1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-08 14:01:55 +02:00

(v0.6.1.9046) ggplot fix

This commit is contained in:
2019-05-31 20:25:57 +02:00
parent f03f71eced
commit 4ed27c7e7a
15 changed files with 287 additions and 191 deletions

20
R/age.R
View File

@ -47,8 +47,8 @@ age <- function(x, reference = Sys.Date(), exact = FALSE) {
stop("`x` and `reference` must be of same length, or `reference` must be of length 1.")
}
}
x <- base::as.POSIXlt(x)
reference <- base::as.POSIXlt(reference)
x <- as.POSIXlt(x)
reference <- as.POSIXlt(reference)
# from https://stackoverflow.com/a/25450756/4575331
years_gap <- reference$year - x$year
@ -59,13 +59,17 @@ age <- function(x, reference = Sys.Date(), exact = FALSE) {
# add decimals
if (exact == TRUE) {
# get dates of `x` when `x` would have the year of `reference`
x_in_reference_year <- base::as.POSIXlt(paste0(format(reference, "%Y"), format(x, "-%m-%d")))
x_in_reference_year <- as.POSIXlt(paste0(format(reference, "%Y"), format(x, "-%m-%d")))
# get differences in days
n_days_x_rest <- base::as.double(base::difftime(reference, x_in_reference_year, units = "days"))
n_days_x_rest <- as.double(difftime(reference, x_in_reference_year, units = "days"))
# get numbers of days the years of `reference` has for a reliable denominator
n_days_reference_year <- base::as.POSIXlt(paste0(format(reference, "%Y"), "-12-31"))$yday + 1
n_days_reference_year <- as.POSIXlt(paste0(format(reference, "%Y"), "-12-31"))$yday + 1
# add decimal parts of year
ages <- ages + (n_days_x_rest / n_days_reference_year)
mod <- n_days_x_rest / n_days_reference_year
# negative mods are cases where `x_in_reference_year` > `reference` - so 'add' a year
mod[mod < 0] <- 1 + mod[mod < 0]
# and finally add to ages
ages <- ages + mod
}
if (any(ages < 0, na.rm = TRUE)) {
@ -79,10 +83,6 @@ age <- function(x, reference = Sys.Date(), exact = FALSE) {
ages
}
age_to_toDate <- function(age) {
}
#' Split ages into age groups
#'
#' Split ages into age groups defined by the \code{split} parameter. This allows for easier demographic (antimicrobial resistance) analysis.

View File

@ -21,7 +21,7 @@
#' AMR plots with \code{ggplot2}
#'
#' Use these functions to create bar plots for antimicrobial resistance analysis. All functions rely on internal \code{\link[ggplot2]{ggplot}} functions.
#' Use these functions to create bar plots for antimicrobial resistance analysis. All functions rely on internal \code{\link[ggplot2]{ggplot}2} functions.
#' @param data a \code{data.frame} with column(s) of class \code{"rsi"} (see \code{\link{as.rsi}})
#' @param position position adjustment of bars, either \code{"fill"} (default when \code{fun} is \code{\link{count_df}}), \code{"stack"} (default when \code{fun} is \code{\link{portion_df}}) or \code{"dodge"}
#' @param x variable to show on x axis, either \code{"Antibiotic"} (default) or \code{"Interpretation"} or a grouping variable
@ -32,11 +32,17 @@
#' @param fun function to transform \code{data}, either \code{\link{count_df}} (default) or \code{\link{portion_df}}
#' @inheritParams portion
#' @param nrow (when using \code{facet}) number of rows
#' @param datalabels show datalabels using \code{labels_rsi_count}, will at default only be shown when \code{fun = count_df}
#' @param colours a named vector with colours for the bars. The names must be one or more of: S, SI, I, IR, R or be \code{FALSE} to use default \code{ggplot2} colours.
