1
0
mirror of https://github.com/msberends/AMR.git synced 2025-08-27 17:02:12 +02:00

(v2.1.1.9064) update all microbial taxonomy, add mycobank, big documentation update

This commit is contained in:
2024-07-16 14:51:57 +02:00
parent 4f9db23684
commit 640888f408
191 changed files with 321091 additions and 89382 deletions

View File

@@ -13,7 +13,6 @@ format:
library(dplyr)
library(readr)
library(tidyr)
library(janitor)
# WHONET version of 16th Feb 2024
whonet_breakpoints <- read_tsv("WHONET/Resources/Breakpoints.txt", na = c("", "NA", "-"),
@@ -42,8 +41,7 @@ whonet_breakpoints |>
filter(BREAKPOINT_TYPE == "Animal") |>
count(YEAR, HOST, REFERENCE_TABLE = gsub("VET[0-9]+ ", "", REFERENCE_TABLE)) |>
pivot_wider(names_from = YEAR, values_from = n, values_fill = list(n = 0)) |>
arrange(HOST, REFERENCE_TABLE) |>
adorn_totals(name = "TOTAL")
arrange(HOST, REFERENCE_TABLE)
```
### Cats only

Binary file not shown.

View File

@@ -6,9 +6,9 @@
# https://github.com/msberends/AMR #
# #
# PLEASE CITE THIS SOFTWARE AS: #
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
# Data. Journal of Statistical Software, 104(3), 1-31. #
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
# Journal of Statistical Software, 104(3), 1-31. #
# https://doi.org/10.18637/jss.v104.i03 #
# #
# Developed at the University of Groningen and the University Medical #

View File

@@ -6,9 +6,9 @@
# https://github.com/msberends/AMR #
# #
# PLEASE CITE THIS SOFTWARE AS: #
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
# Data. Journal of Statistical Software, 104(3), 1-31. #
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
# Journal of Statistical Software, 104(3), 1-31. #
# https://doi.org/10.18637/jss.v104.i03 #
# #
# Developed at the University of Groningen and the University Medical #
@@ -36,12 +36,14 @@ devtools::load_all(quiet = TRUE)
suppressMessages(set_AMR_locale("English"))
old_globalenv <- ls(envir = globalenv())
pre_commit_lst <- list()
# Save internal data to R/sysdata.rda -------------------------------------
usethis::ui_info(paste0("Updating internal package data"))
# See 'data-raw/eucast_rules.tsv' for the EUCAST reference file
EUCAST_RULES_DF <- utils::read.delim(
pre_commit_lst$EUCAST_RULES_DF <- utils::read.delim(
file = "data-raw/eucast_rules.tsv",
skip = 9,
sep = "\t",
@@ -67,7 +69,7 @@ EUCAST_RULES_DF <- utils::read.delim(
mutate(reference.rule_group = as.character(reference.rule_group)) %>%
select(-sorting_rule)
TRANSLATIONS <- utils::read.delim(
pre_commit_lst$TRANSLATIONS <- utils::read.delim(
file = "data-raw/translations.tsv",
sep = "\t",
stringsAsFactors = FALSE,
@@ -82,15 +84,15 @@ TRANSLATIONS <- utils::read.delim(
quote = ""
)
LANGUAGES_SUPPORTED_NAMES <- c(
pre_commit_lst$LANGUAGES_SUPPORTED_NAMES <- c(
list(en = list(exonym = "English", endonym = "English")),
lapply(
TRANSLATIONS[, which(nchar(colnames(TRANSLATIONS)) == 2), drop = FALSE],
TRANSLATIONS[, which(nchar(colnames(pre_commit_lst$TRANSLATIONS)) == 2), drop = FALSE],
function(x) list(exonym = x[1], endonym = x[2])
)
)
LANGUAGES_SUPPORTED <- names(LANGUAGES_SUPPORTED_NAMES)
pre_commit_lst$LANGUAGES_SUPPORTED <- names(pre_commit_lst$LANGUAGES_SUPPORTED_NAMES)
# vectors of CoNS and CoPS, improves speed in as.mo()
create_species_cons_cops <- function(type = c("CoNS", "CoPS")) {
@@ -147,115 +149,223 @@ create_species_cons_cops <- function(type = c("CoNS", "CoPS")) {
]
}
}
MO_CONS <- create_species_cons_cops("CoNS")
MO_COPS <- create_species_cons_cops("CoPS")
MO_STREP_ABCG <- AMR::microorganisms$mo[which(AMR::microorganisms$genus == "Streptococcus" &
pre_commit_lst$MO_CONS <- create_species_cons_cops("CoNS")
pre_commit_lst$MO_COPS <- create_species_cons_cops("CoPS")
