1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-08 20:02:04 +02:00

support for dplyr 1.1.0

This commit is contained in:
2023-02-15 17:02:10 +01:00
parent fe41fc2e35
commit 6016547f1f
7 changed files with 33 additions and 28 deletions

View File

@ -889,34 +889,36 @@ get_current_data <- function(arg_name, call) {
valid_df <- function(x) {
!is.null(x) && is.data.frame(x)
}
# try dplyr::cur_data_all() first to support dplyr groups
# only useful for e.g. dplyr::filter(), dplyr::mutate() and dplyr::summarise()
# not useful (throws error) with e.g. dplyr::select(), dplyr::across(), or dplyr::vars(),
# but that will be caught later on in this function
cur_data_all <- import_fn("cur_data_all", "dplyr", error_on_fail = FALSE)
if (!is.null(cur_data_all)) {
out <- tryCatch(cur_data_all(), error = function(e) NULL)
if (valid_df(out)) {
return(out)
}
}
# try a manual (base R) method, by going over all underlying environments with sys.frames()
for (env in sys.frames()) {
if (!is.null(env$`.Generic`)) {
# dplyr support ----
if (!is.null(env$mask) && is.function(env$mask$current_rows) && (valid_df(env$data) || valid_df(env$`.data`))) {
# an element `.data` or `data` (containing all data) and `mask` (containing functions) will be in the environment when using dplyr verbs
# we use their mask$current_rows() to get the group rows, since dplyr::cur_data_all() is deprecated and will be removed in the future
# e.g. for `example_isolates %>% group_by(ward) %>% mutate(first = first_isolate(.))`
if (valid_df(env$data)) {
# support for dplyr 1.1.x
return(env$data[env$mask$current_rows(), , drop = FALSE])
} else {
# support for dplyr 1.0.x
return(env$`.data`[env$mask$current_rows(), , drop = FALSE])
}
# base R support ----
} else if (!is.null(env$`.Generic`)) {
# don't check `".Generic" %in% names(env)`, because in R < 3.2, `names(env)` is always NULL
if (valid_df(env$`.data`)) {
# an element `.data` will be in the environment when using `dplyr::select()`
# (but not when using `dplyr::filter()`, `dplyr::mutate()` or `dplyr::summarise()`)
return(env$`.data`)
} else if (valid_df(env$xx)) {
# an element `xx` will be in the environment for rows + cols, e.g. `example_isolates[c(1:3), carbapenems()]`
if (valid_df(env$xx)) {
# an element `xx` will be in the environment for rows + cols in base R, e.g. `example_isolates[c(1:3), carbapenems()]`
return(env$xx)
} else if (valid_df(env$x)) {
# an element `x` will be in the environment for only cols, e.g. `example_isolates[, carbapenems()]`
# an element `x` will be in the environment for only cols in base R, e.g. `example_isolates[, carbapenems()]`
return(env$x)
}
# scoped dplyr support ----
} else if (!is.null(names(env)) && all(c(".tbl", ".vars", ".cols") %in% names(env), na.rm = TRUE) && valid_df(env$`.tbl`)) {
# an element `.tbl` will be in the environment when using scoped dplyr variants, with or without `dplyr::vars()`
# (e.g. `dplyr::summarise_at()` or `dplyr::mutate_at()`)