mirror of
https://github.com/msberends/AMR.git
synced 2025-07-12 17:41:50 +02:00
added mdr_tb()
This commit is contained in:
79
vignettes/MDR.Rmd
Normal file
79
vignettes/MDR.Rmd
Normal file
@ -0,0 +1,79 @@
|
||||
---
|
||||
title: "How to determine multi-drug resistance (MDR)"
|
||||
author: "Matthijs S. Berends"
|
||||
date: '`r format(Sys.Date(), "%d %B %Y")`'
|
||||
output:
|
||||
rmarkdown::html_vignette:
|
||||
toc: true
|
||||
vignette: >
|
||||
%\VignetteIndexEntry{How to determine multi-drug resistance (MDR)}
|
||||
%\VignetteEncoding{UTF-8}
|
||||
%\VignetteEngine{knitr::rmarkdown}
|
||||
editor_options:
|
||||
chunk_output_type: console
|
||||
---
|
||||
|
||||
```{r setup, include = FALSE, results = 'markup'}
|
||||
knitr::opts_chunk$set(
|
||||
collapse = TRUE,
|
||||
comment = "#"
|
||||
)
|
||||
library(AMR)
|
||||
```
|
||||
|
||||
With the function `mdro()`, you can determine multi-drug resistant organisms (MDRO). It currently support these guidelines:
|
||||
|
||||
* "Intrinsic Resistance and Exceptional Phenotypes Tables", by EUCAST (European Committee on Antimicrobial Susceptibility Testing)
|
||||
* "Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis", by WHO (World Health Organization)
|
||||
* "WIP-Richtlijn Bijzonder Resistente Micro-organismen (BRMO)", by RIVM (Rijksinstituut voor de Volksgezondheid, the Netherlands National Institute for Public Health and the Environment)
|
||||
|
||||
As an example, I will make a data set to determine multi-drug resistant TB:
|
||||
|
||||
```{r}
|
||||
# a helper function to get a random vector with values S, I and R
|
||||
# with the probabilities 50%-10%-40%
|
||||
sample_rsi <- function() {
|
||||
sample(c("S", "I", "R"),
|
||||
size = 5000,
|
||||
prob = c(0.5, 0.1, 0.4),
|
||||
replace = TRUE)
|
||||
}
|
||||
|
||||
my_TB_data <- data.frame(rifampicin = sample_rsi(),
|
||||
isoniazid = sample_rsi(),
|
||||
gatifloxacin = sample_rsi(),
|
||||
ethambutol = sample_rsi(),
|
||||
pyrazinamide = sample_rsi(),
|
||||
moxifloxacin = sample_rsi(),
|
||||
kanamycin = sample_rsi())
|
||||
```
|
||||
|
||||
Because all column names are automatically verified for valid drug names or codes, this would have worked exactly the same:
|
||||
|
||||
```{r, eval = FALSE}
|
||||
my_TB_data <- data.frame(RIF = sample_rsi(),
|
||||
INH = sample_rsi(),
|
||||
GAT = sample_rsi(),
|
||||
ETH = sample_rsi(),
|
||||
PZA = sample_rsi(),
|
||||
MFX = sample_rsi(),
|
||||
KAN = sample_rsi())
|
||||
```
|
||||
|
||||
The data set looks like this now:
|
||||
|
||||
```{r}
|
||||
head(my_TB_data)
|
||||
```
|
||||
|
||||
We can now add the interpretation of MDR-TB to our data set:
|
||||
|
||||
```{r}
|
||||
my_TB_data$mdr <- mdr_tb(my_TB_data)
|
||||
```
|
||||
|
||||
And review the result with a frequency table:
|
||||
|
||||
```{r}
|
||||
freq(my_TB_data$mdr)
|
||||
```
|
Reference in New Issue
Block a user