pre_commit_lst$MO_STREP_ABCG <- AMR::microorganisms$mo[which(AMR::microorganisms$genus == "Streptococcus" &
tolower(AMR::microorganisms$species) %in% c(
"pyogenes", "agalactiae", "dysgalactiae", "equi", "canis",
"group a", "group b", "group c", "group g"
))]
MO_LANCEFIELD <- AMR::microorganisms$mo[which(AMR::microorganisms$mo %like% "^(B_STRPT_PYGN(_|$)|B_STRPT_AGLC(_|$)|B_STRPT_(DYSG|EQUI)(_|$)|B_STRPT_ANGN(_|$)|B_STRPT_(DYSG|CANS)(_|$)|B_STRPT_SNGN(_|$)|B_STRPT_SLVR(_|$))")]
MO_PREVALENT_GENERA <- c(
"Absidia", "Acanthamoeba", "Acremonium", "Aedes", "Alternaria", "Amoeba", "Ancylostoma", "Angiostrongylus",
"Anisakis", "Anopheles", "Apophysomyces", "Arthroderma", "Aspergillus", "Aureobasidium", "Basidiobolus", "Beauveria",
"Blastocystis", "Blastomyces", "Candida", "Capillaria", "Chaetomium", "Chrysonilia", "Chrysosporium", "Cladophialophora",
"Cladosporium", "Conidiobolus", "Contracaecum", "Cordylobia", "Cryptococcus", "Curvularia", "Demodex",
"Dermatobia", "Dientamoeba", "Diphyllobothrium", "Dirofilaria", "Echinostoma", "Entamoeba", "Enterobius",
"Exophiala", "Exserohilum", "Fasciola", "Fonsecaea", "Fusarium", "Geotrichum", "Giardia", "Haloarcula", "Halobacterium",
"Halococcus", "Hendersonula", "Heterophyes", "Histomonas", "Histoplasma", "Hymenolepis", "Hypomyces",
"Hysterothylacium", "Kloeckera", "Kodamaea", "Leishmania", "Lichtheimia", "Lodderomyces",
"Malassezia", "Malbranchea", "Metagonimus", "Meyerozyma", "Microsporidium",
"Microsporum", "Millerozyma", "Mortierella", "Mucor", "Mycocentrospora", "Necator", "Nectria", "Ochroconis", "Oesophagostomum",
"Oidiodendron", "Opisthorchis", "Paecilomyces", "Pediculus", "Penicillium", "Phlebotomus", "Phoma", "Pichia", "Piedraia", "Pithomyces",
"Pityrosporum", "Pneumocystis", "Pseudallescheria", "Pseudoterranova", "Pulex", "Rhizomucor", "Rhizopus",
"Rhodotorula", "Saccharomyces", "Saprochaete", "Sarcoptes", "Scedosporium", "Scolecobasidium", "Scopulariopsis", "Scytalidium", "Spirometra",
"Sporobolomyces", "Sporotrichum", "Stachybotrys", "Strongyloides", "Syngamus", "Taenia", "Talaromyces", "Toxocara", "Trichinella",
"Trichobilharzia", "Trichoderma", "Trichomonas", "Trichophyton", "Trichosporon", "Trichostrongylus", "Trichuris",
"Tritirachium", "Trombicula", "Trypanosoma", "Tunga", "Verticillium", "Wuchereria"
pre_commit_lst$MO_LANCEFIELD <- AMR::microorganisms$mo[which(AMR::microorganisms$mo %like% "^(B_STRPT_PYGN(_|$)|B_STRPT_AGLC(_|$)|B_STRPT_(DYSG|EQUI)(_|$)|B_STRPT_ANGN(_|$)|B_STRPT_(DYSG|CANS)(_|$)|B_STRPT_SNGN(_|$)|B_STRPT_SLVR(_|$))")]
pre_commit_lst$MO_PREVALENT_GENERA <- c(
"Absidia",
"Acanthamoeba",
"Acremonium",
"Aedes",
"Alternaria",
"Amoeba",
"Ancylostoma",
"Angiostrongylus",
"Anisakis",
"Anopheles",
"Apophysomyces",
"Arthroderma",
"Aspergillus",
"Aureobasidium",
"Basidiobolus",
"Beauveria",
"Blastocystis",
"Blastomyces",
"Candida",
"Capillaria",
"Chaetomium",
"Chrysonilia",
"Chrysosporium",
"Cladophialophora",
"Cladosporium",
"Conidiobolus",
"Contracaecum",
"Cordylobia",
"Cryptococcus",
"Curvularia",
"Demodex",
"Dermatobia",
"Dientamoeba",
"Diphyllobothrium",
"Dirofilaria",
"Echinostoma",
"Entamoeba",
"Enterobius",
"Exophiala",
"Exserohilum",
"Fasciola",
"Fonsecaea",
"Fusarium",
"Geotrichum",
"Giardia",
"Haloarcula",
"Halobacterium",
"Halococcus",
"Hansenula",
"Hendersonula",
"Heterophyes",
"Histomonas",
"Histoplasma",
"Hymenolepis",
"Hypomyces",
"Hysterothylacium",
"Kloeckera",
"Kluyveromyces",
"Kodamaea",
"Leishmania",
"Lichtheimia",
"Lodderomyces",
"Lomentospora",
"Malassezia",
"Malbranchea",
"Metagonimus",
"Meyerozyma",
"Microsporidium",
"Microsporum",
"Millerozyma",
"Mortierella",
"Mucor",
"Mycocentrospora",
"Necator",
"Nectria",
"Ochroconis",
"Oesophagostomum",
