1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-09 00:02:38 +02:00

(v0.6.1.9046) ggplot fix

This commit is contained in:
2019-05-31 20:25:57 +02:00
parent f03f71eced
commit 4ed27c7e7a
15 changed files with 287 additions and 191 deletions

View File

@ -14,8 +14,11 @@ ggplot_rsi(data, position = NULL, x = "Antibiotic",
fill = "Interpretation", facet = NULL, breaks = seq(0, 1, 0.1),
limits = NULL, translate_ab = "name", combine_SI = TRUE,
combine_IR = FALSE, language = get_locale(), fun = count_df,
nrow = NULL, datalabels = FALSE, datalabels.size = 3,
datalabels.colour = "white", ...)
nrow = NULL, colours = c(S = "#61a8ff", SI = "#61a8ff", I =
"#61f7ff", IR = "#ff6961", R = "#ff6961"), datalabels = TRUE,
datalabels.size = 2.5, datalabels.colour = "gray15", title = NULL,
subtitle = NULL, caption = NULL, x.title = NULL, y.title = NULL,
...)
geom_rsi(position = NULL, x = c("Antibiotic", "Interpretation"),
fill = "Interpretation", translate_ab = "name",
@ -26,12 +29,14 @@ facet_rsi(facet = c("Interpretation", "Antibiotic"), nrow = NULL)
scale_y_percent(breaks = seq(0, 1, 0.1), limits = NULL)
scale_rsi_colours()
scale_rsi_colours(colours = c(S = "#61a8ff", SI = "#61a8ff", I =
"#61f7ff", IR = "#ff6961", R = "#ff6961"))
theme_rsi()
labels_rsi_count(position = NULL, x = "Antibiotic",
datalabels.size = 3, datalabels.colour = "white")
translate_ab = "name", combine_SI = TRUE, combine_IR = FALSE,
datalabels.size = 3, datalabels.colour = "gray15")
}
\arguments{
\item{data}{a \code{data.frame} with column(s) of class \code{"rsi"} (see \code{\link{as.rsi}})}
@ -60,19 +65,31 @@ labels_rsi_count(position = NULL, x = "Antibiotic",
\item{nrow}{(when using \code{facet}) number of rows}
\item{datalabels}{show datalabels using \code{labels_rsi_count}, will at default only be shown when \code{fun = count_df}}
\item{colours}{a named vector with colours for the bars. The names must be one or more of: S, SI, I, IR, R or be \code{FALSE} to use default \code{ggplot2} colours.}
\item{datalabels}{show datalabels using \code{labels_rsi_count}, will only be shown when \code{fun = count_df}}
\item{datalabels.size}{size of the datalabels}
\item{datalabels.colour}{colour of the datalabels}
\item{title}{text to show as title of the plot}
\item{subtitle}{text to show as subtitle of the plot}
\item{caption}{text to show as caption of the plot}
\item{x.title}{text to show as x axis description}
\item{y.title}{text to show as y axis description}
\item{...}{other parameters passed on to \code{geom_rsi}}
}
\description{
Use these functions to create bar plots for antimicrobial resistance analysis. All functions rely on internal \code{\link[ggplot2]{ggplot}} functions.
Use these functions to create bar plots for antimicrobial resistance analysis. All functions rely on internal \code{\link[ggplot2]{ggplot}2} functions.
}
\details{
At default, the names of antibiotics will be shown on the plots using \code{\link{ab_name}}. This can be set with the option \code{get_antibiotic_names} (a logical value), so change it e.g. to \code{FALSE} with \code{options(get_antibiotic_names = FALSE)}.
At default, the names of antibiotics will be shown on the plots using \code{\link{ab_name}}. This can be set with the \code{translate_ab} parameter. See \code{\link{count_df}}.
\strong{The functions}\cr
\code{geom_rsi} will take any variable from the data that has an \code{rsi} class (created with \code{\link{as.rsi}}) using \code{fun} (\code{\link{count_df}} at default, can also be \code{\link{portion_df}}) and will plot bars with the percentage R, I and S. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis.
