mirror of
https://github.com/msberends/AMR.git
synced 2025-07-11 03:42:01 +02:00
(v1.5.0.9006) major documentation update
This commit is contained in:
@ -12,7 +12,7 @@
|
||||
\alias{proportion_S}
|
||||
\alias{proportion_df}
|
||||
\alias{rsi_df}
|
||||
\title{Calculate microbial resistance}
|
||||
\title{Calculate Microbial Resistance}
|
||||
\source{
|
||||
\strong{M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 4th Edition}, 2014, \emph{Clinical and Laboratory Standards Institute (CLSI)}. \url{https://clsi.org/standards/products/microbiology/documents/m39/}.
|
||||
}
|
||||
@ -52,13 +52,13 @@ rsi_df(
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{...}{one or more vectors (or columns) with antibiotic interpretations. They will be transformed internally with \code{\link[=as.rsi]{as.rsi()}} if needed. Use multiple columns to calculate (the lack of) co-resistance: the probability where one of two drugs have a resistant or susceptible result. See Examples.}
|
||||
\item{...}{one or more vectors (or columns) with antibiotic interpretations. They will be transformed internally with \code{\link[=as.rsi]{as.rsi()}} if needed. Use multiple columns to calculate (the lack of) co-resistance: the probability where one of two drugs have a resistant or susceptible result. See \emph{Examples}.}
|
||||
|
||||
\item{minimum}{the minimum allowed number of available (tested) isolates. Any isolate count lower than \code{minimum} will return \code{NA} with a warning. The default number of \code{30} isolates is advised by the Clinical and Laboratory Standards Institute (CLSI) as best practice, see Source.}
|
||||
\item{minimum}{the minimum allowed number of available (tested) isolates. Any isolate count lower than \code{minimum} will return \code{NA} with a warning. The default number of \code{30} isolates is advised by the Clinical and Laboratory Standards Institute (CLSI) as best practice, see \emph{Source}.}
|
||||
|
||||
\item{as_percent}{a logical to indicate whether the output must be returned as a hundred fold with \% sign (a character). A value of \code{0.123456} will then be returned as \code{"12.3\%"}.}
|
||||
|
||||
\item{only_all_tested}{(for combination therapies, i.e. using more than one variable for \code{...}): a logical to indicate that isolates must be tested for all antibiotics, see section \emph{Combination therapy} below}
|
||||
\item{only_all_tested}{(for combination therapies, i.e. using more than one variable for \code{...}): a logical to indicate that isolates must be tested for all antibiotics, see section \emph{Combination Therapy} below}
|
||||
|
||||
\item{data}{a \link{data.frame} containing columns with class \code{\link{rsi}} (see \code{\link[=as.rsi]{as.rsi()}})}
|
||||
|
||||
@ -74,7 +74,7 @@ rsi_df(
|
||||
A \link{double} or, when \code{as_percent = TRUE}, a \link{character}.
|
||||
}
|
||||
\description{
|
||||
These functions can be used to calculate the (co-)resistance or susceptibility of microbial isolates (i.e. percentage of S, SI, I, IR or R). All functions support quasiquotation with pipes, can be used in \code{summarise()} from the \code{dplyr} package and also support grouped variables, please see \emph{Examples}.
|
||||
These functions can be used to calculate the (co-)resistance or susceptibility of microbial isolates (i.e. percentage of S, SI, I, IR or R). All functions support quasiquotation with pipes, can be used in \code{summarise()} from the \code{dplyr} package and also support grouped variables, see \emph{Examples}.
|
||||
|
||||
\code{\link[=resistance]{resistance()}} should be used to calculate resistance, \code{\link[=susceptibility]{susceptibility()}} should be used to calculate susceptibility.\cr
|
||||
}
|
||||
@ -87,7 +87,7 @@ These functions are not meant to count isolates, but to calculate the proportion
|
||||
|
||||
The function \code{\link[=proportion_df]{proportion_df()}} takes any variable from \code{data} that has an \code{\link{rsi}} class (created with \code{\link[=as.rsi]{as.rsi()}}) and calculates the proportions R, I and S. It also supports grouped variables. The function \code{\link[=rsi_df]{rsi_df()}} works exactly like \code{\link[=proportion_df]{proportion_df()}}, but adds the number of isolates.
|
||||
}
|
||||
\section{Combination therapy}{
|
||||
\section{Combination Therapy}{
|
||||
|
||||
When using more than one variable for \code{...} (= combination therapy), use \code{only_all_tested} to only count isolates that are tested for all antibiotics/variables that you test them for. See this example for two antibiotics, Drug A and Drug B, about how \code{\link[=susceptibility]{susceptibility()}} works to calculate the \%SI:\preformatted{--------------------------------------------------------------------
|
||||
only_all_tested = FALSE only_all_tested = TRUE
|
||||
@ -118,7 +118,7 @@ and that, in combination therapies, for \code{only_all_tested = FALSE} applies t
|
||||
Using \code{only_all_tested} has no impact when only using one antibiotic as input.
|
||||
}
|
||||
|
||||
\section{Stable lifecycle}{
|
||||
\section{Stable Lifecycle}{
|
||||
|
||||
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
|
||||
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
|
||||
@ -141,7 +141,7 @@ A microorganism is categorised as \emph{Susceptible, Increased exposure} when th
|
||||
This AMR package honours this new insight. Use \code{\link[=susceptibility]{susceptibility()}} (equal to \code{\link[=proportion_SI]{proportion_SI()}}) to determine antimicrobial susceptibility and \code{\link[=count_susceptible]{count_susceptible()}} (equal to \code{\link[=count_SI]{count_SI()}}) to count susceptible isolates.
|
||||
}
|
||||
|
||||
\section{Read more on our website!}{
|
||||
\section{Read more on Our Website!}{
|
||||
|
||||
On our website \url{https://msberends.github.io/AMR/} you can find \href{https://msberends.github.io/AMR/articles/AMR.html}{a comprehensive tutorial} about how to conduct AMR analysis, the \href{https://msberends.github.io/AMR/reference/}{complete documentation of all functions} and \href{https://msberends.github.io/AMR/articles/WHONET.html}{an example analysis using WHONET data}. As we would like to better understand the backgrounds and needs of our users, please \href{https://msberends.github.io/AMR/survey.html}{participate in our survey}!
|
||||
}
|
||||
|
Reference in New Issue
Block a user