"Oidiodendron",
"Opisthorchis",
"Paecilomyces",
"Pediculus",
"Penicillium",
"Phlebotomus",
"Phoma",
"Pichia",
"Piedraia",
"Pithomyces",
"Pityrosporum",
"Pneumocystis",
"Pseudallescheria",
"Pseudoscopulariopsis",
"Pseudoterranova",
"Pulex",
"Rhizomucor",
"Rhizopus",
"Rhodotorula",
"Saccharomyces",
"Saprochaete",
"Sarcoptes",
"Scedosporium",
"Scolecobasidium",
"Scopulariopsis",
"Scytalidium",
"Spirometra",
"Sporobolomyces",
"Sporotrichum",
"Stachybotrys",
"Strongyloides",
"Syngamus",
"Taenia",
"Talaromyces",
"Toxocara",
"Trichinella",
"Trichobilharzia",
"Trichoderma",
"Trichomonas",
"Trichophyton",
"Trichosporon",
"Trichostrongylus",
"Trichuris",
"Tritirachium",
"Trombicula",
"Trypanosoma",
"Tunga",
"Verticillium",
"Wuchereria"
)
# antibiotic groups
# (these will also be used for eucast_rules() and understanding data-raw/eucast_rules.tsv)
globalenv_before_ab <- c(ls(envir = globalenv()), "globalenv_before_ab")
AB_AMINOGLYCOSIDES <- antibiotics %>%
pre_commit_lst$AB_AMINOGLYCOSIDES <- antibiotics %>%
filter(group %like% "aminoglycoside") %>%
pull(ab)
AB_AMINOPENICILLINS <- as.ab(c("AMP", "AMX"))
AB_ANTIFUNGALS <- antibiotics %>%
pre_commit_lst$AB_AMINOPENICILLINS <- as.ab(c("AMP", "AMX"))
pre_commit_lst$AB_ANTIFUNGALS <- antibiotics %>%
filter(group %like% "antifungal") %>%
pull(ab)
AB_ANTIMYCOBACTERIALS <- antibiotics %>%
pre_commit_lst$AB_ANTIMYCOBACTERIALS <- antibiotics %>%
filter(group %like% "antimycobacterial") %>%
pull(ab)
AB_CARBAPENEMS <- antibiotics %>%
pre_commit_lst$AB_CARBAPENEMS <- antibiotics %>%
filter(group %like% "carbapenem") %>%
pull(ab)
AB_CEPHALOSPORINS <- antibiotics %>%
pre_commit_lst$AB_CEPHALOSPORINS <- antibiotics %>%
filter(group %like% "cephalosporin") %>%
pull(ab)
AB_CEPHALOSPORINS_1ST <- antibiotics %>%
pre_commit_lst$AB_CEPHALOSPORINS_1ST <- antibiotics %>%
filter(group %like% "cephalosporin.*1") %>%
pull(ab)
AB_CEPHALOSPORINS_2ND <- antibiotics %>%
pre_commit_lst$AB_CEPHALOSPORINS_2ND <- antibiotics %>%
filter(group %like% "cephalosporin.*2") %>%
pull(ab)
AB_CEPHALOSPORINS_3RD <- antibiotics %>%
pre_commit_lst$AB_CEPHALOSPORINS_3RD <- antibiotics %>%
filter(group %like% "cephalosporin.*3") %>%
pull(ab)
AB_CEPHALOSPORINS_4TH <- antibiotics %>%
pre_commit_lst$AB_CEPHALOSPORINS_4TH <- antibiotics %>%
filter(group %like% "cephalosporin.*4") %>%
pull(ab)
AB_CEPHALOSPORINS_5TH <- antibiotics %>%
pre_commit_lst$AB_CEPHALOSPORINS_5TH <- antibiotics %>%
filter(group %like% "cephalosporin.*5") %>%
pull(ab)
AB_CEPHALOSPORINS_EXCEPT_CAZ <- AB_CEPHALOSPORINS[AB_CEPHALOSPORINS != "CAZ"]
AB_FLUOROQUINOLONES <- antibiotics %>%
pre_commit_lst$AB_CEPHALOSPORINS_EXCEPT_CAZ <- pre_commit_lst$AB_CEPHALOSPORINS[pre_commit_lst$AB_CEPHALOSPORINS != "CAZ"]
pre_commit_lst$AB_FLUOROQUINOLONES <- antibiotics %>%
filter(atc_group2 %like% "fluoroquinolone" | (group %like% "quinolone" & is.na(atc_group2))) %>%
pull(ab)
AB_GLYCOPEPTIDES <- antibiotics %>%
pre_commit_lst$AB_GLYCOPEPTIDES <- antibiotics %>%
filter(group %like% "glycopeptide") %>%
pull(ab)
AB_LIPOGLYCOPEPTIDES <- as.ab(c("DAL", "ORI", "TLV")) # dalba/orita/tela
AB_GLYCOPEPTIDES_EXCEPT_LIPO <- AB_GLYCOPEPTIDES[!AB_GLYCOPEPTIDES %in% AB_LIPOGLYCOPEPTIDES]
AB_LINCOSAMIDES <- antibiotics %>%
pre_commit_lst$AB_LIPOGLYCOPEPTIDES <- as.ab(c("DAL", "ORI", "TLV")) # dalba/orita/tela
pre_commit_lst$AB_GLYCOPEPTIDES_EXCEPT_LIPO <- pre_commit_lst$AB_GLYCOPEPTIDES[!pre_commit_lst$AB_GLYCOPEPTIDES %in% pre_commit_lst$AB_LIPOGLYCOPEPTIDES]
pre_commit_lst$AB_LINCOSAMIDES <- antibiotics %>%
filter(atc_group2 %like% "lincosamide" | (group %like% "lincosamide" & is.na(atc_group2))) %>%
pull(ab)
AB_MACROLIDES <- antibiotics %>%
pre_commit_lst$AB_MACROLIDES <- antibiotics %>%
