mirror of
https://github.com/msberends/AMR.git
synced 2025-09-06 02:09:37 +02:00
count_all and some fixes
This commit is contained in:
49
R/count.R
49
R/count.R
@@ -21,15 +21,15 @@
|
||||
#' @description These functions can be used to count resistant/susceptible microbial isolates. All functions support quasiquotation with pipes, can be used in \code{dplyr}s \code{\link[dplyr]{summarise}} and support grouped variables, see \emph{Examples}.
|
||||
#'
|
||||
#' \code{count_R} and \code{count_IR} can be used to count resistant isolates, \code{count_S} and \code{count_SI} can be used to count susceptible isolates.\cr
|
||||
#' @param ... one or more vectors (or columns) with antibiotic interpretations. They will be transformed internally with \code{\link{as.rsi}} if needed.
|
||||
#' @inheritParams portion
|
||||
#' @details \strong{Remember that you should filter your table to let it contain only first isolates!} Use \code{\link{first_isolate}} to determine them in your data set.
|
||||
#' @details These functions are meant to count isolates. Use the \code{\link{portion}_*} functions to calculate microbial resistance.
|
||||
#'
|
||||
#' These functions are meant to count isolates. Use the \code{\link{portion}_*} functions to calculate microbial resistance.
|
||||
#' \code{n_rsi} is an alias of \code{count_all}. They can be used to count all available isolates, i.e. where all input antibiotics have an available result (S, I or R). Their use is equal to \code{\link{n_distinct}}. Their function is equal to \code{count_S(...) + count_IR(...)}.
|
||||
#'
|
||||
#' \code{count_df} takes any variable from \code{data} that has an \code{"rsi"} class (created with \code{\link{as.rsi}}) and counts the amounts of R, I and S. The resulting \emph{tidy data} (see Source) \code{data.frame} will have three rows (S/I/R) and a column for each variable with class \code{"rsi"}.
|
||||
#' @source Wickham H. \strong{Tidy Data.} The Journal of Statistical Software, vol. 59, 2014. \url{http://vita.had.co.nz/papers/tidy-data.html}
|
||||
#' @seealso \code{\link{portion}_*} to calculate microbial resistance and susceptibility.\cr
|
||||
#' \code{\link{n_rsi}} to count all cases where antimicrobial results are available.
|
||||
#' @seealso \code{\link{portion}_*} to calculate microbial resistance and susceptibility.
|
||||
#' @keywords resistance susceptibility rsi antibiotics isolate isolates
|
||||
#' @return Integer
|
||||
#' @rdname count
|
||||
@@ -47,6 +47,10 @@
|
||||
#' count_S(septic_patients$amox)
|
||||
#' count_SI(septic_patients$amox)
|
||||
#'
|
||||
#' # Count all available isolates
|
||||
#' count_all(septic_patients$amox)
|
||||
#' n_rsi(septic_patients$amox)
|
||||
#'
|
||||
#' # Since n_rsi counts available isolates, you can
|
||||
#' # calculate back to count e.g. non-susceptible isolates.
|
||||
#' # This results in the same:
|
||||
@@ -56,24 +60,25 @@
|
||||
#' library(dplyr)
|
||||
#' septic_patients %>%
|
||||
#' group_by(hospital_id) %>%
|
||||
#' summarise(R = count_R(cipr),
|
||||
#' I = count_I(cipr),
|
||||
#' S = count_S(cipr),
|
||||
#' n = n_rsi(cipr), # the actual total; sum of all three
|
||||
#' total = n()) # NOT the amount of tested isolates!
|
||||
#' summarise(R = count_R(cipr),
|
||||
#' I = count_I(cipr),
|
||||
#' S = count_S(cipr),
|
||||
#' n1 = count_all(cipr), # the actual total; sum of all three
|
||||
#' n2 = n_rsi(cipr), # same - analogous to n_distinct
|
||||
#' total = n()) # NOT the amount of tested isolates!
|
||||
#'
|
||||
#' # Count co-resistance between amoxicillin/clav acid and gentamicin,
|
||||
#' # so we can see that combination therapy does a lot more than mono therapy.
|
||||
#' # Please mind that `portion_S` calculates percentages right away instead.
|
||||
#' count_S(septic_patients$amcl) # S = 1056 (67.3%)
|
||||
#' n_rsi(septic_patients$amcl) # n = 1570
|
||||
#' count_S(septic_patients$amcl) # S = 1057 (67.1%)
|
||||
#' count_all(septic_patients$amcl) # n = 1576
|
||||
#'
|
||||
#' count_S(septic_patients$gent) # S = 1363 (74.0%)
|
||||
#' n_rsi(septic_patients$gent) # n = 1842
|
||||
#' count_S(septic_patients$gent) # S = 1372 (74.0%)
|
||||
#' count_all(septic_patients$gent) # n = 1855
|
||||
#'
|
||||
#' with(septic_patients,
|
||||
#' count_S(amcl, gent)) # S = 1385 (92.1%)
|
||||
#' with(septic_patients, # n = 1504
|
||||
#' count_S(amcl, gent)) # S = 1396 (92.0%)
|
||||
#' with(septic_patients, # n = 1517
|
||||
#' n_rsi(amcl, gent))
|
||||
#'
|
||||
#' # Get portions S/I/R immediately of all rsi columns
|
||||
@@ -140,6 +145,20 @@ count_S <- function(...) {
|
||||
only_count = TRUE)
|
||||
}
|
||||
|
||||
#' @rdname count
|
||||
#' @export
|
||||
count_all <- function(...) {
|
||||
# only print warnings once, if needed
|
||||
count_S(...) + suppressWarnings(count_IR(...))
|
||||
}
|
||||
|
||||
#' @rdname count
|
||||
#' @export
|
||||
n_rsi <- function(...) {
|
||||
# only print warnings once, if needed
|
||||
count_S(...) + suppressWarnings(count_IR(...))
|
||||
}
|
||||
|
||||
#' @rdname count
|
||||
#' @importFrom dplyr %>% select_if bind_rows summarise_if mutate group_vars select everything
|
||||
#' @export
|
||||
|
Reference in New Issue
Block a user