1
0
mirror of https://github.com/msberends/AMR.git synced 2024-12-27 08:06:13 +01:00

Becker classification

Lancefield classification
Added Lancefield groups to `microorganisms` data set
This commit is contained in:
dr. M.S. (Matthijs) Berends 2018-08-02 13:15:45 +02:00
parent edd2dd09dc
commit 6262315527
10 changed files with 161 additions and 26 deletions

View File

@ -1,6 +1,6 @@
Package: AMR Package: AMR
Version: 0.2.0.9019 Version: 0.2.0.9020
Date: 2018-08-01 Date: 2018-08-02
Title: Antimicrobial Resistance Analysis Title: Antimicrobial Resistance Analysis
Authors@R: c( Authors@R: c(
person( person(

View File

@ -7,7 +7,11 @@
* Universal: amoxicillin, amoxicillin/clavlanic acid, cefuroxime, piperacillin/tazobactam, ciprofloxacin, trimethoprim/sulfamethoxazole * Universal: amoxicillin, amoxicillin/clavlanic acid, cefuroxime, piperacillin/tazobactam, ciprofloxacin, trimethoprim/sulfamethoxazole
* Gram-positive: vancomycin, teicoplanin, tetracycline, erythromycin, oxacillin, rifampicin * Gram-positive: vancomycin, teicoplanin, tetracycline, erythromycin, oxacillin, rifampicin
* Gram-negative: gentamicin, tobramycin, colistin, cefotaxime, ceftazidime, meropenem * Gram-negative: gentamicin, tobramycin, colistin, cefotaxime, ceftazidime, meropenem
* Functions `as.bactid` and `is.bactid` to transform/look up microbial ID's * Determining bacterial ID:
* New functions `as.bactid` and `is.bactid` to transform/ look up microbial ID's.
* The existing function `guess_bactid` is now an alias of `as.bactid`
* New Becker classification for *Staphylococcus* to categorise them into Coagulase Negative *Staphylococci* (CoNS) and Coagulase Positve *Staphylococci* (CoPS)
* New Lancefield classification for *Streptococcus* to categorise them into Lancefield groups
* For convience, new descriptive statistical functions `kurtosis` and `skewness` that are lacking in base R - they are generic functions and have support for vectors, data.frames and matrices * For convience, new descriptive statistical functions `kurtosis` and `skewness` that are lacking in base R - they are generic functions and have support for vectors, data.frames and matrices
* Function `g.test` to perform the Χ<sup>2</sup> distributed [*G*-test](https://en.wikipedia.org/wiki/G-test), which use is the same as `chisq.test` * Function `g.test` to perform the Χ<sup>2</sup> distributed [*G*-test](https://en.wikipedia.org/wiki/G-test), which use is the same as `chisq.test`
* Function `ratio` to transform a vector of values to a preset ratio * Function `ratio` to transform a vector of values to a preset ratio