filter(atc_group2 %like% "macrolide" | (group %like% "macrolide" & is.na(atc_group2) & name %unlike% "screening|inducible")) %>%
pull(ab)
AB_NITROFURANS <- antibiotics %>%
pre_commit_lst$AB_NITROFURANS <- antibiotics %>%
filter(name %like% "^furaz|nitrofura" | atc_group2 %like% "nitrofuran") %>%
pull(ab)
AB_OXAZOLIDINONES <- antibiotics %>%
pre_commit_lst$AB_OXAZOLIDINONES <- antibiotics %>%
filter(group %like% "oxazolidinone") %>%
pull(ab)
AB_PENICILLINS <- antibiotics %>%
pre_commit_lst$AB_PENICILLINS <- antibiotics %>%
filter(group %like% "penicillin") %>%
pull(ab)
AB_POLYMYXINS <- antibiotics %>%
pre_commit_lst$AB_POLYMYXINS <- antibiotics %>%
filter(group %like% "polymyxin") %>%
pull(ab)
AB_QUINOLONES <- antibiotics %>%
pre_commit_lst$AB_QUINOLONES <- antibiotics %>%
filter(group %like% "quinolone") %>%
pull(ab)
AB_RIFAMYCINS <- antibiotics %>%
pre_commit_lst$AB_RIFAMYCINS <- antibiotics %>%
filter(name %like% "Rifampi|Rifabutin|Rifapentine|rifamy") %>%
pull(ab)
AB_STREPTOGRAMINS <- antibiotics %>%
pre_commit_lst$AB_STREPTOGRAMINS <- antibiotics %>%
filter(atc_group2 %like% "streptogramin") %>%
pull(ab)
AB_TETRACYCLINES <- antibiotics %>%
pre_commit_lst$AB_TETRACYCLINES <- antibiotics %>%
filter(group %like% "tetracycline") %>%
pull(ab)
AB_TETRACYCLINES_EXCEPT_TGC <- AB_TETRACYCLINES[AB_TETRACYCLINES != "TGC"]
AB_TRIMETHOPRIMS <- antibiotics %>%
pre_commit_lst$AB_TETRACYCLINES_EXCEPT_TGC <- pre_commit_lst$AB_TETRACYCLINES[pre_commit_lst$AB_TETRACYCLINES != "TGC"]
pre_commit_lst$AB_TRIMETHOPRIMS <- antibiotics %>%
filter(group %like% "trimethoprim") %>%
pull(ab)
AB_UREIDOPENICILLINS <- as.ab(c("PIP", "TZP", "AZL", "MEZ"))
AB_BETALACTAMS <- c(AB_PENICILLINS, AB_CEPHALOSPORINS, AB_CARBAPENEMS)
pre_commit_lst$AB_UREIDOPENICILLINS <- as.ab(c("PIP", "TZP", "AZL", "MEZ"))
pre_commit_lst$AB_BETALACTAMS <- c(pre_commit_lst$AB_PENICILLINS, pre_commit_lst$AB_CEPHALOSPORINS, pre_commit_lst$AB_CARBAPENEMS)
# this will be used for documentation:
DEFINED_AB_GROUPS <- ls(envir = globalenv())
DEFINED_AB_GROUPS <- DEFINED_AB_GROUPS[!DEFINED_AB_GROUPS %in% globalenv_before_ab]
pre_commit_lst$DEFINED_AB_GROUPS <- sort(names(pre_commit_lst)[names(pre_commit_lst) %like% "^AB_" & names(pre_commit_lst) != "AB_LOOKUP"])
create_AB_AV_lookup <- function(df) {
new_df <- df
new_df$generalised_name <- generalise_antibiotic_name(new_df$name)
@@ -282,62 +392,26 @@ create_AB_AV_lookup <- function(df) {
))
new_df[, colnames(new_df)[colnames(new_df) %like% "^generalised"]]
}
AB_LOOKUP <- create_AB_AV_lookup(AMR::antibiotics)
AV_LOOKUP <- create_AB_AV_lookup(AMR::antivirals)
pre_commit_lst$AB_LOOKUP <- create_AB_AV_lookup(AMR::antibiotics)
pre_commit_lst$AV_LOOKUP <- create_AB_AV_lookup(AMR::antivirals)
# Export to package as internal data ----
usethis::ui_info(paste0("Updating internal package data"))
suppressMessages(usethis::use_data(EUCAST_RULES_DF,
TRANSLATIONS,
LANGUAGES_SUPPORTED_NAMES,
LANGUAGES_SUPPORTED,
MO_CONS,
MO_COPS,
MO_STREP_ABCG,
MO_LANCEFIELD,
MO_PREVALENT_GENERA,
AB_LOOKUP,
AV_LOOKUP,
AB_AMINOGLYCOSIDES,
AB_AMINOPENICILLINS,
AB_ANTIFUNGALS,
AB_ANTIMYCOBACTERIALS,
AB_CARBAPENEMS,
AB_CEPHALOSPORINS,
AB_CEPHALOSPORINS_1ST,
AB_CEPHALOSPORINS_2ND,
AB_CEPHALOSPORINS_3RD,
AB_CEPHALOSPORINS_4TH,
AB_CEPHALOSPORINS_5TH,
AB_CEPHALOSPORINS_EXCEPT_CAZ,
AB_FLUOROQUINOLONES,
AB_LIPOGLYCOPEPTIDES,
AB_GLYCOPEPTIDES,
AB_GLYCOPEPTIDES_EXCEPT_LIPO,
AB_LINCOSAMIDES,
AB_MACROLIDES,
AB_NITROFURANS,
AB_OXAZOLIDINONES,
AB_PENICILLINS,
AB_POLYMYXINS,
AB_QUINOLONES,
AB_RIFAMYCINS,
AB_STREPTOGRAMINS,
AB_TETRACYCLINES,
AB_TETRACYCLINES_EXCEPT_TGC,
AB_TRIMETHOPRIMS,
AB_UREIDOPENICILLINS,
AB_BETALACTAMS,
DEFINED_AB_GROUPS,
internal = TRUE,
overwrite = TRUE,
version = 2,
compress = "xz"
))