#' @param datalabels show datalabels using \code{labels_rsi_count}, will only be shown when \code{fun = count_df}
#' @param datalabels.size size of the datalabels
#' @param datalabels.colour colour of the datalabels
#' @param title text to show as title of the plot
#' @param subtitle text to show as subtitle of the plot
#' @param caption text to show as caption of the plot
#' @param x.title text to show as x axis description
#' @param y.title text to show as y axis description
#' @param ... other parameters passed on to \code{geom_rsi}
#' @details At default, the names of antibiotics will be shown on the plots using \code{\link{ab_name}}. This can be set with the option \code{get_antibiotic_names} (a logical value), so change it e.g. to \code{FALSE} with \code{options(get_antibiotic_names = FALSE)}.
#' @details At default, the names of antibiotics will be shown on the plots using \code{\link{ab_name}}. This can be set with the \code{translate_ab} parameter. See \code{\link{count_df}}.
#'
#' \strong{The functions}\cr
#' \code{geom_rsi} will take any variable from the data that has an \code{rsi} class (created with \code{\link{as.rsi}}) using \code{fun} (\code{\link{count_df}} at default, can also be \code{\link{portion_df}}) and will plot bars with the percentage R, I and S. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis.
@ -45,7 +51,7 @@
#'
#' \code{scale_y_percent} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2]{scale_continuous}}.
#'
#' \code{scale_rsi_colours} sets colours to the bars: green for S, yellow for I and red for R, using \code{\link[ggplot2]{scale_brewer}}.
#' \code{scale_rsi_colours} sets colours to the bars: pastel blue for S, pastel turquoise for I and pastel red for R, using \code{\link[ggplot2]{scale_brewer}}.
#'
#' \code{theme_rsi} is a \code{ggplot \link[ggplot2]{theme}} with minimal distraction.
#'
@ -65,7 +71,7 @@
#' geom_rsi()
#'
#' # prettify the plot using some additional functions:
#' df <- septic_patients[, c("AMX", "NIT", "FOS", "TMP", "CIP")]
#' df <- septic_patients %>% select(AMX, NIT, FOS, TMP, CIP)
#' ggplot(df) +
#' geom_rsi() +
#' scale_y_percent() +
@ -92,6 +98,10 @@
#' linetype = 2,
#' alpha = 0.25)
#'
#' septic_patients %>%
#' select(AMX) %>%
#' ggplot_rsi(colours = c(SI = "yellow"))
#'
#' # resistance of ciprofloxacine per age group
#' septic_patients %>%
#' mutate(first_isolate = first_isolate(.)) %>%
@ -108,45 +118,45 @@
#' septic_patients %>%
#' select(AMX, NIT, FOS, TMP, CIP) %>%
#' ggplot_rsi() + scale_fill_viridis_d()
#' # a shorter version which also adjusts data label colours:
#' septic_patients %>%
#' select(AMX, NIT, FOS, TMP, CIP) %>%
#' ggplot_rsi(colours = FALSE)
#'
#'
#' # it also supports groups (don't forget to use the group var on `x` or `facet`):
#' septic_patients %>%
#' select(hospital_id, AMX, NIT, FOS, TMP, CIP) %>%
#' group_by(hospital_id) %>%
#' ggplot_rsi(x = hospital_id,
#' facet = Antibiotic,
#' nrow = 1) +
#' labs(title = "AMR of Anti-UTI Drugs Per Hospital",
#' x = "Hospital")
#' ggplot_rsi(x = "hospital_id",
#' facet = "Antibiotic",
#' nrow = 1,
#' title = "AMR of Anti-UTI Drugs Per Hospital",
#' x.title = "Hospital",
#' datalabels = FALSE)
#'
#' # genuine analysis: check 2 most prevalent microorganisms
#' # genuine analysis: check 3 most prevalent microorganisms
#' septic_patients %>%
#' # create new bacterial ID's, with all CoNS under the same group (Becker et al.)
