mirror of
https://github.com/msberends/AMR.git
synced 2025-07-08 07:51:57 +02:00
- For functions first_isolate
, EUCAST_rules
the antibiotic column names are case-insensitive
- Functions `first_isolate`, `EUCAST_rules` and `rsi_predict` supports tidyverse-like evaluation of parameters (no need to quote columns them anymore) - Functions `clipboard_import` and `clipboard_export` as helper functions to quickly copy and paste from/to software like Excel and SPSS - Renamed dataset `bactlist` to `microorganisms`
This commit is contained in:
61
R/data.R
61
R/data.R
@ -39,7 +39,7 @@
|
||||
#' \item{\code{useful_grampositive}}{\code{FALSE} if not useful according to EUCAST, \code{NA} otherwise (see Source)}
|
||||
#' }
|
||||
#' @source - World Health Organization: \url{https://www.whocc.no/atc_ddd_index/} \cr - EUCAST - Expert rules intrinsic exceptional V3.1 \cr - MOLIS (LIS of Certe): \url{https://www.certe.nl} \cr - GLIMS (LIS of UMCG): \url{https://www.umcg.nl}
|
||||
#' @seealso \code{\link{bactlist}}
|
||||
#' @seealso \code{\link{microorganisms}}
|
||||
# last two columns created with:
|
||||
# antibiotics %>%
|
||||
# mutate(useful_gramnegative =
|
||||
@ -63,7 +63,7 @@
|
||||
|
||||
#' Dataset with ~2500 microorganisms
|
||||
#'
|
||||
#' A dataset containing all microorganisms of MOLIS. MO codes of the UMCG can be looked up using \code{\link{bactlist.umcg}}.
|
||||
#' A dataset containing 2500 microorganisms. MO codes of the UMCG can be looked up using \code{\link{microorganisms.umcg}}.
|
||||
#' @format A data.frame with 2507 observations and 12 variables:
|
||||
#' \describe{
|
||||
#' \item{\code{bactid}}{ID of microorganism}
|
||||
@ -80,24 +80,24 @@
|
||||
#' \item{\code{gramstain_nl}}{Gram of microorganism in Dutch, like \code{"Negatieve staven"}}
|
||||
#' }
|
||||
#' @source MOLIS (LIS of Certe) - \url{https://www.certe.nl}
|
||||
#' @seealso \code{\link{guess_bactid}} \code{\link{antibiotics}} \code{\link{bactlist.umcg}}
|
||||
"bactlist"
|
||||
#' @seealso \code{\link{guess_bactid}} \code{\link{antibiotics}} \code{\link{microorganisms.umcg}}
|
||||
"microorganisms"
|
||||
|
||||
#' Translation table for UMCG with ~1100 microorganisms
|
||||
#'
|
||||
#' A dataset containing all bacteria codes of UMCG MMB. These codes can be joined to data with an ID from \code{\link{bactlist}$bactid} (using \code{\link{left_join_bactlist}}). GLIMS codes can also be translated to valid \code{bactid}'s with \code{\link{guess_bactid}}.
|
||||
#' A dataset containing all bacteria codes of UMCG MMB. These codes can be joined to data with an ID from \code{\link{microorganisms}$bactid} (using \code{\link{left_join_microorganisms}}). GLIMS codes can also be translated to valid \code{bactid}'s with \code{\link{guess_bactid}}.
|
||||
#' @format A data.frame with 1090 observations and 2 variables:
|
||||
#' \describe{
|
||||
#' \item{\code{mocode}}{Code of microorganism according to UMCG MMB}
|
||||
#' \item{\code{bactid}}{Code of microorganism in \code{\link{bactlist}}}
|
||||
#' \item{\code{bactid}}{Code of microorganism in \code{\link{microorganisms}}}
|
||||
#' }
|
||||
#' @source MOLIS (LIS of Certe) - \url{https://www.certe.nl} \cr \cr GLIMS (LIS of UMCG) - \url{https://www.umcg.nl}
|
||||
#' @seealso \code{\link{guess_bactid}} \code{\link{bactlist}}
|
||||
"bactlist.umcg"
|
||||
#' @seealso \code{\link{guess_bactid}} \code{\link{microorganisms}}
|
||||
"microorganisms.umcg"
|
||||
|
||||
#' Dataset with 2000 blood culture isolates of septic patients
|
||||
#'
|
||||
#' An anonymised dataset containing 2000 microbial blood culture isolates with their antibiogram of septic patients found in 5 different hospitals in the Netherlands, between 2001 and 2017. This data.frame can be used to practice AMR analysis e.g. with \code{\link{rsi}} or \code{\link{rsi_predict}}, or it can be used to practice other statistics.