# usethis::use_data() must receive unquoted object names, which is not flexible at all.
# we'll use good old base::save() instead
save(list = names(pre_commit_lst),
file = "R/sysdata.rda",
envir = as.environment(pre_commit_lst),
compress = "xz",
version = 2,
ascii = FALSE)
usethis::ui_done("Saved to {usethis::ui_value('R/sysdata.rda')}")
# Export data sets to the repository in different formats -----------------
for (pkg in c("haven", "openxlsx", "arrow")) {
for (pkg in c("haven", "openxlsx2", "arrow")) {
if (!pkg %in% rownames(utils::installed.packages())) {
message("NOTE: package '", pkg, "' not installed! Ignoring export where this package is required.")
}
@@ -378,7 +452,7 @@ if (changed_md5(clin_break)) {
try(haven::write_xpt(clin_break, "data-raw/clinical_breakpoints.xpt"), silent = TRUE)
try(haven::write_sav(clin_break, "data-raw/clinical_breakpoints.sav"), silent = TRUE)
try(haven::write_dta(clin_break, "data-raw/clinical_breakpoints.dta"), silent = TRUE)
try(openxlsx::write.xlsx(clin_break, "data-raw/clinical_breakpoints.xlsx"), silent = TRUE)
try(openxlsx2::write_xlsx(clin_break, "data-raw/clinical_breakpoints.xlsx"), silent = TRUE)
try(arrow::write_feather(clin_break, "data-raw/clinical_breakpoints.feather"), silent = TRUE)
try(arrow::write_parquet(clin_break, "data-raw/clinical_breakpoints.parquet"), silent = TRUE)
}
@@ -396,7 +470,7 @@ if (changed_md5(microorganisms)) {
try(haven::write_dta(mo, "data-raw/microorganisms.dta"), silent = TRUE)
mo_all_snomed <- microorganisms %>% mutate_if(is.list, function(x) sapply(x, paste, collapse = ","))
try(write.table(mo_all_snomed, "data-raw/microorganisms.txt", sep = "\t", na = "", row.names = FALSE), silent = TRUE)
try(openxlsx::write.xlsx(mo_all_snomed, "data-raw/microorganisms.xlsx"), silent = TRUE)
try(openxlsx2::write_xlsx(mo_all_snomed, "data-raw/microorganisms.xlsx"), silent = TRUE)
try(arrow::write_feather(microorganisms, "data-raw/microorganisms.feather"), silent = TRUE)
try(arrow::write_parquet(microorganisms, "data-raw/microorganisms.parquet"), silent = TRUE)
}
@@ -409,7 +483,7 @@ if (changed_md5(microorganisms.codes)) {
try(haven::write_xpt(microorganisms.codes, "data-raw/microorganisms.codes.xpt"), silent = TRUE)
try(haven::write_sav(microorganisms.codes, "data-raw/microorganisms.codes.sav"), silent = TRUE)
try(haven::write_dta(microorganisms.codes, "data-raw/microorganisms.codes.dta"), silent = TRUE)
try(openxlsx::write.xlsx(microorganisms.codes, "data-raw/microorganisms.codes.xlsx"), silent = TRUE)
try(openxlsx2::write_xlsx(microorganisms.codes, "data-raw/microorganisms.codes.xlsx"), silent = TRUE)
try(arrow::write_feather(microorganisms.codes, "data-raw/microorganisms.codes.feather"), silent = TRUE)
try(arrow::write_parquet(microorganisms.codes, "data-raw/microorganisms.codes.parquet"), silent = TRUE)
}
@@ -422,7 +496,7 @@ if (changed_md5(microorganisms.groups)) {
try(haven::write_xpt(microorganisms.groups, "data-raw/microorganisms.groups.xpt"), silent = TRUE)
try(haven::write_sav(microorganisms.groups, "data-raw/microorganisms.groups.sav"), silent = TRUE)
try(haven::write_dta(microorganisms.groups, "data-raw/microorganisms.groups.dta"), silent = TRUE)
try(openxlsx::write.xlsx(microorganisms.groups, "data-raw/microorganisms.groups.xlsx"), silent = TRUE)
try(openxlsx2::write_xlsx(microorganisms.groups, "data-raw/microorganisms.groups.xlsx"), silent = TRUE)