View File

@ -20,10 +20,12 @@
#' #'
#' Use this function to determine a valid ID based on a genus (and species). This input can be a full name (like \code{"Staphylococcus aureus"}), an abbreviated name (like \code{"S. aureus"}), or just a genus. You could also \code{\link{select}} a genus and species column, zie Examples. #' Use this function to determine a valid ID based on a genus (and species). This input can be a full name (like \code{"Staphylococcus aureus"}), an abbreviated name (like \code{"S. aureus"}), or just a genus. You could also \code{\link{select}} a genus and species column, zie Examples.
#' @param x a character vector or a dataframe with one or two columns #' @param x a character vector or a dataframe with one or two columns
#' @param Becker a logical to indicate whether \emph{Staphylococci} should be categorised into Coagulase Negative \emph{Staphylococci} ("CoNS") and Coagulase Positive \emph{Staphylococci} ("CoPS") instead of their own species, according to Karsten Becker \emph{et al.} [1]. This excludes \emph{Staphylococcus aureus} at default, use \code{Becker = "all"} to also categorise \emph{S. aureus} as "CoPS".
#' @param Lancefield a logical to indicate whether beta-haemolytic \emph{Streptococci} should be categorised into Lancefield groups instead of their own species, according to Rebecca C. Lancefield [2]. These \emph{Streptococci} will be categorised in their first group, i.e. \emph{Streptococcus dysgalactiae} will be group C, although officially it was also categorised into groups G and L. Groups D and E will be ignored, since they are \emph{Enterococci}.
#' @rdname as.bactid #' @rdname as.bactid
#' @details \code{guess_bactid} does exactly the same as \code{as.bactid}. #' @details \code{guess_bactid} is an alias of \code{as.bactid}.
#' #'
#' Some exceptions have been built in to get more logical results, based on prevalence of human pathogens. For example: #' Some exceptions have been built in to get more logical results, based on prevalence of human pathogens. These are:
#' \itemize{ #' \itemize{
#' \item{\code{"E. coli"} will return the ID of \emph{Escherichia coli} and not \emph{Entamoeba coli}, although the latter would alphabetically come first} #' \item{\code{"E. coli"} will return the ID of \emph{Escherichia coli} and not \emph{Entamoeba coli}, although the latter would alphabetically come first}
#' \item{\code{"H. influenzae"} will return the ID of \emph{Haemophilus influenzae} and not \emph{Haematobacter influenzae}} #' \item{\code{"H. influenzae"} will return the ID of \emph{Haemophilus influenzae} and not \emph{Haematobacter influenzae}}
@ -32,6 +34,11 @@
#' } #' }
#' Moreover, this function also supports ID's based on only Gram stain, when the species is not known. \cr #' Moreover, this function also supports ID's based on only Gram stain, when the species is not known. \cr
#' For example, \code{"Gram negative rods"} and \code{"GNR"} will both return the ID of a Gram negative rod: \code{GNR}. #' For example, \code{"Gram negative rods"} and \code{"GNR"} will both return the ID of a Gram negative rod: \code{GNR}.
#' @source
#' [1] Becker K \emph{et al.} \strong{Coagulase-Negative Staphylococci}. 2014. Clin Microbiol Rev. 27(4): 870926. \cr
#' \url{https://dx.doi.org/10.1128/CMR.00109-13} \cr
#' [2] Lancefield RC \strong{A serological differentiation of human and other groups of hemolytic streptococci}. 1933. J Exp Med. 57(4): 57195. \cr
#' \url{https://dx.doi.org/10.1084/jem.57.4.571}
#' @export #' @export
#' @importFrom dplyr %>% filter pull #' @importFrom dplyr %>% filter pull
#' @return Character (vector) with class \code{"bactid"}. Unknown values will return \code{NA}. #' @return Character (vector) with class \code{"bactid"}. Unknown values will return \code{NA}.
@ -48,6 +55,12 @@
#' as.bactid("VISA") # Vancomycin Intermediate S. aureus #' as.bactid("VISA") # Vancomycin Intermediate S. aureus
#' as.bactid("VRSA") # Vancomycin Resistant S. aureus #' as.bactid("VRSA") # Vancomycin Resistant S. aureus
#' #'
#' guess_bactid("S. epidermidis") # will remain species: STAEPI
#' guess_bactid("S. epidermidis", Becker = TRUE) # will not remain species: STACNS
#'
#' guess_bactid("S. pyogenes") # will remain species: STCAGA
#' guess_bactid("S. pyogenes", Lancefield = TRUE) # will not remain species: STCGRA