|
||||
#' An anonymised dataset containing 2000 microbial blood culture isolates with their antibiogram of septic patients found in 5 different hospitals in the Netherlands, between 2001 and 2017. This data.frame can be used to practice AMR analysis. For examples, press F1.
|
||||
#' @format A data.frame with 2000 observations and 47 variables:
|
||||
#' \describe{
|
||||
#' \item{\code{date}}{date of receipt at the laboratory}
|
||||
@ -108,8 +108,47 @@
|
||||
#' \item{\code{age}}{age of the patient}
|
||||
#' \item{\code{sex}}{sex of the patient}
|
||||
#' \item{\code{patient_id}}{ID of the patient, first 10 characters of an SHA hash containing irretrievable information}
|
||||
#' \item{\code{bactid}}{ID of microorganism, see \code{\link{bactlist}}}
|
||||
#' \item{\code{peni:mupi}}{38 different antibiotics with class \code{rsi} (see \code{\link{as.rsi}}), these column names occur in \code{\link{antibiotics}} and can be translated with \code{\link{abname}}}
|
||||
#' \item{\code{bactid}}{ID of microorganism, see \code{\link{microorganisms}}}
|
||||
#' \item{\code{peni:mupi}}{38 different antibiotics with class \code{rsi} (see \code{\link{as.rsi}}); these column names occur in \code{\link{antibiotics}} and can be translated with \code{\link{abname}}}
|
||||
#' }
|
||||
#' @source MOLIS (LIS of Certe) - \url{https://www.certe.nl}
|
||||
#' @examples
|
||||
#' # ----------- #
|
||||
#' # PREPARATION #
|
||||
#' # ----------- #
|
||||
#'
|
||||
#' # Save this example dataset to an object, so we can edit it:
|
||||
#' my_data <- septic_patients
|
||||
#'
|
||||
#' # load the dplyr package to make data science A LOT easier
|
||||
#' library(dplyr)
|
||||
#'
|
||||
#' # Add first isolates to our dataset:
|
||||
#' my_data <- my_data %>%
|
||||
#' mutate(first_isolates = first_isolate(my_data, date, patient_id, bactid))
|
||||
#'
|
||||
#' # -------- #
|
||||
#' # ANALYSIS #
|
||||
#' # -------- #
|
||||
#'
|
||||
#' # 1. Get the amoxicillin resistance percentages
|
||||
#' # of E. coli, divided by hospital:
|
||||
#'
|
||||
#' my_data %>%
|
||||
#' filter(bactid == "ESCCOL",
|
||||
#' first_isolates == TRUE) %>%
|
||||
#' group_by(hospital_id) %>%
|
||||
#' summarise(n = n(),
|
||||
#' amoxicillin_resistance = rsi(amox))
|
||||
#'
|
||||
#'
|
||||
#' # 2. Get the amoxicillin/clavulanic acid resistance
|
||||
#' # percentages of E. coli, trend over the years:
|
||||
#'
|
||||
#' my_data %>%
|
||||
#' filter(bactid == guess_bactid("E. coli"),
|
||||
#' first_isolates == TRUE) %>%
|
||||
#' group_by(year = format(date, "%Y")) %>%
|
||||
#' summarise(n = n(),
|
||||
#' amoxclav_resistance = rsi(amcl, minimum = 20))
|
||||
"septic_patients"
|
||||
|
Reference in New Issue
Block a user