#' mutate(mo = as.mo(mo, Becker = TRUE)) %>%
#' # filter on top three bacterial ID's
#' filter(mo %in% top_freq(freq(.$mo), 3)) %>%
#' # determine first isolates
#' mutate(first_isolate = first_isolate(.,
#' col_date = "date",
#' col_patient_id = "patient_id",
#' col_mo = "mo")) %>%
#' # filter on first isolates
#' filter(first_isolate == TRUE) %>%
#' filter_first_isolate() %>%
#' # get short MO names (like "E. coli")
#' mutate(mo = mo_shortname(mo, Becker = TRUE)) %>%
#' mutate(bug = mo_shortname(mo, Becker = TRUE)) %>%
#' # select this short name and some antiseptic drugs
#' select(mo, CXM, GEN, CIP) %>%
#' select(bug, CXM, GEN, CIP) %>%
#' # group by MO
#' group_by(mo) %>%
#' group_by(bug) %>%
#' # plot the thing, putting MOs on the facet
#' ggplot_rsi(x = Antibiotic,
#' facet = mo,
#' ggplot_rsi(x = "Antibiotic",
#' facet = "bug",
#' translate_ab = FALSE,
#' nrow = 1) +
#' labs(title = "AMR of Top Three Microorganisms In Blood Culture Isolates",
#' subtitle = "Only First Isolates, CoNS grouped according to Becker et al. (2014)",
#' x = "Microorganisms")
#' nrow = 1,
#' title = "AMR of Top Three Microorganisms In Blood Culture Isolates",
#' subtitle = expression(paste("Only First Isolates, CoNS grouped according to Becker ", italic("et al."), " (2014)")),
#' x.title = "Antibiotic (EARS-Net code)")
#' }
ggplot_rsi <- function(data,
position = NULL,
@ -162,9 +172,19 @@ ggplot_rsi <- function(data,
language = get_locale(),
fun = count_df,
nrow = NULL,
datalabels = FALSE,
datalabels.size = 3,
datalabels.colour = "white",
colours = c(S = "#61a8ff",
SI = "#61a8ff",
I = "#61f7ff",
IR = "#ff6961",
R = "#ff6961"),
datalabels = TRUE,
datalabels.size = 2.5,
datalabels.colour = "gray15",
title = NULL,
subtitle = NULL,
caption = NULL,
x.title = NULL,
y.title = NULL,
...) {
stopifnot_installed_package("ggplot2")
@ -196,6 +216,10 @@ ggplot_rsi <- function(data,
facet <- NULL
}
if (is.null(position)) {
position <- "fill"
}
p <- ggplot2::ggplot(data = data) +
geom_rsi(position = position, x = x, fill = fill, translate_ab = translate_ab,
fun = fun, combine_SI = combine_SI, combine_IR = combine_IR, ...) +
@ -203,11 +227,13 @@ ggplot_rsi <- function(data,
if (fill == "Interpretation") {
# set RSI colours
p <- p + scale_rsi_colours()
}
if (is.null(position)) {
position <- "fill"
if (isFALSE(colours) & missing(datalabels.colour)) {
# set datalabel colour to middle gray
datalabels.colour <- "gray50"
}
p <- p + scale_rsi_colours(colours = colours)
}
if (fun_name == "portion_df"
| (fun_name == "count_df" & identical(position, "fill"))) {
# portions, so use y scale with percentage
@ -217,6 +243,9 @@ ggplot_rsi <- function(data,
if (fun_name == "count_df" & datalabels == TRUE) {
p <- p + labels_rsi_count(position = position,
x = x,
translate_ab = translate_ab,
combine_SI = combine_SI,
combine_IR = combine_IR,
datalabels.size = datalabels.size,
datalabels.colour = datalabels.colour)
}
@ -225,6 +254,12 @@ ggplot_rsi <- function(data,
p <- p + facet_rsi(facet = facet, nrow = nrow)
}
p <- p + ggplot2::labs(title = title,
subtitle = subtitle,
caption = caption,
x = x.title,
y = y.title)
p
}
@ -261,6 +296,10 @@ geom_rsi <- function(position = NULL,
}
}
if (identical(position, "fill")) {
position <- ggplot2::position_fill(vjust = 0.5, reverse = TRUE)
}
x <- x[1]
# we work with aes_string later on
@ -296,7 +335,7 @@ facet_rsi <- function(facet = c("Interpretation", "Antibiotic"), nrow = NULL) {
stopifnot_installed_package("ggplot2")
facet <- facet[1]
facet <- facet[1]
# we work with aes_string later on
facet_deparse <- deparse(substitute(facet))