#'
#' \dontrun{ #' \dontrun{
#' df$bactid <- as.bactid(df$microorganism_name) #' df$bactid <- as.bactid(df$microorganism_name)
#' #'
@ -66,7 +79,7 @@
#' df <- df %>% #' df <- df %>%
#' mutate(bactid = guess_bactid(paste(genus, species))) #' mutate(bactid = guess_bactid(paste(genus, species)))
#' } #' }
as.bactid <- function(x) { as.bactid <- function(x, Becker = FALSE, Lancefield = FALSE) {
failures <- character(0) failures <- character(0)
@ -96,13 +109,79 @@ as.bactid <- function(x) {
x <- trimws(x, which = "both") x <- trimws(x, which = "both")
x.backup <- x x.backup <- x
# replace space by regex sign # replace space by regex sign
x_withspaces <- gsub(" ", ".* ", x, fixed = TRUE)
x <- gsub(" ", ".*", x, fixed = TRUE) x <- gsub(" ", ".*", x, fixed = TRUE)
# add start and stop # for species
x_species <- paste(x, 'species') x_species <- paste(x, 'species')
# add start en stop regex
x <- paste0('^', x, '$') x <- paste0('^', x, '$')
x_withspaces <- paste0('^', x_withspaces, '$')
for (i in 1:length(x)) { for (i in 1:length(x)) {
if (Becker == TRUE | Becker == "all") {
mo <- suppressWarnings(guess_bactid(x.fullbackup[i]))
if (mo %like% '^STA') {
# See Source. It's this figure:
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187637/figure/F3/
species <- left_join_microorganisms(mo)$species
if (species %in% c("arlettae", "auricularis", "capitis",
"caprae", "carnosus", "cohnii", "condimene",
"devriesei", "epidermidis", "equorum",
"fleurettii", "gallinarum", "haemolyticus",
"hominis", "jettensis", "kloosii", "lentus",
"lugdunensis", "massiliensis", "microti",
"muscae", "nepalensis", "pasteuri", "perrasii",
"pettenkoleri", "piscifermentans", "rostri",
"saccharott", "saprophyticus", "sciuri",
"siepanovicii", "simulans", "succinus",
"vitulinus", "warneri", "xylosus")) {
x[i] <- "STACNS"
next
} else if ((Becker == "all" & species == "aureus")
| species %in% c("simiae", "agnetis", "chromogenes",
"delphirul", "felis", "futrae",
"hyicus", "intermedius",
"pseudointermedius", "schleiferi")) {
x[i] <- "STACPS"
next
}
}
}
if (Lancefield == TRUE) {
mo <- suppressWarnings(guess_bactid(x.fullbackup[i]))
if (mo %like% '^STC') {
# See Source
species <- left_join_microorganisms(mo)$species
if (species == "pyogenes") {
x[i] <- "STCGRA"
next
}
if (species == "agalactiae") {
x[i] <- "STCGRB"
next
}
if (species %in% c("equisimilis", "equi",
"zooepidemicus", "dysgalactiae")) {
x[i] <- "STCGRC"
next
}
if (species == "anginosus") {
x[i] <- "STCGRF"
next
}
if (species == "sanguis") {
x[i] <- "STCGRH"
next
}
if (species == "salivarius") {
x[i] <- "STCGRK"
next
}
}
}
if (identical(x.backup[i], "")) { if (identical(x.backup[i], "")) {
# empty values # empty values
x[i] <- NA x[i] <- NA
@ -142,7 +221,7 @@ as.bactid <- function(x) {
x[i] <- 'PSEAER' x[i] <- 'PSEAER'
next next
} }
if (tolower(x[i]) %like% 'coagulase' if (tolower(x[i]) %like% 'coagulase negative'
| tolower(x[i]) %like% 'cns' | tolower(x[i]) %like% 'cns'
| tolower(x[i]) %like% 'cons') { | tolower(x[i]) %like% 'cons') {
# coerce S. coagulase negative, also as CNS and CoNS # coerce S. coagulase negative, also as CNS and CoNS
@ -192,7 +271,14 @@ as.bactid <- function(x) {
next next
} }
# try any match # try any match keeping spaces
found <- AMR::microorganisms[which(AMR::microorganisms$fullname %like% x_withspaces[i]),]$bactid
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# try any match diregarding spaces
found <- AMR::microorganisms[which(AMR::microorganisms$fullname %like% x[i]),]$bactid found <- AMR::microorganisms[which(AMR::microorganisms$fullname %like% x[i]),]$bactid
if (length(found) > 0) { if (length(found) > 0) {
x[i] <- found[1L] x[i] <- found[1L]
@ -200,7 +286,7 @@ as.bactid <- function(x) {
} }
# try exact match of only genus, with 'species' attached # try exact match of only genus, with 'species' attached
# (e.g. this prevents Streptococcus for becoming Peptostreptococcus, since "p" < "s") # (this prevents Streptococcus from becoming Peptostreptococcus, since "p" < "s")
found <- AMR::microorganisms[which(AMR::microorganisms$fullname == x_species[i]),]$bactid found <- AMR::microorganisms[which(AMR::microorganisms$fullname == x_species[i]),]$bactid
if (length(found) > 0) { if (length(found) > 0) {
x[i] <- found[1L] x[i] <- found[1L]

