mirror of
https://github.com/msberends/AMR.git
synced 2025-07-08 09:51:48 +02:00
(v0.8.0.9027) adding susceptibility() and resistance()
This commit is contained in:
@ -321,10 +321,12 @@ data_1st %>%
|
||||
|
||||
## Resistance percentages
|
||||
|
||||
The functions `portion_S()`, `portion_SI()`, `portion_I()`, `portion_IR()` and `portion_R()` can be used to determine the portion of a specific antimicrobial outcome. As per the EUCAST guideline of 2019, we calculate resistance as the portion of R (`portion_R()`) and susceptibility as the portion of S and I (`portion_SI()`). These functions can be used on their own:
|
||||
The functions `resistance()` and `susceptibility()` can be used to calculate antimicrobial resistance or susceptibility. For more specific analyses, the functions `proportion_S()`, `proportion_SI()`, `proportion_I()`, `proportion_IR()` and `proportion_R()` can be used to determine the proportion of a specific antimicrobial outcome.
|
||||
|
||||
As per the EUCAST guideline of 2019, we calculate resistance as the proportion of R (`proportion_R()`, equal to `resistance()`) and susceptibility as the proportion of S and I (`proportion_SI()`, equal to `susceptibility()`). These functions can be used on their own:
|
||||
|
||||
```{r}
|
||||
data_1st %>% portion_R(AMX)
|
||||
data_1st %>% resistance(AMX)
|
||||
```
|
||||
|
||||
Or can be used in conjuction with `group_by()` and `summarise()`, both from the `dplyr` package:
|
||||
@ -332,12 +334,12 @@ Or can be used in conjuction with `group_by()` and `summarise()`, both from the
|
||||
```{r, eval = FALSE}
|
||||
data_1st %>%
|
||||
group_by(hospital) %>%
|
||||
summarise(amoxicillin = portion_R(AMX))
|
||||
summarise(amoxicillin = resistance(AMX))
|
||||
```
|
||||
```{r, echo = FALSE}
|
||||
data_1st %>%
|
||||
group_by(hospital) %>%
|
||||
summarise(amoxicillin = portion_R(AMX)) %>%
|
||||
summarise(amoxicillin = resistance(AMX)) %>%
|
||||
knitr::kable(align = "c", big.mark = ",")
|
||||
```
|
||||
|
||||
@ -346,32 +348,32 @@ Of course it would be very convenient to know the number of isolates responsible
|
||||
```{r, eval = FALSE}
|
||||
data_1st %>%
|
||||
group_by(hospital) %>%
|
||||
summarise(amoxicillin = portion_R(AMX),
|
||||
summarise(amoxicillin = resistance(AMX),
|
||||
available = n_rsi(AMX))
|
||||
```
|
||||
```{r, echo = FALSE}
|
||||
data_1st %>%
|
||||
group_by(hospital) %>%
|
||||
summarise(amoxicillin = portion_R(AMX),
|
||||
summarise(amoxicillin = resistance(AMX),
|
||||
available = n_rsi(AMX)) %>%
|
||||
knitr::kable(align = "c", big.mark = ",")
|
||||
```
|
||||
|
||||
These functions can also be used to get the portion of multiple antibiotics, to calculate empiric susceptibility of combination therapies very easily:
|
||||
These functions can also be used to get the proportion of multiple antibiotics, to calculate empiric susceptibility of combination therapies very easily:
|
||||
|
||||
```{r, eval = FALSE}
|
||||
data_1st %>%
|
||||
group_by(genus) %>%
|
||||
summarise(amoxiclav = portion_SI(AMC),
|
||||
gentamicin = portion_SI(GEN),
|
||||
amoxiclav_genta = portion_SI(AMC, GEN))
|
||||
summarise(amoxiclav = susceptibility(AMC),
|
||||
gentamicin = susceptibility(GEN),
|
||||
amoxiclav_genta = susceptibility(AMC, GEN))
|
||||
```
|
||||
```{r, echo = FALSE}
|
||||
data_1st %>%
|
||||
group_by(genus) %>%
|
||||
summarise(amoxiclav = portion_SI(AMC),
|
||||
gentamicin = portion_SI(GEN),
|
||||
amoxiclav_genta = portion_SI(AMC, GEN)) %>%
|
||||
summarise(amoxiclav = susceptibility(AMC),
|
||||
gentamicin = susceptibility(GEN),
|
||||
amoxiclav_genta = susceptibility(AMC, GEN)) %>%
|
||||
knitr::kable(align = "c", big.mark = ",")
|
||||
```
|
||||
|
||||
@ -380,9 +382,9 @@ To make a transition to the next part, let's see how this difference could be pl
|
||||
```{r plot 1}
|
||||
data_1st %>%
|
||||
group_by(genus) %>%
|
||||
summarise("1. Amoxi/clav" = portion_SI(AMC),
|
||||
"2. Gentamicin" = portion_SI(GEN),
|
||||
"3. Amoxi/clav + genta" = portion_SI(AMC, GEN)) %>%
|
||||
summarise("1. Amoxi/clav" = susceptibility(AMC),
|
||||
"2. Gentamicin" = susceptibility(GEN),
|
||||
"3. Amoxi/clav + genta" = susceptibility(AMC, GEN)) %>%
|
||||
tidyr::gather("antibiotic", "S", -genus) %>%
|
||||
ggplot(aes(x = genus,
|
||||
y = S,
|
||||
@ -408,7 +410,7 @@ ggplot(a_data_set) +
|
||||
geom_bar(aes(year))
|
||||
```
|
||||
|
||||
The `AMR` package contains functions to extend this `ggplot2` package, for example `geom_rsi()`. It automatically transforms data with `count_df()` or `portion_df()` and show results in stacked bars. Its simplest and shortest example:
|
||||
The `AMR` package contains functions to extend this `ggplot2` package, for example `geom_rsi()`. It automatically transforms data with `count_df()` or `proportion_df()` and show results in stacked bars. Its simplest and shortest example:
|
||||
|
||||
```{r plot 3}
|
||||
ggplot(data_1st) +
|
||||
|
Reference in New Issue
Block a user