pca_result <- pca(resistance_data) #> ℹ Columns selected for PCA: \"AMC\", \"CAZ\", \"CTX\", \"CXM\", \"GEN\", \"SXT\", #> \"TMP\", and \"TOB\". Total observations available: 7. summary(pca_result) #> Groups (n=4, named as 'order'): #> [1] \"Caryophanales\" \"Enterobacterales\" \"Lactobacillales\" \"Pseudomonadales\" #> Importance of components: #> PC1 PC2 PC3 PC4 PC5 PC6 PC7 #> Standard deviation 2.1539 1.6807 0.6138 0.33879 0.20808 0.03140 1.232e-16 #> Proportion of Variance 0.5799 0.3531 0.0471 0.01435 0.00541 0.00012 0.000e+00 #> Cumulative Proportion 0.5799 0.9330 0.9801 0.99446 0.99988 1.00000 1.000e+00 #> Groups (n=4, named as 'order'): #> [1] \"Caryophanales\" \"Enterobacterales\" \"Lactobacillales\" \"Pseudomonadales\""},{"path":"https://msberends.github.io/AMR/articles/PCA.html","id":"plotting-the-results","dir":"Articles","previous_headings":"","what":"Plotting the results","title":"How to conduct principal component analysis (PCA) for AMR","text":"can’t see explanation points. Perhaps works better new ggplot_pca() function, automatically adds right labels even groups: can also print ellipse per group, edit appearance:","code":"biplot(pca_result) ggplot_pca(pca_result) ggplot_pca(pca_result, ellipse = TRUE) + ggplot2::labs(title = \"An AMR/PCA biplot!\")"},{"path":"https://msberends.github.io/AMR/articles/WHONET.html","id":"import-of-data","dir":"Articles","previous_headings":"","what":"Import of data","title":"How to work with WHONET data","text":"tutorial assumes already imported WHONET data e.g. readxl package. RStudio, can done using menu button ‘Import Dataset’ tab ‘Environment’. Choose option ‘Excel’ select exported file. Make sure date fields imported correctly. example syntax look like : package comes example data set WHONET. use analysis.","code":"library(readxl) data <- read_excel(path = \"path/to/your/file.xlsx\")"},{"path":"https://msberends.github.io/AMR/articles/WHONET.html","id":"preparation","dir":"Articles","previous_headings":"","what":"Preparation","title":"How to work with WHONET data","text":"First, load relevant packages yet . use tidyverse analyses. . don’t know yet, suggest read website: https://www.tidyverse.org/. transform variables simplify automate analysis: Microorganisms transformed microorganism codes (called mo) using Catalogue Life reference data set, contains ~70,000 microorganisms taxonomic kingdoms Bacteria, Fungi Protozoa. tranformation .mo(). function also recognises almost WHONET abbreviations microorganisms. Antimicrobial results interpretations clean valid. words, contain values \"S\", \"\" \"R\". exactly .sir() function . errors warnings, values transformed succesfully. also created package dedicated data cleaning checking, called cleaner package. freq() function can used create frequency tables. let’s check data, couple frequency tables: Frequency table Class: character Length: 500 Available: 500 (100%, NA: 0 = 0%) Unique: 38 Shortest: 11 Longest: 40 (omitted 28 entries, n = 57 [11.4%]) Frequency table Class: factor > ordered > sir (numeric) Length: 500 Levels: 5: S < SDD < < R < NI Available: 481 (96.2%, NA: 19 = 3.8%) Unique: 3 Drug: Amoxicillin/clavulanic acid (AMC, J01CR02) Drug group: Beta-lactams/penicillins %SI: 78.59%","code":"library(dplyr) # part of tidyverse library(ggplot2) # part of tidyverse library(AMR) # this package library(cleaner) # to create frequency tables # transform variables data <- WHONET %>% # get microbial ID based on given organism mutate(mo = as.mo(Organism)) %>% # transform everything from \"AMP_ND10\" to \"CIP_EE\" to the new `sir` class mutate_at(vars(AMP_ND10:CIP_EE), as.sir) # our newly created `mo` variable, put in the mo_name() function data %>% freq(mo_name(mo), nmax = 10) # our transformed antibiotic columns # amoxicillin/clavulanic acid (J01CR02) as an example data %>% freq(AMC_ND2)"},{"path":"https://msberends.github.io/AMR/articles/WHONET.html","id":"a-first-glimpse-at-results","dir":"Articles","previous_headings":"","what":"A first glimpse at results","title":"How to work with WHONET data","text":"easy ggplot already give lot information, using included ggplot_sir() function:","code":"data %>% group_by(Country) %>% select(Country, AMP_ND2, AMC_ED20, CAZ_ED10, CIP_ED5) %>% ggplot_sir(translate_ab = \"ab\", facet = \"Country\", datalabels = FALSE)"},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"microorganisms-full-microbial-taxonomy","dir":"Articles","previous_headings":"","what":"microorganisms: Full Microbial Taxonomy","title":"Data sets for download / own use","text":"data set 78 678 rows 26 columns, containing following column names:mo, fullname, status, kingdom, phylum, class, order, family, genus, species, subspecies, rank, ref, oxygen_tolerance, source, lpsn, lpsn_parent, lpsn_renamed_to, mycobank, mycobank_parent, mycobank_renamed_to, gbif, gbif_parent, gbif_renamed_to, prevalence, snomed. data set R available microorganisms, load AMR package. last updated 4 October 2024 13:28:44 UTC. Find info structure data set . Direct download links: Download original R Data Structure (RDS) file (1.8 MB) Download tab-separated text file (17.7 MB) Download Microsoft Excel workbook (8.7 MB) Download Apache Feather file (8.3 MB) Download Apache Parquet file (3.8 MB) Download IBM SPSS Statistics data file (29 MB) Download Stata DTA file (92.5 MB) NOTE: exported files SPSS Stata contain first 50 SNOMED codes per record, file size otherwise exceed 100 MB; file size limit GitHub. file structures compression techniques inefficient. Advice? Use R instead. ’s free much better many ways. tab-separated text file Microsoft Excel workbook contain SNOMED codes comma separated values.","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source","dir":"Articles","previous_headings":"microorganisms: Full Microbial Taxonomy","what":"Source","title":"Data sets for download / own use","text":"data set contains full microbial taxonomy six kingdoms List Prokaryotic names Standing Nomenclature (LPSN), MycoBank, Global Biodiversity Information Facility (GBIF): Parte, AC et al. (2020). List Prokaryotic names Standing Nomenclature (LPSN) moves DSMZ. International Journal Systematic Evolutionary Microbiology, 70, 5607-5612; . Accessed https://lpsn.dsmz.de June 24th, 