View File

@ -236,8 +236,8 @@
#' Dataset with ~2500 microorganisms #' Dataset with ~2500 microorganisms
#' #'
#' A dataset containing 2453 microorganisms. MO codes of the UMCG can be looked up using \code{\link{microorganisms.umcg}}. #' A dataset containing 2456 microorganisms. MO codes of the UMCG can be looked up using \code{\link{microorganisms.umcg}}.
#' @format A data.frame with 2453 observations and 12 variables: #' @format A data.frame with 2456 observations and 12 variables:
#' \describe{ #' \describe{
#' \item{\code{bactid}}{ID of microorganism} #' \item{\code{bactid}}{ID of microorganism}
#' \item{\code{bactsys}}{Bactsyscode of microorganism} #' \item{\code{bactsys}}{Bactsyscode of microorganism}

View File

@ -33,6 +33,8 @@ With `AMR` you can:
* Universal: amoxicillin, amoxicillin/clavlanic acid, cefuroxime, piperacillin/tazobactam, ciprofloxacin, trimethoprim/sulfamethoxazole * Universal: amoxicillin, amoxicillin/clavlanic acid, cefuroxime, piperacillin/tazobactam, ciprofloxacin, trimethoprim/sulfamethoxazole
* Specific for Gram-positives: vancomycin, teicoplanin, tetracycline, erythromycin, oxacillin, rifampicin * Specific for Gram-positives: vancomycin, teicoplanin, tetracycline, erythromycin, oxacillin, rifampicin
* Specific for Gram-negatives: gentamicin, tobramycin, colistin, cefotaxime, ceftazidime, meropenem * Specific for Gram-negatives: gentamicin, tobramycin, colistin, cefotaxime, ceftazidime, meropenem
* Categorise *Staphylococci* into Coagulase Negative *Staphylococci* (CoNS) and Coagulase Positve *Staphylococci* (CoPS) according to [Karsten Becker *et al.*](https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/25278577/)
* Categorise *Streptococci* into Lancefield groups
* Get antimicrobial ATC properties from the WHO Collaborating Centre for Drug Statistics Methodology ([WHOCC](https://www.whocc.no/atc_ddd_methodology/who_collaborating_centre/)), to be able to: * Get antimicrobial ATC properties from the WHO Collaborating Centre for Drug Statistics Methodology ([WHOCC](https://www.whocc.no/atc_ddd_methodology/who_collaborating_centre/)), to be able to:
* Translate antibiotic codes (like *AMOX*), official names (like *amoxicillin*) and even trade names (like *Amoxil* or *Trimox*) to an [ATC code](https://www.whocc.no/atc_ddd_index/?code=J01CA04&showdescription=no) (like *J01CA04*) and vice versa with the `abname` function * Translate antibiotic codes (like *AMOX*), official names (like *amoxicillin*) and even trade names (like *Amoxil* or *Trimox*) to an [ATC code](https://www.whocc.no/atc_ddd_index/?code=J01CA04&showdescription=no) (like *J01CA04*) and vice versa with the `abname` function
* Get the latest antibiotic properties like hierarchic groups and [defined daily dose](https://en.wikipedia.org/wiki/Defined_daily_dose) (DDD) with units and administration form from the WHOCC website with the `atc_property` function * Get the latest antibiotic properties like hierarchic groups and [defined daily dose](https://en.wikipedia.org/wiki/Defined_daily_dose) (DDD) with units and administration form from the WHOCC website with the `atc_property` function