try(arrow::write_feather(microorganisms.groups, "data-raw/microorganisms.groups.feather"), silent = TRUE)
try(arrow::write_parquet(microorganisms.groups, "data-raw/microorganisms.groups.parquet"), silent = TRUE)
}
@@ -437,7 +511,7 @@ if (changed_md5(ab)) {
try(haven::write_dta(ab, "data-raw/antibiotics.dta"), silent = TRUE)
ab_lists <- antibiotics %>% mutate_if(is.list, function(x) sapply(x, paste, collapse = ","))
try(write.table(ab_lists, "data-raw/antibiotics.txt", sep = "\t", na = "", row.names = FALSE), silent = TRUE)
try(openxlsx::write.xlsx(ab_lists, "data-raw/antibiotics.xlsx"), silent = TRUE)
try(openxlsx2::write_xlsx(ab_lists, "data-raw/antibiotics.xlsx"), silent = TRUE)
try(arrow::write_feather(antibiotics, "data-raw/antibiotics.feather"), silent = TRUE)
try(arrow::write_parquet(antibiotics, "data-raw/antibiotics.parquet"), silent = TRUE)
}
@@ -452,7 +526,7 @@ if (changed_md5(av)) {
try(haven::write_dta(av, "data-raw/antivirals.dta"), silent = TRUE)
av_lists <- antivirals %>% mutate_if(is.list, function(x) sapply(x, paste, collapse = ","))
try(write.table(av_lists, "data-raw/antivirals.txt", sep = "\t", na = "", row.names = FALSE), silent = TRUE)
try(openxlsx::write.xlsx(av_lists, "data-raw/antivirals.xlsx"), silent = TRUE)
try(openxlsx2::write_xlsx(av_lists, "data-raw/antivirals.xlsx"), silent = TRUE)
try(arrow::write_feather(antivirals, "data-raw/antivirals.feather"), silent = TRUE)
try(arrow::write_parquet(antivirals, "data-raw/antivirals.parquet"), silent = TRUE)
}
@@ -471,7 +545,7 @@ if (changed_md5(intrinsicR)) {
try(haven::write_xpt(intrinsicR, "data-raw/intrinsic_resistant.xpt"), silent = TRUE)
try(haven::write_sav(intrinsicR, "data-raw/intrinsic_resistant.sav"), silent = TRUE)
try(haven::write_dta(intrinsicR, "data-raw/intrinsic_resistant.dta"), silent = TRUE)
try(openxlsx::write.xlsx(intrinsicR, "data-raw/intrinsic_resistant.xlsx"), silent = TRUE)
try(openxlsx2::write_xlsx(intrinsicR, "data-raw/intrinsic_resistant.xlsx"), silent = TRUE)
try(arrow::write_feather(intrinsicR, "data-raw/intrinsic_resistant.feather"), silent = TRUE)
try(arrow::write_parquet(intrinsicR, "data-raw/intrinsic_resistant.parquet"), silent = TRUE)
}
@@ -484,18 +558,13 @@ if (changed_md5(dosage)) {
try(haven::write_xpt(dosage, "data-raw/dosage.xpt"), silent = TRUE)
try(haven::write_sav(dosage, "data-raw/dosage.sav"), silent = TRUE)
try(haven::write_dta(dosage, "data-raw/dosage.dta"), silent = TRUE)
try(openxlsx::write.xlsx(dosage, "data-raw/dosage.xlsx"), silent = TRUE)
try(openxlsx2::write_xlsx(dosage, "data-raw/dosage.xlsx"), silent = TRUE)
try(arrow::write_feather(dosage, "data-raw/dosage.feather"), silent = TRUE)
try(arrow::write_parquet(dosage, "data-raw/dosage.parquet"), silent = TRUE)
}
suppressMessages(reset_AMR_locale())
# remove leftovers from global env
current_globalenv <- ls(envir = globalenv())
rm(list = current_globalenv[!current_globalenv %in% old_globalenv])
rm(current_globalenv)
devtools::load_all(quiet = TRUE)
suppressMessages(set_AMR_locale("English"))
@@ -509,19 +578,6 @@ usethis::ui_info("Documenting package")
suppressMessages(devtools::document(quiet = TRUE))
# Style pkg ---------------------------------------------------------------
if (!"styler" %in% rownames(utils::installed.packages())) {
message("Package 'styler' not installed!")