@ -331,37 +370,49 @@ scale_y_percent <- function(breaks = seq(0, 1, 0.1), limits = NULL) {
#' @rdname ggplot_rsi
#' @export
scale_rsi_colours <- function() {
scale_rsi_colours <- function(colours = c(S = "#61a8ff",
SI = "#61a8ff",
I = "#61f7ff",
IR = "#ff6961",
R = "#ff6961")) {
stopifnot_installed_package("ggplot2")
#ggplot2::scale_fill_brewer(palette = "RdYlGn")
#ggplot2::scale_fill_manual(values = c("#b22222", "#ae9c20", "#7cfc00"))
# mixed using https://www.colorhexa.com/b22222
# and https://www.w3schools.com/colors/colors_mixer.asp
ggplot2::scale_fill_manual(values = c(S = "#22b222",
SI = "#22b222",
I = "#548022",
IR = "#b22222",
R = "#b22222"))
if (!identical(colours, FALSE)) {
original_cols <- c(S = "#61a8ff",
SI = "#61a8ff",
I = "#61f7ff",
IR = "#ff6961",
R = "#ff6961")
colours <- replace(original_cols, names(colours), colours)
ggplot2::scale_fill_manual(values = colours)
}
}
#' @rdname ggplot_rsi
#' @export
theme_rsi <- function() {
stopifnot_installed_package("ggplot2")
ggplot2::theme_minimal() +
ggplot2::theme_minimal(base_size = 10) +
ggplot2::theme(panel.grid.major.x = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
panel.grid.major.y = ggplot2::element_line(colour = "grey75"))
panel.grid.major.y = ggplot2::element_line(colour = "grey75"),
# center title and subtitle
plot.title = ggplot2::element_text(hjust = 0.5),
plot.subtitle = ggplot2::element_text(hjust = 0.5))
}
#' @rdname ggplot_rsi
#' @importFrom dplyr mutate %>% group_by_at
#' @export
labels_rsi_count <- function(position = NULL,
x = "Antibiotic",
translate_ab = "name",
combine_SI = TRUE,
combine_IR = FALSE,
datalabels.size = 3,
datalabels.colour = "white") {
datalabels.colour = "gray15") {
stopifnot_installed_package("ggplot2")
if (is.null(position)) {
position <- "fill"
@ -369,23 +420,24 @@ labels_rsi_count <- function(position = NULL,
if (identical(position, "fill")) {
position <- ggplot2::position_fill(vjust = 0.5, reverse = TRUE)
}
x_name <- x
ggplot2::geom_text(mapping = ggplot2::aes_string(label = "lbl",
x = x,
y = "Value"),
position = position,
data = getlbls,
inherit.aes = FALSE,
size = datalabels.size,
colour = datalabels.colour)
colour = datalabels.colour,
lineheight = 0.75,
data = function(x) {
# labels are only shown when function is count_df,
# so no need parameterise it here
count_df(data = x,
translate_ab = translate_ab,
combine_SI = combine_SI,
combine_IR = combine_IR) %>%
group_by_at(x_name) %>%
mutate(lbl = paste0(percent(Value / sum(Value, na.rm = TRUE), force_zero = TRUE),
"\n(n=", Value, ")"))
})
}
#' @importFrom dplyr %>% group_by mutate
getlbls <- function(data) {
data %>%
count_df() %>%
group_by(Antibiotic) %>%
mutate(lbl = paste0(percent(Value / sum(Value, na.rm = TRUE), force_zero = TRUE),
" (n=", Value, ")")) %>%
mutate(lbl = ifelse(lbl == "0.0% (n=0)", "", lbl))
}

View File

@ -157,55 +157,32 @@ mo_shortname <- function(x, language = get_locale(), ...) {
Lancefield <- FALSE
}
shorten <- function(x) {
# easiest: no transformations needed
x <- mo_fullname(x, language = "en")
# shorten for the ones that have a space: shorten first word and write out second word
shorten_these <- x %like% " " & !x %like% "Streptococcus group "
x[shorten_these] <- paste0(substr(x[shorten_these], 1, 1),
". ",
x[shorten_these] %>%
strsplit(" ", fixed = TRUE) %>%
unlist() %>%
.[2])
x
}
if (isFALSE(Becker) & isFALSE(Lancefield)) {
result <- shorten(x)
} else {
# get result without transformations
res1 <- AMR::as.mo(x, Becker = FALSE, Lancefield = FALSE, reference_df = dots$reference_df)
# and result with transformations
res2 <- suppressWarnings(AMR::as.mo(res1, ...))