Binary file not shown.

View File

@ -5,15 +5,25 @@
\alias{guess_bactid} \alias{guess_bactid}
\alias{is.bactid} \alias{is.bactid}
\title{Transform to bacteria ID} \title{Transform to bacteria ID}
\source{
[1] Becker K \emph{et al.} \strong{Coagulase-Negative Staphylococci}. 2014. Clin Microbiol Rev. 27(4): 870926. \cr
\url{https://dx.doi.org/10.1128/CMR.00109-13} \cr
[2] Lancefield RC \strong{A serological differentiation of human and other groups of hemolytic streptococci}. 1933. J Exp Med. 57(4): 57195. \cr
\url{https://dx.doi.org/10.1084/jem.57.4.571}
}
\usage{ \usage{
as.bactid(x) as.bactid(x, Becker = FALSE, Lancefield = FALSE)
guess_bactid(x) guess_bactid(x, Becker = FALSE, Lancefield = FALSE)
is.bactid(x) is.bactid(x)
} }
\arguments{ \arguments{
\item{x}{a character vector or a dataframe with one or two columns} \item{x}{a character vector or a dataframe with one or two columns}
\item{Becker}{a logical to indicate whether \emph{Staphylococci} should be categorised into Coagulase Negative \emph{Staphylococci} ("CoNS") and Coagulase Positive \emph{Staphylococci} ("CoPS") instead of their own species, according to Karsten Becker \emph{et al.} [1]. This excludes \emph{Staphylococcus aureus} at default, use \code{Becker = "all"} to also categorise \emph{S. aureus} as "CoPS".}
\item{Lancefield}{a logical to indicate whether beta-haemolytic \emph{Streptococci} should be categorised into Lancefield groups instead of their own species, according to Rebecca C. Lancefield [2]. These \emph{Streptococci} will be categorised in their first group, i.e. \emph{Streptococcus dysgalactiae} will be group C, although officially it was also categorised into groups G and L. Groups D and E will be ignored, since they are \emph{Enterococci}.}
} }
\value{ \value{
Character (vector) with class \code{"bactid"}. Unknown values will return \code{NA}. Character (vector) with class \code{"bactid"}. Unknown values will return \code{NA}.
@ -22,9 +32,9 @@ Character (vector) with class \code{"bactid"}. Unknown values will return \code{
Use this function to determine a valid ID based on a genus (and species). This input can be a full name (like \code{"Staphylococcus aureus"}), an abbreviated name (like \code{"S. aureus"}), or just a genus. You could also \code{\link{select}} a genus and species column, zie Examples. Use this function to determine a valid ID based on a genus (and species). This input can be a full name (like \code{"Staphylococcus aureus"}), an abbreviated name (like \code{"S. aureus"}), or just a genus. You could also \code{\link{select}} a genus and species column, zie Examples.
} }
\details{ \details{
\code{guess_bactid} does exactly the same as \code{as.bactid}. \code{guess_bactid} is an alias of \code{as.bactid}.
Some exceptions have been built in to get more logical results, based on prevalence of human pathogens. For example: Some exceptions have been built in to get more logical results, based on prevalence of human pathogens. These are:
\itemize{ \itemize{
\item{\code{"E. coli"} will return the ID of \emph{Escherichia coli} and not \emph{Entamoeba coli}, although the latter would alphabetically come first} \item{\code{"E. coli"} will return the ID of \emph{Escherichia coli} and not \emph{Entamoeba coli}, although the latter would alphabetically come first}
\item{\code{"H. influenzae"} will return the ID of \emph{Haemophilus influenzae} and not \emph{Haematobacter influenzae}} \item{\code{"H. influenzae"} will return the ID of \emph{Haemophilus influenzae} and not \emph{Haematobacter influenzae}}
@ -46,6 +56,12 @@ as.bactid("MRSA") # Methicillin Resistant S. aureus
as.bactid("VISA") # Vancomycin Intermediate S. aureus as.bactid("VISA") # Vancomycin Intermediate S. aureus
as.bactid("VRSA") # Vancomycin Resistant S. aureus as.bactid("VRSA") # Vancomycin Resistant S. aureus
guess_bactid("S. epidermidis") # will remain species: STAEPI
guess_bactid("S. epidermidis", Becker = TRUE) # will not remain species: STACNS
guess_bactid("S. pyogenes") # will remain species: STCAGA
guess_bactid("S. pyogenes", Lancefield = TRUE) # will not remain species: STCGRA
\dontrun{ \dontrun{
df$bactid <- as.bactid(df$microorganism_name) df$bactid <- as.bactid(df$microorganism_name)

