1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-21 20:53:15 +02:00

(v0.9.0.9026) update documentation

This commit is contained in:
2020-02-17 14:38:01 +01:00
parent 11f00f8a0a
commit 5e2b294351
118 changed files with 997 additions and 2252 deletions

View File

@ -21,7 +21,7 @@
#' Calculate microbial resistance
#'
#' @description These functions can be used to calculate the (co-)resistance or susceptibility of microbial isolates (i.e. percentage of S, SI, I, IR or R). All functions support quasiquotation with pipes, can be used in [dplyr::summarise()] and support grouped variables, please see *Examples*.
#' @description These functions can be used to calculate the (co-)resistance or susceptibility of microbial isolates (i.e. percentage of S, SI, I, IR or R). All functions support quasiquotation with pipes, can be used in `summarise()`][dplyr::summarise()] and also support grouped variables, please see *Examples*.
#'
#' [resistance()] should be used to calculate resistance, [susceptibility()] should be used to calculate susceptibility.\cr
#' @inheritSection lifecycle Stable lifecycle
@ -40,11 +40,11 @@
#'
#' **Remember that you should filter your table to let it contain only first isolates!** This is needed to exclude duplicates and to reduce selection bias. Use [first_isolate()] to determine them in your data set.
#'
#' These functions are not meant to count isolates, but to calculate the proportion of resistance/susceptibility. Use the [AMR::count()] functions to count isolates. The function [susceptibility()] is essentially equal to `count_susceptible() / count_all()`. *Low counts can infuence the outcome - the `proportion` functions may camouflage this, since they only return the proportion (albeit being dependent on the `minimum` parameter).*
#' These functions are not meant to count isolates, but to calculate the proportion of resistance/susceptibility. Use the `count()`][AMR::count()] functions to count isolates. The function [susceptibility()] is essentially equal to `count_susceptible() / count_all()`. *Low counts can influence the outcome - the `proportion` functions may camouflage this, since they only return the proportion (albeit being dependent on the `minimum` parameter).*
#'
#' The function [proportion_df()] takes any variable from `data` that has an [`rsi`] class (created with [as.rsi()]) and calculates the proportions R, I and S. The function [rsi_df()] works exactly like [proportion_df()], but adds the number of isolates.
#' @section Combination therapy:
#' When using more than one variable for `...` (= combination therapy)), use `only_all_tested` to only count isolates that are tested for all antibiotics/variables that you test them for. See this example for two antibiotics, Antibiotic A and Antibiotic B, about how [susceptibility()] works to calculate the %SI:
#' When using more than one variable for `...` (= combination therapy)), use `only_all_tested` to only count isolates that are tested for all antibiotics/variables that you test them for. See this example for two antibiotics, Drug A and Drug B, about how [susceptibility()] works to calculate the %SI:
#'
#' ```
#' --------------------------------------------------------------------