2024. Vincent, R et al (2013). MycoBank gearing new horizons. IMA Fungus, 4(2), 371-9; . Accessed https://www.mycobank.org June 24th, 2024. GBIF Secretariat (2023). GBIF Backbone Taxonomy. Checklist dataset . Accessed https://www.gbif.org June 24th, 2024. Reimer, LC et al. (2022). BacDive 2022: knowledge base standardized bacterial archaeal data. Nucleic Acids Res., 50(D1):D741-D74; . Accessed https://bacdive.dsmz.de July 16th, 2024. Public Health Information Network Vocabulary Access Distribution System (PHIN VADS). US Edition SNOMED CT 1 September 2020. Value Set Name ‘Microorganism’, OID 2.16.840.1.114222.4.11.1009 (v12). URL: https://phinvads.cdc.gov","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"example-content","dir":"Articles","previous_headings":"microorganisms: Full Microbial Taxonomy","what":"Example content","title":"Data sets for download / own use","text":"Included (sub)species per taxonomic kingdom: Example rows filtering genus Escherichia:","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"antibiotics-antibiotic-antifungal-drugs","dir":"Articles","previous_headings":"","what":"antibiotics: Antibiotic (+Antifungal) Drugs","title":"Data sets for download / own use","text":"data set 485 rows 14 columns, containing following column names:ab, cid, name, group, atc, atc_group1, atc_group2, abbreviations, synonyms, oral_ddd, oral_units, iv_ddd, iv_units, loinc. data set R available antibiotics, load AMR package. last updated 10 October 2024 14:38:20 UTC. Find info structure data set . Direct download links: Download original R Data Structure (RDS) file (44 kB) Download tab-separated text file (0.1 MB) Download Microsoft Excel workbook (75 kB) Download Apache Feather file (0.1 MB) Download Apache Parquet file (0.1 MB) Download IBM SPSS Statistics data file (0.4 MB) Download Stata DTA file (0.5 MB) tab-separated text, Microsoft Excel, SPSS, Stata files contain ATC codes, common abbreviations, trade names LOINC codes comma separated values.","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-1","dir":"Articles","previous_headings":"antibiotics: Antibiotic (+Antifungal) Drugs","what":"Source","title":"Data sets for download / own use","text":"data set contains EARS-Net ATC codes gathered WHONET, compound IDs PubChem. also contains brand names (synonyms) found PubChem Defined Daily Doses (DDDs) oral parenteral administration. ATC/DDD index Collaborating Centre Drug Statistics Methodology (note: may used commercial purposes, freely available CC website personal use) PubChem US National Library Medicine WHONET software 2019 LOINC (Logical Observation Identifiers Names Codes)","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"antivirals-antiviral-drugs","dir":"Articles","previous_headings":"","what":"antivirals: Antiviral Drugs","title":"Data sets for download / own use","text":"data set 120 rows 11 columns, containing following column names:av, name, atc, cid, atc_group, synonyms, oral_ddd, oral_units, iv_ddd, iv_units, loinc. data set R available antivirals, load AMR package. last updated 20 October 2023 12:51:48 UTC. Find info structure data set . Direct download links: Download original R Data Structure (RDS) file (6 kB) Download tab-separated text file (17 kB) Download Microsoft Excel workbook (16 kB) Download Apache Feather file (16 kB) Download Apache Parquet file (13 kB) Download IBM SPSS Statistics data file (32 kB) Download Stata DTA file (78 kB) tab-separated text, Microsoft Excel, SPSS, Stata files contain trade names LOINC codes comma separated values.","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-2","dir":"Articles","previous_headings":"antivirals: Antiviral Drugs","what":"Source","title":"Data sets for download / own use","text":"data set contains ATC codes gathered compound IDs PubChem. also contains brand names (synonyms) found PubChem Defined Daily Doses (DDDs) oral parenteral administration. ATC/DDD index Collaborating Centre Drug Statistics Methodology (note: may used commercial purposes, freely available CC website personal use) PubChem US National Library Medicine LOINC (Logical Observation Identifiers Names Codes)","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"clinical_breakpoints-interpretation-from-mic-values-disk-diameters-to-sir","dir":"Articles","previous_headings":"","what":"clinical_breakpoints: Interpretation from MIC values & disk diameters to SIR","title":"Data sets for download / own use","text":"data set 34 063 rows 14 columns, containing following column names:guideline, type, host, method, site, mo, rank_index, ab, ref_tbl, disk_dose, breakpoint_S, breakpoint_R, uti, is_SDD. data set R available clinical_breakpoints, load AMR package. last updated 29 September 2024 20:17:56 UTC. Find info structure data set . Direct download links: Download original R Data Structure (RDS) file (70 kB) Download tab-separated text file (3.1 MB) Download Microsoft Excel workbook (2 MB) Download Apache Feather file (1.5 MB) Download Apache Parquet file (0.1 MB) Download IBM SPSS Statistics data file (5.6 MB) Download Stata DTA file (9.3 MB)","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-3","dir":"Articles","previous_headings":"clinical_breakpoints: Interpretation from MIC values & disk diameters to SIR","what":"Source","title":"Data sets for download / own use","text":"data set contains interpretation rules MIC values disk diffusion diameters. Included guidelines CLSI (2011-2024) EUCAST (2011-2024). Clinical breakpoints package validated imported WHONET, free desktop Windows application developed supported Collaborating Centre Surveillance Antimicrobial Resistance. can read website. developers WHONET AMR package contact sharing work. highly appreciate development WHONET software. CEO CLSI chairman EUCAST endorsed work public use AMR package (consequently use breakpoints) June 2023, future development distributing clinical breakpoints discussed meeting CLSI, EUCAST, , developers WHONET AMR package. NOTE: AMR package (WHONET software well) contains internal methods apply guidelines, rather complex. example, breakpoints must applied certain species groups (case package available microorganisms.groups data set). important considered using breakpoints