View File

@ -4,7 +4,7 @@
\name{microorganisms} \name{microorganisms}
\alias{microorganisms} \alias{microorganisms}
\title{Dataset with ~2500 microorganisms} \title{Dataset with ~2500 microorganisms}
\format{A data.frame with 2453 observations and 12 variables: \format{A data.frame with 2456 observations and 12 variables:
\describe{ \describe{
\item{\code{bactid}}{ID of microorganism} \item{\code{bactid}}{ID of microorganism}
\item{\code{bactsys}}{Bactsyscode of microorganism} \item{\code{bactsys}}{Bactsyscode of microorganism}
@ -23,7 +23,7 @@
microorganisms microorganisms
} }
\description{ \description{
A dataset containing 2453 microorganisms. MO codes of the UMCG can be looked up using \code{\link{microorganisms.umcg}}. A dataset containing 2456 microorganisms. MO codes of the UMCG can be looked up using \code{\link{microorganisms.umcg}}.
} }
\seealso{ \seealso{
\code{\link{guess_bactid}} \code{\link{antibiotics}} \code{\link{microorganisms.umcg}} \code{\link{guess_bactid}} \code{\link{antibiotics}} \code{\link{microorganisms.umcg}}

View File

@ -30,6 +30,33 @@ test_that("as.bactid works", {
"VISA"))), "VISA"))),
rep("STAAUR", 8)) rep("STAAUR", 8))
# check for Becker classification
expect_identical(as.character(guess_bactid("S. epidermidis", Becker = FALSE)), "STAEPI")
expect_identical(as.character(guess_bactid("S. epidermidis", Becker = TRUE)), "STACNS")
expect_identical(as.character(guess_bactid("STAEPI", Becker = TRUE)), "STACNS")
expect_identical(as.character(guess_bactid("S. intermedius", Becker = FALSE)), "STAINT")
expect_identical(as.character(guess_bactid("S. intermedius", Becker = TRUE)), "STACPS")
expect_identical(as.character(guess_bactid("STAINT", Becker = TRUE)), "STACPS")
# aureus must only be influenced if Becker = "all"
expect_identical(as.character(guess_bactid("STAAUR", Becker = FALSE)), "STAAUR")
expect_identical(as.character(guess_bactid("STAAUR", Becker = TRUE)), "STAAUR")
expect_identical(as.character(guess_bactid("STAAUR", Becker = "all")), "STACPS")
# check for Lancefield classification
expect_identical(as.character(guess_bactid("S. pyogenes", Lancefield = FALSE)), "STCPYO")
expect_identical(as.character(guess_bactid("S. pyogenes", Lancefield = TRUE)), "STCGRA")
expect_identical(as.character(guess_bactid("STCPYO", Lancefield = TRUE)), "STCGRA")
expect_identical(as.character(guess_bactid("S. agalactiae", Lancefield = FALSE)), "STCAGA")
expect_identical(as.character(guess_bactid("S. agalactiae", Lancefield = TRUE)), "STCGRB") # group B
expect_identical(as.character(guess_bactid("S. equisimilis", Lancefield = FALSE)), "STCEQS")