} else if (interactive()) {
# only when sourcing this file ourselves
# usethis::ui_info("Styling package")
# styler::style_pkg(
# style = styler::tidyverse_style,
# filetype = c("R", "Rmd")
# )
}
# Finished ----------------------------------------------------------------
usethis::ui_done("All done")
suppressMessages(reset_AMR_locale())

File diff suppressed because it is too large Load Diff

View File

@@ -1 +1 @@
91ebec60b7f84f55ec0b756964d7c5b6
c79b6e112dc3ab478b990f0689b685b6

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -192,23 +192,23 @@
"EUCAST 2024" "human" "human" "MIC" "B_BRCLL_MLTN" 2 "SXT" "Brucella melitensis" 0.125 0.125 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "B_BRCLL_MLTN" 2 "TCY" "Brucella melitensis" "30ug" 42 42 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_BRCLL_MLTN" 2 "TCY" "Brucella melitensis" 0.5 0.5 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "B_BRCLL_OVIS" 2 "CIP" "Brucella melitensis" "5ug" 50 27 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_BRCLL_OVIS" 2 "CIP" "Brucella melitensis" 1e-04 1 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "Meningitis" "B_BRCLL_OVIS" 2 "CRO" "Brucella melitensis" "30ug" 30 30 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "Meningitis" "B_BRCLL_OVIS" 2 "CRO" "Brucella melitensis" 2 2 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_BRCLL_OVIS" 2 "DOX" "Brucella melitensis" 0.25 0.25 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "B_BRCLL_OVIS" 2 "GEN" "Brucella melitensis" "10ug" 23 23 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_BRCLL_OVIS" 2 "GEN" "Brucella melitensis" 0.5 0.5 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "B_BRCLL_OVIS" 2 "LVX" "Brucella melitensis" "5ug" 50 28 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_BRCLL_OVIS" 2 "LVX" "Brucella melitensis" 1e-04 1 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "B_BRCLL_OVIS" 2 "RIF" "Brucella melitensis" "5ug" 20 20 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_BRCLL_OVIS" 2 "RIF" "Brucella melitensis" 2 2 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "B_BRCLL_OVIS" 2 "STR" "Brucella melitensis" "10ug" 15 15 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_BRCLL_OVIS" 2 "STR" "Brucella melitensis" 1 1 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "B_BRCLL_OVIS" 2 "SXT" "Brucella melitensis" "1.25ug/23.75ug" 29 29 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_BRCLL_OVIS" 2 "SXT" "Brucella melitensis" 0.125 0.125 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "B_BRCLL_OVIS" 2 "TCY" "Brucella melitensis" "30ug" 42 42 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_BRCLL_OVIS" 2 "TCY" "Brucella melitensis" 0.5 0.5 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "B_BRCLL_MLTN" 2 "CIP" "Brucella melitensis" "5ug" 50 27 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_BRCLL_MLTN" 2 "CIP" "Brucella melitensis" 1e-04 1 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "Meningitis" "B_BRCLL_MLTN" 2 "CRO" "Brucella melitensis" "30ug" 30 30 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "Meningitis" "B_BRCLL_MLTN" 2 "CRO" "Brucella melitensis" 2 2 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_BRCLL_MLTN" 2 "DOX" "Brucella melitensis" 0.25 0.25 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "B_BRCLL_MLTN" 2 "GEN" "Brucella melitensis" "10ug" 23 23 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_BRCLL_MLTN" 2 "GEN" "Brucella melitensis" 0.5 0.5 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "B_BRCLL_MLTN" 2 "LVX" "Brucella melitensis" "5ug" 50 28 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_BRCLL_MLTN" 2 "LVX" "Brucella melitensis" 1e-04 1 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "B_BRCLL_MLTN" 2 "RIF" "Brucella melitensis" "5ug" 20 20 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_BRCLL_MLTN" 2 "RIF" "Brucella melitensis" 2 2 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "B_BRCLL_MLTN" 2 "STR" "Brucella melitensis" "10ug" 15 15 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_BRCLL_MLTN" 2 "STR" "Brucella melitensis" 1 1 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "B_BRCLL_MLTN" 2 "SXT" "Brucella melitensis" "1.25ug/23.75ug" 29 29 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_BRCLL_MLTN" 2 "SXT" "Brucella melitensis" 0.125 0.125 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "B_BRCLL_MLTN" 2 "TCY" "Brucella melitensis" "30ug" 42 42 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_BRCLL_MLTN" 2 "TCY" "Brucella melitensis" 0.5 0.5 FALSE FALSE