if (res1 == res2
& !res1 %like% "^B_STRPT_GR") {
result <- shorten(x)
} else {
res2_fullname <- mo_fullname(res2, language = language)
res2_fullname[res2_fullname %like% " \\(CoNS\\)"] <- "CoNS"
res2_fullname[res2_fullname %like% " \\(CoPS\\)"] <- "CoPS"
res2_fullname[res2_fullname %like% " \\(KNS\\)"] <- "KNS"
res2_fullname[res2_fullname %like% " \\(KPS\\)"] <- "KPS"
res2_fullname[res2_fullname %like% " \\(CNS\\)"] <- "CNS"
res2_fullname[res2_fullname %like% " \\(CPS\\)"] <- "CPS"
res2_fullname <- gsub("Streptococcus (group|Gruppe|gruppe|groep|grupo|gruppo|groupe) (.)",
"G\\2S",
res2_fullname) # turn "Streptococcus group A" and "Streptococcus grupo A" to "GAS"
res2_fullname_vector <- res2_fullname[res2_fullname == mo_fullname(res1)]
res2_fullname[res2_fullname == mo_fullname(res1)] <- paste0(substr(mo_genus(res2_fullname_vector), 1, 1),
". ",
suppressWarnings(mo_species(res2_fullname_vector)))
if (sum(res1 == res2, na.rm = TRUE) > 0) {
res1[res1 == res2] <- paste0(substr(mo_genus(res1[res1 == res2]), 1, 1),
". ",
suppressWarnings(mo_species(res1[res1 == res2])))
}
res1[res1 != res2] <- res2_fullname
result <- as.character(res1)
}
# get result without transformations
res1 <- AMR::as.mo(x, Becker = FALSE, Lancefield = FALSE, reference_df = dots$reference_df)
# and result with transformations
res2 <- suppressWarnings(AMR::as.mo(res1, ...))
res2_fullname <- mo_fullname(res2, language = language)
res2_fullname[res2_fullname %like% " \\(CoNS\\)"] <- "CoNS"
res2_fullname[res2_fullname %like% " \\(CoPS\\)"] <- "CoPS"
res2_fullname[res2_fullname %like% " \\(KNS\\)"] <- "KNS"
res2_fullname[res2_fullname %like% " \\(KPS\\)"] <- "KPS"
res2_fullname[res2_fullname %like% " \\(CNS\\)"] <- "CNS"
res2_fullname[res2_fullname %like% " \\(CPS\\)"] <- "CPS"
res2_fullname[res2_fullname %like% " \\(SCN\\)"] <- "SCN"
res2_fullname <- gsub("Streptococcus (group|Gruppe|gruppe|groep|grupo|gruppo|groupe) (.)",
"G\\2S",
res2_fullname) # turn "Streptococcus group A" and "Streptococcus grupo A" to "GAS"
res2_fullname_vector <- res2_fullname[res2_fullname == mo_fullname(res1)]
res2_fullname[res2_fullname == mo_fullname(res1)] <- paste0(substr(mo_genus(res2_fullname_vector), 1, 1),
". ",
suppressWarnings(mo_species(res2_fullname_vector)))
if (sum(res1 == res2, na.rm = TRUE) > 0) {
res1[res1 == res2] <- paste0(substr(mo_genus(res1[res1 == res2]), 1, 1),
". ",
suppressWarnings(mo_species(res1[res1 == res2])))
}
res1[res1 != res2] <- res2_fullname
result <- as.character(res1)
t(result, language = language)
}