expect_identical(as.character(guess_bactid("S. equisimilis", Lancefield = TRUE)), "STCGRC") # group C
expect_identical(as.character(guess_bactid("S. anginosus", Lancefield = FALSE)), "STCANG")
expect_identical(as.character(guess_bactid("S. anginosus", Lancefield = TRUE)), "STCGRF") # group F
expect_identical(as.character(guess_bactid("S. sanguis", Lancefield = FALSE)), "STCSAN")
expect_identical(as.character(guess_bactid("S. sanguis", Lancefield = TRUE)), "STCGRH") # group H
expect_identical(as.character(guess_bactid("S. salivarius", Lancefield = FALSE)), "STCSAL")
expect_identical(as.character(guess_bactid("S. salivarius", Lancefield = TRUE)), "STCGRK") # group K
# select with one column # select with one column
expect_identical( expect_identical(
septic_patients[1:10,] %>% septic_patients[1:10,] %>%

View File

@ -1,7 +1,7 @@
context("first_isolate.R") context("first_isolate.R")
test_that("first isolates work", { test_that("first isolates work", {
# septic_patients contains 1959 out of 2000 first isolates # septic_patients contains 1331 out of 2000 first isolates
expect_equal( expect_equal(
sum( sum(
first_isolate(tbl = septic_patients, first_isolate(tbl = septic_patients,
@ -10,9 +10,9 @@ test_that("first isolates work", {
col_bactid = "bactid", col_bactid = "bactid",
info = TRUE), info = TRUE),
na.rm = TRUE), na.rm = TRUE),
1326) 1331)
# septic_patients contains 1962 out of 2000 first *weighted* isolates # septic_patients contains 1426 out of 2000 first *weighted* isolates
expect_equal( expect_equal(
suppressWarnings( suppressWarnings(
sum( sum(
@ -24,8 +24,8 @@ test_that("first isolates work", {
type = "keyantibiotics", type = "keyantibiotics",
info = TRUE), info = TRUE),
na.rm = TRUE)), na.rm = TRUE)),
1421) 1426)
# and 1961 when using points # and 1430 when using points
expect_equal( expect_equal(
suppressWarnings( suppressWarnings(
sum( sum(
@ -37,9 +37,9 @@ test_that("first isolates work", {
type = "points", type = "points",
info = TRUE), info = TRUE),
na.rm = TRUE)), na.rm = TRUE)),
1425) 1430)
# septic_patients contains 1732 out of 2000 first non-ICU isolates # septic_patients contains 1176 out of 2000 first non-ICU isolates
expect_equal( expect_equal(
sum( sum(
first_isolate(septic_patients, first_isolate(septic_patients,
@ -50,7 +50,7 @@ test_that("first isolates work", {
info = TRUE, info = TRUE,
icu_exclude = TRUE), icu_exclude = TRUE),
na.rm = TRUE), na.rm = TRUE),
1171) 1176)
# set 1500 random observations to be of specimen type 'Urine' # set 1500 random observations to be of specimen type 'Urine'
random_rows <- sample(x = 1:2000, size = 1500, replace = FALSE) random_rows <- sample(x = 1:2000, size = 1500, replace = FALSE)