mirror of
https://github.com/msberends/AMR.git
synced 2025-07-13 06:01:53 +02:00
count_all and some fixes
This commit is contained in:
42
man/count.Rd
42
man/count.Rd
@ -7,6 +7,8 @@
|
||||
\alias{count_I}
|
||||
\alias{count_SI}
|
||||
\alias{count_S}
|
||||
\alias{count_all}
|
||||
\alias{n_rsi}
|
||||
\alias{count_df}
|
||||
\title{Count isolates}
|
||||
\source{
|
||||
@ -23,11 +25,15 @@ count_SI(...)
|
||||
|
||||
count_S(...)
|
||||
|
||||
count_all(...)
|
||||
|
||||
n_rsi(...)
|
||||
|
||||
count_df(data, translate_ab = getOption("get_antibiotic_names",
|
||||
"official"))
|
||||
}
|
||||
\arguments{
|
||||
\item{...}{one or more vectors (or columns) with antibiotic interpretations. They will be transformed internally with \code{\link{as.rsi}} if needed. Use multiple columns to calculate (the lack of) co-resistance: the probability where one of two drugs have a resistant or susceptible result. See Examples.}
|
||||
\item{...}{one or more vectors (or columns) with antibiotic interpretations. They will be transformed internally with \code{\link{as.rsi}} if needed.}
|
||||
|
||||
\item{data}{a \code{data.frame} containing columns with class \code{rsi} (see \code{\link{as.rsi}})}
|
||||
|
||||
@ -42,10 +48,10 @@ These functions can be used to count resistant/susceptible microbial isolates. A
|
||||
\code{count_R} and \code{count_IR} can be used to count resistant isolates, \code{count_S} and \code{count_SI} can be used to count susceptible isolates.\cr
|
||||
}
|
||||
\details{
|
||||
\strong{Remember that you should filter your table to let it contain only first isolates!} Use \code{\link{first_isolate}} to determine them in your data set.
|
||||
|
||||
These functions are meant to count isolates. Use the \code{\link{portion}_*} functions to calculate microbial resistance.
|
||||
|
||||
\code{n_rsi} is an alias of \code{count_all}. They can be used to count all available isolates, i.e. where all input antibiotics have an available result (S, I or R). Their use is equal to \code{\link{n_distinct}}. Their function is equal to \code{count_S(...) + count_IR(...)}.
|
||||
|
||||
\code{count_df} takes any variable from \code{data} that has an \code{"rsi"} class (created with \code{\link{as.rsi}}) and counts the amounts of R, I and S. The resulting \emph{tidy data} (see Source) \code{data.frame} will have three rows (S/I/R) and a column for each variable with class \code{"rsi"}.
|
||||
}
|
||||
\examples{
|
||||
@ -60,6 +66,10 @@ count_IR(septic_patients$amox)
|
||||
count_S(septic_patients$amox)
|
||||
count_SI(septic_patients$amox)
|
||||
|
||||
# Count all available isolates
|
||||
count_all(septic_patients$amox)
|
||||
n_rsi(septic_patients$amox)
|
||||
|
||||
# Since n_rsi counts available isolates, you can
|
||||
# calculate back to count e.g. non-susceptible isolates.
|
||||
# This results in the same:
|
||||
@ -69,24 +79,25 @@ portion_IR(septic_patients$amox) * n_rsi(septic_patients$amox)
|
||||
library(dplyr)
|
||||
septic_patients \%>\%
|
||||
group_by(hospital_id) \%>\%
|
||||
summarise(R = count_R(cipr),
|
||||
I = count_I(cipr),
|
||||
S = count_S(cipr),
|
||||
n = n_rsi(cipr), # the actual total; sum of all three
|
||||
total = n()) # NOT the amount of tested isolates!
|
||||
summarise(R = count_R(cipr),
|
||||
I = count_I(cipr),
|
||||
S = count_S(cipr),
|
||||
n1 = count_all(cipr), # the actual total; sum of all three
|
||||
n2 = n_rsi(cipr), # same - analogous to n_distinct
|
||||
total = n()) # NOT the amount of tested isolates!
|
||||
|
||||
# Count co-resistance between amoxicillin/clav acid and gentamicin,
|
||||
# so we can see that combination therapy does a lot more than mono therapy.
|
||||
# Please mind that `portion_S` calculates percentages right away instead.
|
||||
count_S(septic_patients$amcl) # S = 1056 (67.3\%)
|
||||
n_rsi(septic_patients$amcl) # n = 1570
|
||||
count_S(septic_patients$amcl) # S = 1057 (67.1\%)
|
||||
count_all(septic_patients$amcl) # n = 1576
|
||||
|
||||
count_S(septic_patients$gent) # S = 1363 (74.0\%)
|
||||
n_rsi(septic_patients$gent) # n = 1842
|
||||
count_S(septic_patients$gent) # S = 1372 (74.0\%)
|
||||
count_all(septic_patients$gent) # n = 1855
|
||||
|
||||
with(septic_patients,
|
||||
count_S(amcl, gent)) # S = 1385 (92.1\%)
|
||||
with(septic_patients, # n = 1504
|
||||
count_S(amcl, gent)) # S = 1396 (92.0\%)
|
||||
with(septic_patients, # n = 1517
|
||||
n_rsi(amcl, gent))
|
||||
|
||||
# Get portions S/I/R immediately of all rsi columns
|
||||
@ -102,8 +113,7 @@ septic_patients \%>\%
|
||||
|
||||
}
|
||||
\seealso{
|
||||
\code{\link{portion}_*} to calculate microbial resistance and susceptibility.\cr
|
||||
\code{\link{n_rsi}} to count all cases where antimicrobial results are available.
|
||||
\code{\link{portion}_*} to calculate microbial resistance and susceptibility.
|
||||
}
|
||||
\keyword{antibiotics}
|
||||
\keyword{isolate}
|
||||
|
Reference in New Issue
Block a user