@ -81,7 +98,7 @@ At default, the names of antibiotics will be shown on the plots using \code{\lin
\code{scale_y_percent} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2]{scale_continuous}}.
\code{scale_rsi_colours} sets colours to the bars: green for S, yellow for I and red for R, using \code{\link[ggplot2]{scale_brewer}}.
\code{scale_rsi_colours} sets colours to the bars: pastel blue for S, pastel turquoise for I and pastel red for R, using \code{\link[ggplot2]{scale_brewer}}.
\code{theme_rsi} is a \code{ggplot \link[ggplot2]{theme}} with minimal distraction.
@ -103,7 +120,7 @@ ggplot(septic_patients \%>\% select(AMX, NIT, FOS, TMP, CIP)) +
geom_rsi()
# prettify the plot using some additional functions:
df <- septic_patients[, c("AMX", "NIT", "FOS", "TMP", "CIP")]
df <- septic_patients \%>\% select(AMX, NIT, FOS, TMP, CIP)
ggplot(df) +
geom_rsi() +
scale_y_percent() +
@ -130,6 +147,10 @@ septic_patients \%>\%
linetype = 2,
alpha = 0.25)
septic_patients \%>\%
select(AMX) \%>\%
ggplot_rsi(colours = c(SI = "yellow"))
# resistance of ciprofloxacine per age group
septic_patients \%>\%
mutate(first_isolate = first_isolate(.)) \%>\%
@ -146,44 +167,44 @@ septic_patients \%>\%
septic_patients \%>\%
select(AMX, NIT, FOS, TMP, CIP) \%>\%
ggplot_rsi() + scale_fill_viridis_d()
# a shorter version which also adjusts data label colours:
septic_patients \%>\%
select(AMX, NIT, FOS, TMP, CIP) \%>\%
ggplot_rsi(colours = FALSE)
# it also supports groups (don't forget to use the group var on `x` or `facet`):
septic_patients \%>\%
select(hospital_id, AMX, NIT, FOS, TMP, CIP) \%>\%
group_by(hospital_id) \%>\%
ggplot_rsi(x = hospital_id,
facet = Antibiotic,
nrow = 1) +
labs(title = "AMR of Anti-UTI Drugs Per Hospital",
x = "Hospital")
ggplot_rsi(x = "hospital_id",
facet = "Antibiotic",
nrow = 1,
title = "AMR of Anti-UTI Drugs Per Hospital",
x.title = "Hospital",
datalabels = FALSE)
# genuine analysis: check 2 most prevalent microorganisms
# genuine analysis: check 3 most prevalent microorganisms
septic_patients \%>\%
# create new bacterial ID's, with all CoNS under the same group (Becker et al.)
mutate(mo = as.mo(mo, Becker = TRUE)) \%>\%
# filter on top three bacterial ID's
filter(mo \%in\% top_freq(freq(.$mo), 3)) \%>\%
# determine first isolates
mutate(first_isolate = first_isolate(.,
col_date = "date",
col_patient_id = "patient_id",
col_mo = "mo")) \%>\%
# filter on first isolates
filter(first_isolate == TRUE) \%>\%
filter_first_isolate() \%>\%
# get short MO names (like "E. coli")
mutate(mo = mo_shortname(mo, Becker = TRUE)) \%>\%
mutate(bug = mo_shortname(mo, Becker = TRUE)) \%>\%
# select this short name and some antiseptic drugs
select(mo, CXM, GEN, CIP) \%>\%
select(bug, CXM, GEN, CIP) \%>\%
# group by MO
group_by(mo) \%>\%
group_by(bug) \%>\%
# plot the thing, putting MOs on the facet
ggplot_rsi(x = Antibiotic,
facet = mo,
ggplot_rsi(x = "Antibiotic",
facet = "bug",
translate_ab = FALSE,
nrow = 1) +
labs(title = "AMR of Top Three Microorganisms In Blood Culture Isolates",
subtitle = "Only First Isolates, CoNS grouped according to Becker et al. (2014)",
x = "Microorganisms")
nrow = 1,
title = "AMR of Top Three Microorganisms In Blood Culture Isolates",
subtitle = expression(paste("Only First Isolates, CoNS grouped according to Becker ", italic("et al."), " (2014)")),
x.title = "Antibiotic (EARS-Net code)")
}
}