use.","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"intrinsic_resistant-intrinsic-bacterial-resistance","dir":"Articles","previous_headings":"","what":"intrinsic_resistant: Intrinsic Bacterial Resistance","title":"Data sets for download / own use","text":"data set 301 583 rows 2 columns, containing following column names:mo ab. data set R available intrinsic_resistant, load AMR package. last updated 29 September 2024 20:17:56 UTC. Find info structure data set . Direct download links: Download original R Data Structure (RDS) file (0.1 MB) Download tab-separated text file (10.9 MB) Download Microsoft Excel workbook (3 MB) Download Apache Feather file (2.5 MB) Download Apache Parquet file (0.3 MB) Download IBM SPSS Statistics data file (16.2 MB) Download Stata DTA file (25 MB)","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-4","dir":"Articles","previous_headings":"intrinsic_resistant: Intrinsic Bacterial Resistance","what":"Source","title":"Data sets for download / own use","text":"data set contains defined intrinsic resistance EUCAST bug-drug combinations, based ‘EUCAST Expert Rules’ ‘EUCAST Intrinsic Resistance Unusual Phenotypes’ v3.3 (2021).","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"example-content-4","dir":"Articles","previous_headings":"intrinsic_resistant: Intrinsic Bacterial Resistance","what":"Example content","title":"Data sets for download / own use","text":"Example rows filtering Enterobacter cloacae:","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"dosage-dosage-guidelines-from-eucast","dir":"Articles","previous_headings":"","what":"dosage: Dosage Guidelines from EUCAST","title":"Data sets for download / own use","text":"data set 503 rows 9 columns, containing following column names:ab, name, type, dose, dose_times, administration, notes, original_txt, eucast_version. data set R available dosage, load AMR package. last updated 22 June 2023 13:10:59 UTC. Find info structure data set . Direct download links: Download original R Data Structure (RDS) file (3 kB) Download tab-separated text file (43 kB) Download Microsoft Excel workbook (25 kB) Download Apache Feather file (21 kB) Download Apache Parquet file (9 kB) Download IBM SPSS Statistics data file (64 kB) Download Stata DTA file (0.1 MB)","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-5","dir":"Articles","previous_headings":"dosage: Dosage Guidelines from EUCAST","what":"Source","title":"Data sets for download / own use","text":"EUCAST breakpoints used package based dosages data set. Currently included dosages data set meant : (), ‘EUCAST Clinical Breakpoint Tables’ v11.0 (2021), ‘EUCAST Clinical Breakpoint Tables’ v12.0 (2022).","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"example_isolates-example-data-for-practice","dir":"Articles","previous_headings":"","what":"example_isolates: Example Data for Practice","title":"Data sets for download / own use","text":"data set 2 000 rows 46 columns, containing following column names:date, patient, age, gender, ward, mo, PEN, OXA, FLC, AMX, AMC, AMP, TZP, CZO, FEP, CXM, FOX, CTX, CAZ, CRO, GEN, TOB, AMK, KAN, TMP, SXT, NIT, FOS, LNZ, CIP, MFX, VAN, TEC, TCY, TGC, DOX, ERY, CLI, AZM, IPM, MEM, MTR, CHL, COL, MUP, RIF. data set R available example_isolates, load AMR package. last updated 15 June 2024 13:33:49 UTC. Find info structure data set .","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-6","dir":"Articles","previous_headings":"example_isolates: Example Data for Practice","what":"Source","title":"Data sets for download / own use","text":"data set contains randomised fictitious data, reflects reality can used practise AMR data analysis.","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"example_isolates_unclean-example-data-for-practice","dir":"Articles","previous_headings":"","what":"example_isolates_unclean: Example Data for Practice","title":"Data sets for download / own use","text":"data set 3 000 rows 8 columns, containing following column names:patient_id, hospital, date, bacteria, AMX, AMC, CIP, GEN. data set R available example_isolates_unclean, load AMR package. last updated 27 August 2022 18:49:37 UTC. Find info structure data set .","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-7","dir":"Articles","previous_headings":"example_isolates_unclean: Example Data for Practice","what":"Source","title":"Data sets for download / own use","text":"data set contains randomised fictitious data, reflects reality can used practise AMR data analysis.","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"microorganisms-groups-species-groups-and-microbiological-complexes","dir":"Articles","previous_headings":"","what":"microorganisms.groups: Species Groups and Microbiological Complexes","title":"Data sets for download / own use","text":"data set 521 rows 4 columns, containing following column names:mo_group, mo, mo_group_name, mo_name. data set R available microorganisms.groups, load AMR package. last updated 29 September 2024 20:17:56 UTC. Find info structure data set . Direct download links: Download original R Data Structure (RDS) file (5 kB) Download tab-separated text file (49 kB) Download Microsoft Excel workbook (19 kB) Download Apache Feather file (19 kB) Download Apache Parquet file (13 kB) Download IBM SPSS Statistics data file (63 kB) Download Stata DTA file (81 kB)","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-8","dir":"Articles","previous_headings":"microorganisms.groups: Species Groups and Microbiological Complexes","what":"Source","title":"Data sets for download / own use","text":"data set contains species groups microbiological complexes, used clinical_breakpoints data set.","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"microorganisms-codes-common-laboratory-codes","dir":"Articles","previous_headings":"","what":"microorganisms.codes: Common Laboratory Codes","title":"Data sets for download / own use","text":"data set 4 971 rows 2 columns, containing following column names:code mo. data set R available microorganisms.codes, load AMR package. last updated 29 September 2024 20:17:56 UTC. Find info structure data set . Direct download links: Download original R Data Structure (RDS) file (22 kB) Download tab-separated text file (0.1 MB) Download Microsoft Excel workbook (82 kB) Download Apache Feather file (85 kB) Download Apache Parquet file (56 kB) Download IBM SPSS Statistics data file (0.1 MB) Download Stata DTA file (0.1 MB)","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-9","dir":"Articles","previous_headings":"microorganisms.codes: Common Laboratory Codes","what":"Source","title":"Data sets for download / own use","text":"data set contains commonly used codes microorganisms, laboratory systems WHONET.","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/resistance_predict.html","id":"needed-r-packages","dir":"Articles","previous_headings":"","what":"Needed R packages","title":"How to predict antimicrobial resistance","text":"many uses R, need additional packages AMR data analysis. package works closely together tidyverse packages dplyr ggplot2. tidyverse tremendously improves way conduct data science - allows natural way writing syntaxes creating beautiful plots R. AMR package depends packages even extends use functions.","code":"library(dplyr) library(ggplot2) library(AMR) # (if not yet installed, install with:) # install.packages(c(\"tidyverse\", \"AMR\"))"},{"path":"https://msberends.github.io/AMR/articles/resistance_predict.html","id":"prediction-analysis","dir":"Articles","previous_headings":"","what":"Prediction analysis","title":"How to predict antimicrobial resistance","text":"package contains function resistance_predict(), takes input functions AMR data analysis. Based date column, calculates cases per year uses regression model predict antimicrobial resistance. basically easy : function look date column col_date set. running commands, summary regression model printed unless using resistance_predict(..., info = FALSE). text printed summary - actual result (output) function data.frame containing year: number observations, actual observed resistance, estimated resistance standard error estimation: function plot available base R, can extended packages depend output based type input. extended function cope resistance predictions: fastest way plot result. automatically adds right axes, error bars, titles, number available observations type model. also support ggplot2 package custom function ggplot_sir_predict() create appealing plots:","code":"# resistance prediction of piperacillin/tazobactam (TZP): resistance_predict(tbl = example_isolates, col_date = \"date\", col_ab = \"TZP\", model = \"binomial\") # or: example_isolates %>% resistance_predict( col_ab = \"TZP\", model = \"binomial\" ) # to bind it to object 'predict_TZP' for example: predict_TZP <- example_isolates %>% resistance_predict( col_ab = \"TZP\", model = \"binomial\" ) predict_TZP #> # A tibble: 33 × 7 #> year value se_min se_max observations observed estimated #> * #> 1 2002 0.2 NA NA 15 0.2 0.0562 #> 2 2003 0.0625 NA NA 32 0.0625 0.0616 #> 3 2004 0.0854 NA NA 82 0.0854 0.0676 #> 4 2005 0.05 NA NA 60 0.05 0.0741 #> 5 2006 0.0508 NA NA 59 0.0508 0.0812 #> 6 2007 0.121 NA NA 66 0.121 0.0889 #> 7 2008 0.0417 NA NA 72 0.0417 0.0972 #> 8 2009 0.0164 NA NA 61 0.0164 0.106 #> 9 2010 0.0566 NA NA 53 0.0566 0.116 #> 10 2011 0.183 NA NA 93 0.183 0.127 #> # ℹ 23 more rows plot(predict_TZP) ggplot_sir_predict(predict_TZP) # choose for error bars instead of a ribbon ggplot_sir_predict(predict_TZP, ribbon = FALSE)"},{"path":"https://msberends.github.io/AMR/articles/resistance_predict.html","id":"choosing-the-right-model","dir":"Articles","previous_headings":"Prediction analysis","what":"Choosing the right model","title":"How to predict antimicrobial resistance","text":"Resistance easily predicted; look vancomycin resistance Gram-positive bacteria, spread (.e. standard error) enormous: Vancomycin resistance 100% ten years, might remain low. can define model model parameter. model chosen generalised linear regression model using binomial distribution, assuming period zero resistance followed period increasing resistance leading slowly resistance. Valid values : vancomycin resistance Gram-positive bacteria, linear model might appropriate: model also available object, attribute:","code":"example_isolates %>% filter(mo_gramstain(mo, language = NULL) == \"Gram-positive\") %>% resistance_predict(col_ab = \"VAN\", year_min = 2010, info = FALSE, model = \"binomial\") %>% ggplot_sir_predict() example_isolates %>% filter(mo_gramstain(mo, language = NULL) == \"Gram-positive\") %>% resistance_predict(col_ab = \"VAN\", year_min = 2010, info = FALSE, model = \"linear\") %>% ggplot_sir_predict() model <- attributes(predict_TZP)$model summary(model)$family #> #> Family: binomial #> Link function: logit summary(model)$coefficients #> Estimate Std. Error z value Pr(>|z|) #> (Intercept) -200.67944891 46.17315349 -4.346237 1.384932e-05 #> year 0.09883005 0.02295317 4.305725 1.664395e-05"},{"path":"https://msberends.github.io/AMR/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Matthijs S. Berends. Author, maintainer. Dennis Souverein. Author, contributor. Erwin E. . Hassing. Author, contributor. Casper J. Albers. Thesis advisor. Larisse Bolton. Contributor. Peter Dutey-Magni. Contributor. Judith M. Fonville. Contributor. Alex W. Friedrich. Thesis advisor. Corinna Glasner. Thesis advisor. Eric H. L. C. M. Hazenberg. Contributor. Gwen Knight. Contributor. Annick Lenglet. Contributor. Christian F. Luz. Contributor. Bart C. Meijer. Contributor. Dmytro Mykhailenko. Contributor. Anton Mymrikov. Contributor. Andrew P. Norgan. Contributor. Sofia Ny. Contributor. Matthew Saab. Contributor. Jonas Salm. Contributor. Javier Sanchez. Contributor. Rogier P. Schade. Contributor. Bhanu N. M. Sinha. Thesis advisor. Jason Stull. Contributor. Anthony Underwood. Contributor. Anita Williams. Contributor.","code":""},{"path":"https://msberends.github.io/AMR/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C (2022). “AMR: R Package Working Antimicrobial Resistance Data.” Journal Statistical Software, 104(3), 1–31. doi:10.18637/jss.v104.i03.","code":"@Article{, title = {{AMR}: An {R} Package for Working with Antimicrobial Resistance Data}, author = {Matthijs S. Berends and Christian F. Luz and Alexander W. Friedrich and Bhanu N. M. Sinha and Casper J. Albers and Corinna Glasner}, journal = {Journal of Statistical Software}, year = {2022}, volume = {104}, number = {3}, pages = {1--31}, doi = {10.18637/jss.v104.i03}, }"},{"path":"https://msberends.github.io/AMR/index.html","id":"the-amr-package-for-r-","dir":"","previous_headings":"","what":"Antimicrobial Resistance Data Analysis","title":"Antimicrobial Resistance Data Analysis","text":"Provides --one solution antimicrobial resistance (AMR) data analysis One Health approach Used 175 countries, available 20 languages Generates antibiograms - traditional, combined, syndromic, even WISCA Provides full microbiological taxonomy extensive info antimicrobial drugs Applies recent CLSI EUCAST clinical veterinary breakpoints MICs, disk zones ECOFFs Corrects duplicate isolates, calculates predicts AMR per antibiotic class Integrates WHONET, ATC, EARS-Net, PubChem, LOINC, SNOMED CT, NCBI 100% free costs dependencies, highly suitable places limited resources https://msberends.github.io/AMR https://doi.org/10.18637/jss.v104.i03","code":""},{"path":"https://msberends.github.io/AMR/index.html","id":"introduction","dir":"","previous_headings":"","what":"Introduction","title":"Antimicrobial Resistance Data Analysis","text":"AMR package free open-source R package zero dependencies simplify analysis prediction Antimicrobial Resistance (AMR) work microbial antimicrobial data properties, using evidence-based methods. aim provide standard clean reproducible AMR data analysis, can therefore empower epidemiological analyses continuously enable surveillance treatment evaluation setting. Many different researchers around globe continually helping us make successful durable project! work published Journal Statistical Software (Volume 104(3); DOI 10.18637/jss.v104.i03) formed basis two PhD theses (DOI 10.33612/diss.177417131 DOI 10.33612/diss.192486375). installing package, R knows ~52,000 distinct microbial species (updated December 2022) ~600 antibiotic, antimycotic antiviral drugs name code (including ATC, EARS-Net, ASIARS-Net, PubChem, LOINC SNOMED CT), knows valid SIR MIC values. integral clinical breakpoint guidelines CLSI EUCAST included, even epidemiological cut-(ECOFF) values. supports can read data format, including WHONET data. package works Windows, macOS Linux versions R since R-3.0 (April 2013). designed work setting, including limited resources. created routine data analysis academic research Faculty Medical Sciences University Groningen, collaboration non-profit organisations Certe Medical Diagnostics Advice Foundation University Medical Center Groningen.","code":""},{"path":"https://msberends.github.io/AMR/index.html","id":"used-in-over-175-countries-available-in-20-languages","dir":"","previous_headings":"Introduction","what":"Used in over 175 countries, available in 20 languages","title":"Antimicrobial Resistance Data Analysis","text":"Since first public release early 2018, R package used almost countries world. Click map enlarge see country names. help contributors corners world, AMR package available English, Czech, Chinese, Danish, Dutch, Finnish, French, German, Greek, Italian, Japanese, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish, Swedish, Turkish, Ukrainian. Antimicrobial drug (group) names colloquial microorganism names provided languages.","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/index.html","id":"filtering-and-selecting-data","dir":"","previous_headings":"Practical examples","what":"Filtering and selecting data","title":"Antimicrobial Resistance Data Analysis","text":"One powerful functions package, aside calculating plotting AMR, selecting filtering based antibiotic columns. can done using -called antibiotic class selectors work base R, dplyr data.table: defined row filter Gram-negative bacteria intrinsic resistance cefotaxime (mo_is_gram_negative() mo_is_intrinsic_resistant()) column selection two antibiotic groups (aminoglycosides() carbapenems()), reference data microorganisms antibiotics AMR package make sure get meant: base R equivalent : base R code work version R since April 2013 (R-3.0). Moreover, code works identically data.table package, starting :","code":"# AMR works great with dplyr, but it's not required or neccesary library(AMR) library(dplyr) example_isolates %>% mutate(bacteria = mo_fullname()) %>% # filtering functions for microorganisms: filter(mo_is_gram_negative(), mo_is_intrinsic_resistant(ab = \"cefotax\")) %>% # antibiotic selectors: select(bacteria, aminoglycosides(), carbapenems()) library(AMR) example_isolates$bacteria <- mo_fullname(example_isolates$mo) example_isolates[which(mo_is_gram_negative() & mo_is_intrinsic_resistant(ab = \"cefotax\")), c(\"bacteria\", aminoglycosides(), carbapenems())] example_isolates <- data.table::as.data.table(example_isolates)"},{"path":"https://msberends.github.io/AMR/index.html","id":"generating-antibiograms","dir":"","previous_headings":"Practical examples","what":"Generating antibiograms","title":"Antimicrobial Resistance Data Analysis","text":"AMR package supports generating traditional, combined, syndromic, even weighted-incidence syndromic combination antibiograms (WISCA). used inside R Markdown Quarto, table printed right output format automatically (markdown, LaTeX, HTML, etc.). combination antibiograms, clear combined antibiotics yield higher empiric coverage: Like many functions package, antibiogram() comes support 20 languages often detected automatically based system language:","code":"antibiogram(example_isolates, antibiotics = c(aminoglycosides(), carbapenems())) antibiogram(example_isolates, antibiotics = c(\"TZP\", \"TZP+TOB\", \"TZP+GEN\"), mo_transform = \"gramstain\") antibiogram(example_isolates, antibiotics = c(\"cipro\", \"tobra\", \"genta\"), # any arbitrary name or code will work mo_transform = \"gramstain\", ab_transform = \"name\", language = \"uk\") # Ukrainian"},{"path":"https://msberends.github.io/AMR/index.html","id":"calculating-resistance-per-group","dir":"","previous_headings":"Practical examples","what":"Calculating resistance per group","title":"Antimicrobial Resistance Data Analysis","text":"manual approach, can use resistance susceptibility() function: use antibiotic class selectors select series antibiotic columns:","code":"example_isolates %>% # group by ward: group_by(ward) %>% # calculate AMR using resistance() for gentamicin and tobramycin # and get their 95% confidence intervals using sir_confidence_interval(): summarise(across(c(GEN, TOB), list(total_R = resistance, conf_int = function(x) sir_confidence_interval(x, collapse = \"-\")))) library(AMR) library(dplyr) out <- example_isolates %>% # group by ward: group_by(ward) %>% # calculate AMR using resistance(), over all aminoglycosides and polymyxins: summarise(across(c(aminoglycosides(), polymyxins()), resistance)) out # transform the antibiotic columns to names: out %>% set_ab_names() # transform the antibiotic column to ATC codes: out %>% set_ab_names(property = \"atc\")"},{"path":"https://msberends.github.io/AMR/index.html","id":"what-else-can-you-do-with-this-package","dir":"","previous_headings":"","what":"What else can you do with this package?","title":"Antimicrobial Resistance Data Analysis","text":"package intended comprehensive toolbox integrated AMR data analysis. package can used : Reference taxonomy microorganisms, since package contains microbial (sub)species List Prokaryotic names Standing Nomenclature (LPSN) Global Biodiversity Information Facility (GBIF) (manual) Interpreting raw MIC disk diffusion values, based CLSI EUCAST guideline (manual) Retrieving antimicrobial drug names, doses forms administration clinical health care records (manual) Determining first isolates used AMR data analysis (manual) Calculating antimicrobial resistance (tutorial) Determining multi-drug resistance (MDR) / multi-drug resistant organisms (MDRO) (tutorial) Calculating (empirical) susceptibility mono therapy combination therapies (tutorial) Predicting future antimicrobial resistance using regression models (tutorial) Getting properties microorganism (like Gram stain, species, genus family) (manual) Getting properties antibiotic (like name, code EARS-Net/ATC/LOINC/PubChem, defined daily dose trade name) (manual) Plotting antimicrobial resistance (tutorial) Applying EUCAST expert rules (manual) Getting SNOMED codes microorganism, getting properties microorganism based SNOMED code (manual) Getting LOINC codes antibiotic, getting properties antibiotic based LOINC code (manual) Machine reading EUCAST CLSI guidelines 2011-2021 translate MIC values disk diffusion diameters SIR (link) Principal component analysis AMR (tutorial)","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/index.html","id":"latest-official-version","dir":"","previous_headings":"Get this package","what":"Latest official version","title":"Antimicrobial Resistance Data Analysis","text":"package available official R network (CRAN). Install package R CRAN using command: downloaded installed automatically. RStudio, click menu Tools > Install Packages… type “AMR” press Install. Note: functions website may available latest release. use functions data sets mentioned website, install latest development version.","code":"install.packages(\"AMR\")"},{"path":"https://msberends.github.io/AMR/index.html","id":"latest-development-version","dir":"","previous_headings":"Get this package","what":"Latest development version","title":"Antimicrobial Resistance Data Analysis","text":"Please read Developer Guideline . latest unpublished development version can installed GitHub two ways: Manually, using: Automatically, using rOpenSci R-universe platform, adding R-universe address list repositories (‘repos’): , can install update AMR package like official release (e.g., using install.packages(\"AMR\") RStudio via Tools > Check Package Updates…).","code":"install.packages(\"remotes\") # if you haven't already remotes::install_github(\"msberends/AMR\") options(repos = c(getOption(\"repos\"), msberends = \"https://msberends.r-universe.dev\"))"},{"path":"https://msberends.github.io/AMR/index.html","id":"get-started","dir":"","previous_headings":"","what":"Get started","title":"Antimicrobial Resistance Data Analysis","text":"find conduct AMR data analysis, please continue reading get started click link ‘’ menu.","code":""},{"path":"https://msberends.github.io/AMR/index.html","id":"partners","dir":"","previous_headings":"","what":"Partners","title":"Antimicrobial Resistance Data Analysis","text":"development package part , related , made possible following non-profit organisations initiatives:","code":""},{"path":"https://msberends.github.io/AMR/index.html","id":"copyright","dir":"","previous_headings":"","what":"Copyright","title":"Antimicrobial Resistance Data Analysis","text":"R package free, open-source software licensed GNU General Public License v2.0 (GPL-2). nutshell, means package: May used commercial purposes May used private purposes May used patent purposes May modified, although: Modifications must released license distributing package Changes made code must documented May distributed, although: Source code must made available package distributed copy license copyright notice must included package. Comes LIMITATION liability Comes warranty","code":""},{"path":"https://msberends.github.io/AMR/reference/AMR-options.html","id":null,"dir":"Reference","previous_headings":"","what":"Options for the AMR package — AMR-options","title":"Options for the AMR package — AMR-options","text":"overview package-specific options() can set AMR package.","code":""},{"path":"https://msberends.github.io/AMR/reference/AMR-options.html","id":"options","dir":"Reference","previous_headings":"","what":"Options","title":"Options for the AMR package — AMR-options","text":"AMR_antibiogram_formatting_type numeric (1-12) use antibiogram(), indicate formatting type use. AMR_breakpoint_type character use .sir(), indicate breakpoint type use. must either \"ECOFF\", \"animal\", \"human\". AMR_cleaning_regex regular expression (case-insensitive) use .mo() mo_* functions, clean user input. default outcome mo_cleaning_regex(), removes texts brackets texts \"species\" \"serovar\". AMR_custom_ab file location RDS file, use custom antimicrobial drugs package. explained add_custom_antimicrobials(). AMR_custom_mo file location RDS file, use custom microorganisms package. explained add_custom_microorganisms(). AMR_eucastrules character set default types rules eucast_rules() function, must one : \"breakpoints\", \"expert\", \"\", \"custom\", \"\", defaults c(\"breakpoints\", \"expert\"). AMR_guideline character set default guideline interpreting MIC values disk diffusion diameters .sir(). Can guideline name (e.g., \"CLSI\") name year (e.g. \"CLSI 2019\"). default latest implemented EUCAST guideline, currently \"EUCAST 2024\". Supported guideline currently EUCAST (2011-2024) CLSI (2011-2024). AMR_ignore_pattern regular expression ignore (.e., make NA) match given .mo() mo_* functions. AMR_include_PKPD logical use .sir(), indicate PK/PD clinical breakpoints must applied last resort - default TRUE. AMR_include_screening logical use .sir(), indicate clinical breakpoints screening allowed - default FALSE. AMR_keep_synonyms logical use .mo() mo_* functions, indicate old, previously valid taxonomic names must preserved corrected currently accepted names. default FALSE. AMR_locale character set language AMR package, can one supported language names ISO-639-1 codes: English (en), Chinese (zh), Czech (cs), Danish (da), Dutch (nl), Finnish (fi), French (fr), German (de), Greek (el), Italian (), Japanese (ja), Norwegian (), Polish (pl), Portuguese (pt), Romanian (ro), Russian (ru), Spanish (es), Swedish (sv), Turkish (tr), Ukrainian (uk). default current system language (supported, English otherwise). AMR_mo_source file location manual code list used .mo() mo_* functions. explained set_mo_source().","code":""},{"path":"https://msberends.github.io/AMR/reference/AMR-options.html","id":"saving-settings-between-sessions","dir":"Reference","previous_headings":"","what":"Saving Settings Between Sessions","title":"Options for the AMR package — AMR-options","text":"Settings R saved globally thus lost R exited. can save options .Rprofile file, user-specific file. can edit using: file, can set options ... ...add Portuguese language support antibiotics, allow PK/PD rules interpreting MIC values .sir().","code":"utils::file.edit(\"~/.Rprofile\") options(AMR_locale = \"pt\") options(AMR_include_PKPD = TRUE)"},{"path":"https://msberends.github.io/AMR/reference/AMR-options.html","id":"share-options-within-team","dir":"Reference","previous_headings":"","what":"Share Options Within Team","title":"Options for the AMR package — AMR-options","text":"global approach, e.g. within (data) team, save options file remote file location, shared network drive, user read file automatically start-. work way: Save plain text file e.g. \"X:/team_folder/R_options.R\" fill preferred settings. user, open .Rprofile file using utils::file.edit(\"~/.Rprofile\") put : Reload R/RStudio check settings getOption(), e.g. getOption(\"AMR_locale\") set value. Now team settings configured one place, can maintained .","code":"source(\"X:/team_folder/R_options.R\")"},{"path":"https://msberends.github.io/AMR/reference/AMR.html","id":null,"dir":"Reference","previous_headings":"","what":"The AMR Package — AMR","title":"The AMR Package — AMR","text":"Welcome AMR package. AMR package free open-source R package zero dependencies simplify analysis prediction Antimicrobial Resistance (AMR) work microbial antimicrobial data properties, using evidence-based methods. aim provide standard clean reproducible AMR data analysis, can therefore empower epidemiological analyses continuously enable surveillance treatment evaluation setting. Many different researchers around globe continually helping us make successful durable project! work published Journal Statistical Software (Volume 104(3); doi:10.18637/jss.v104.i03 ) formed basis two PhD theses (doi:10.33612/diss.177417131 doi:10.33612/diss.192486375 ). installing package, R knows ~79 000 microorganisms (updated June 2024) ~600 antibiotic, antimycotic antiviral drugs name code (including ATC, EARS-Net, ASIARS-Net, PubChem, LOINC SNOMED CT), knows valid SIR MIC values. integral clinical breakpoint guidelines CLSI EUCAST included, even epidemiological cut-(ECOFF) values. supports can read data format, including WHONET data. package works Windows, macOS Linux versions R since R-3.0 (April 2013). designed work setting, including limited resources. created routine data analysis academic research Faculty Medical Sciences public University Groningen, collaboration non-profit organisations Certe Medical Diagnostics Advice Foundation University Medical Center Groningen. AMR package available English, Chinese, Czech, Danish, Dutch, Finnish, French, German, Greek, Italian, Japanese, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish, Swedish, Turkish, Ukrainian. Antimicrobial drug (group) names colloquial microorganism names provided languages.","code":""},{"path":"https://msberends.github.io/AMR/reference/AMR.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"The AMR Package — AMR","text":"cite AMR publications use: Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C (2022). \"AMR: R Package Working Antimicrobial Resistance Data.\" Journal Statistical Software, 104(3), 1-31. doi:10.18637/jss.v104.i03 BibTeX entry LaTeX users :","code":"@Article{, title = {{AMR}: An {R} Package for Working with Antimicrobial Resistance Data}, author = {Matthijs S. Berends and Christian F. Luz and Alexander W. Friedrich and Bhanu N. M. Sinha and Casper J. Albers and Corinna Glasner}, journal = {Journal of Statistical Software}, year = {2022}, volume = {104}, number = {3}, pages = {1--31}, doi = {10.18637/jss.v104.i03}, }"},{"path":"https://msberends.github.io/AMR/reference/AMR.html","id":"reference-data-publicly-available","dir":"Reference","previous_headings":"","what":"Reference Data Publicly Available","title":"The AMR Package — AMR","text":"data sets AMR package (microorganisms, antibiotics, SIR interpretation, EUCAST rules, etc.) publicly freely available download following formats: R, MS Excel, Apache Feather, Apache Parquet, SPSS, Stata. also provide tab-separated plain text files machine-readable suitable input software program, laboratory information systems. Please visit website download links. actual files course available GitHub repository.","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/reference/AMR.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"The AMR Package — AMR","text":"Maintainer: Matthijs S. Berends m.s.berends@umcg.nl (ORCID) Authors: Dennis Souverein (ORCID) [contributor] Erwin E. . Hassing [contributor] contributors: Casper J. Albers (ORCID) [thesis advisor] Larisse Bolton (ORCID) [contributor] Peter Dutey-Magni (ORCID) [contributor] Judith M. Fonville [contributor] Alex W. Friedrich (ORCID) [thesis advisor] Corinna Glasner (ORCID) [thesis advisor] Eric H. L. C. M. Hazenberg [contributor] Gwen Knight (ORCID) [contributor] Annick Lenglet (ORCID) [contributor] Christian F. Luz (ORCID) [contributor] Bart C. Meijer [contributor] Dmytro Mykhailenko [contributor] Anton Mymrikov [contributor] Andrew P. Norgan (ORCID) [contributor] Sofia Ny (ORCID) [contributor] Matthew Saab [contributor] Jonas Salm [contributor] Javier Sanchez (ORCID) [contributor] Rogier P. Schade [contributor] Bhanu N. M. Sinha (ORCID) [thesis advisor] Jason Stull (ORCID) [contributor] Anthony Underwood (ORCID) [contributor] Anita Williams (ORCID) [contributor]","code":""},{"path":"https://msberends.github.io/AMR/reference/WHOCC.html","id":null,"dir":"Reference","previous_headings":"","what":"WHOCC: WHO Collaborating Centre for Drug Statistics Methodology — WHOCC","title":"WHOCC: WHO Collaborating Centre for Drug Statistics Methodology — WHOCC","text":"antimicrobial drugs official names, ATC codes, ATC groups defined daily dose (DDD) included package, using Collaborating Centre Drug Statistics Methodology.","code":""},{"path":"https://msberends.github.io/AMR/reference/WHOCC.html","id":"whocc","dir":"Reference","previous_headings":"","what":"WHOCC","title":"WHOCC: WHO Collaborating Centre for Drug Statistics Methodology — WHOCC","text":"package contains ~550 antibiotic, antimycotic antiviral drugs Anatomical Therapeutic Chemical (ATC) codes, ATC groups Defined Daily Dose (DDD) World Health Organization Collaborating Centre Drug Statistics Methodology (WHOCC, https://atcddd.fhi.) Pharmaceuticals Community Register European Commission (https://ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm). become gold standard international drug utilisation monitoring research. WHOCC located Oslo Norwegian Institute Public Health funded Norwegian government. European Commission executive European Union promotes general interest. NOTE: WHOCC copyright allow use commercial purposes, unlike info package. See https://atcddd.fhi./copyright_disclaimer/.","code":""},{"path":"https://msberends.github.io/AMR/reference/WHOCC.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"WHOCC: WHO Collaborating Centre for Drug Statistics Methodology — WHOCC","text":"","code":"as.ab(\"meropenem\") #> Class 'ab' #> [1] MEM ab_name(\"J01DH02\") #> [1] \"Meropenem\" ab_tradenames(\"flucloxacillin\") #> [1] \"culpen\" \"floxacillin\" \"floxacillin sodium\" #> [4] \"floxapen\" \"floxapen sodium salt\" \"fluclox\" #> [7] \"flucloxacilina\" \"flucloxacillin\" \"flucloxacilline\" #> [10] \"flucloxacillinum\" \"fluorochloroxacillin\" \"staphylex\""},{"path":"https://msberends.github.io/AMR/reference/WHONET.html","id":null,"dir":"Reference","previous_headings":"","what":"Data Set with 500 Isolates - WHONET Example — WHONET","title":"Data Set with 500 Isolates - WHONET Example — WHONET","text":"example data set exact structure export file WHONET. files can used package, example data set shows. antibiotic results example_isolates data set. patient names created using online surname generators place practice purposes.","code":""},{"path":"https://msberends.github.io/AMR/reference/WHONET.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Data Set with 500 Isolates - WHONET Example — WHONET","text":"","code":"WHONET"},{"path":"https://msberends.github.io/AMR/reference/WHONET.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Data Set with 500 Isolates - WHONET Example — WHONET","text":"tibble 500 observations 53 variables: Identification number ID sample Specimen number ID specimen Organism Name microorganism. analysis, transform valid microbial class, using .mo(). Country Country origin Laboratory Name laboratory Last name Fictitious last name patient First name Fictitious initial patient Sex Fictitious gender patient Age Fictitious age patient Age category Age group, can also looked using age_groups() Date admissionDate hospital admission Specimen dateDate specimen received laboratory Specimen type Specimen type group Specimen type (Numeric) Translation \"Specimen type\" Reason Reason request Differential Diagnosis Isolate number ID isolate Organism type Type microorganism, can also looked using mo_type() Serotype Serotype microorganism Beta-lactamase Microorganism produces beta-lactamase? ESBL Microorganism produces extended spectrum beta-lactamase? Carbapenemase Microorganism produces carbapenemase? MRSA screening test Microorganism possible MRSA? Inducible clindamycin resistance Clindamycin can induced? Comment comments Date data entryDate data entered WHONET AMP_ND10:CIP_EE 28 different antibiotics. can lookup abbreviations antibiotics data set, use e.g. ab_name(\"AMP\") get official name immediately. analysis, transform valid antibiotic class, using .sir().","code":""},{"path":"https://msberends.github.io/AMR/reference/WHONET.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Data Set with 500 Isolates - WHONET Example — WHONET","text":"Like data sets package, data set publicly available download following formats: R, MS Excel, Apache Feather, Apache Parquet, SPSS, Stata. Please visit website download links. actual files course available GitHub repository.","code":""},{"path":"https://msberends.github.io/AMR/reference/WHONET.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Data Set with 500 Isolates - WHONET Example — WHONET","text":"","code":"WHONET #> # A tibble: 500 × 53 #> `Identification number` `Specimen number` Organism Country Laboratory #> #> 1 fe41d7bafa 1748 SPN Belgium National … #> 2 91f175ec37 1767 eco The Netherlands National … #> 3 cc4015056e 1343 eco The Netherlands National … #> 4 e864b692f5 1894 MAP Denmark National … #> 5 3d051fe345 1739 PVU Belgium National … #> 6 c80762a08d 1846 103 The Netherlands National … #> 7 8022d3727c 1628 103 Denmark National … #> 8 f3dc5f553d 1493 eco The Netherlands National … #> 9 15add38f6c 1847 eco France National … #> 10 fd41248def 1458 eco Germany National … #> # ℹ 490 more rows #> # ℹ 48 more variables: `Last name` , `First name` , Sex , #> # Age , `Age category` , `Date of admission` , #> # `Specimen date`