"EUCAST 2024" "ECOFF" "ECOFF" "DISK" "B_BRKHL_PSDM" 2 "AMC" "ECOFF" "20/10ug" 22 22 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "B_BRKHL_PSDM" 2 "AMC" "B. pseudomallei" "20ug/10ug" 50 22 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_BRKHL_PSDM" 2 "AMC" "B. pseudomallei" 1e-04 8 FALSE FALSE
@@ -1155,8 +1155,8 @@
"EUCAST 2024" "ECOFF" "ECOFF" "DISK" "B_PSTRL_MLTC" 2 "PEN" "ECOFF" "1 unit" 15 15 FALSE FALSE
"EUCAST 2024" "ECOFF" "ECOFF" "DISK" "B_PSTRL_MLTC" 2 "SXT" "ECOFF" "1.25/23.75ug" 18 18 FALSE FALSE
"EUCAST 2024" "ECOFF" "ECOFF" "DISK" "B_PSTRL_MLTC" 2 "TCY" "ECOFF" "30ug" 21 21 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "Uncomplicated urinary tract infection" "B_RLTLL" 3 "MEC" "Enterobacteriaceae" "10ug" 15 15 TRUE FALSE
"EUCAST 2024" "human" "human" "MIC" "Uncomplicated urinary tract infection" "B_RLTLL" 3 "MEC" "Enterobacteriaceae" 8 8 TRUE FALSE
"EUCAST 2024" "human" "human" "DISK" "Uncomplicated urinary tract infection" "B_KLBSL" 3 "MEC" "Enterobacteriaceae" "10ug" 15 15 TRUE FALSE
"EUCAST 2024" "human" "human" "MIC" "Uncomplicated urinary tract infection" "B_KLBSL" 3 "MEC" "Enterobacteriaceae" 8 8 TRUE FALSE
"EUCAST 2024" "ECOFF" "ECOFF" "DISK" "B_SERRT_MRCS" 2 "AMP" "ECOFF" "10ug" 14 14 FALSE FALSE
"EUCAST 2024" "ECOFF" "ECOFF" "DISK" "B_SERRT_MRCS" 2 "CAZ" "ECOFF" "10ug" 20 20 FALSE FALSE
"EUCAST 2024" "ECOFF" "ECOFF" "DISK" "B_SERRT_MRCS" 2 "CIP" "ECOFF" "5ug" 22 22 FALSE FALSE
@@ -1185,7 +1185,7 @@
"EUCAST 2024" "ECOFF" "ECOFF" "DISK" "B_SLMNL_ENTR_ENTR" 1 "SXT" "ECOFF" "1.25/23.75ug" 21 21 FALSE FALSE
"EUCAST 2024" "ECOFF" "ECOFF" "DISK" "B_SLMNL_ENTR_ENTR" 1 "TCY" "ECOFF" "30ug" 17 17 FALSE FALSE
"EUCAST 2024" "ECOFF" "ECOFF" "DISK" "B_SLMNL_ENTR_ENTR" 1 "TMP" "ECOFF" "5ug" 23 23 FALSE FALSE
"EUCAST 2024" "ECOFF" "ECOFF" "MIC" "B_SLMNL_RTDS" 2 "MEM" "ECOFF" 0.064 0.064 FALSE FALSE
"EUCAST 2024" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR" 2 "MEM" "ECOFF" 0.064 0.064 FALSE FALSE
"EUCAST 2024" "ECOFF" "ECOFF" "DISK" "B_STNTR_MLTP" 2 "SXT" "ECOFF" "1.25/23.75ug" 16 16 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "B_STNTR_MLTP" 2 "SXT" "Stenotrophomonas maltophilia" "1.25ug/23.75ug" 50 16 FALSE FALSE
"EUCAST 2024" "human" "human" "MIC" "B_STNTR_MLTP" 2 "SXT" "Stenotrophomonas maltophilia" 1e-04 4 FALSE FALSE
@@ -1379,7 +1379,7 @@
"EUCAST 2024" "ECOFF" "ECOFF" "DISK" "B_STPHY_LGDN" 2 "TOB" "ECOFF" "10ug" 22 22 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "Screen" "B_STPHY_PSDN" 2 "OXA" "Staphs" "1 unit" 20 20 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "Screen" "B_STPHY_SCHL" 2 "OXA" "Staphs" "1 unit" 20 20 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "Screen" "B_STPHY_SCHL_CGLN" 1 "OXA" "Staphs" "1 unit" 20 20 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "Screen" "B_STPHY_CGLN" 1 "OXA" "Staphs" "1 unit" 20 20 FALSE FALSE
"EUCAST 2024" "ECOFF" "ECOFF" "DISK" "B_STPHY_SPRP" 2 "AMP" "ECOFF" "2ug" 17 17 FALSE FALSE
"EUCAST 2024" "human" "human" "DISK" "B_STPHY_SPRP" 2 "AMP" "Staphs" "2ug" 18 18 FALSE FALSE
"EUCAST 2024" "ECOFF" "ECOFF" "DISK" "B_STPHY_SPRP" 2 "CFR" "ECOFF" "30ug" 19 19 FALSE FALSE
@@ -2866,15 +2866,15 @@
"EUCAST 2023" "human" "human" "MIC" "B_PSTRL" 3 "SXT" "Pasteurella spp." 0.25 0.25 FALSE FALSE
"EUCAST 2023" "human" "human" "DISK" "Screen" "B_PSTRL" 3 "TCY" "Pasteurella spp." "30ug" 24 24 FALSE FALSE
"EUCAST 2023" "animal" "cattle" "MIC" "Respiratory" "B_PSTRL_MLTC" 2 "FLR" "Pasteurella multocida" 2 4 FALSE FALSE
"EUCAST 2023" "human" "human" "DISK" "Uncomplicated urinary tract infection" "B_RLTLL" 3 "MEC" "Enterobacteriaceae" "10ug" 15 15 TRUE FALSE
"EUCAST 2023" "human" "human" "MIC" "Uncomplicated urinary tract infection" "B_RLTLL" 3 "MEC" "Enterobacteriaceae" 8 8 TRUE FALSE
"EUCAST 2023" "human" "human" "DISK" "Uncomplicated urinary tract infection" "B_KLBSL" 3 "MEC" "Enterobacteriaceae" "10ug" 15 15 TRUE FALSE
"EUCAST 2023" "human" "human" "MIC" "Uncomplicated urinary tract infection" "B_KLBSL" 3 "MEC" "Enterobacteriaceae" 8 8 TRUE FALSE
"EUCAST 2023" "ECOFF" "ECOFF" "DISK" "B_SHGLL_FLXN" 2 "PEF" "ECOFF" "5ug" 24 24 FALSE FALSE
"EUCAST 2023" "human" "human" "MIC" "B_SLMNL" 3 "CIP" "Enterobacteriaceae" 0.064 0.064 FALSE FALSE
"EUCAST 2023" "human" "human" "DISK" "Screen" "B_SLMNL" 3 "PEF" "Enterobacteriaceae" "5ug" 24 24 FALSE FALSE
"EUCAST 2023" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "AZM" "ECOFF" 32 32 FALSE FALSE
"EUCAST 2023" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "FOX" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2023" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "MEM" "ECOFF" 0.064 0.064 FALSE FALSE
"EUCAST 2023" "ECOFF" "ECOFF" "MIC" "B_SLMNL_RTDS" 2 "MEM" "ECOFF" 0.064 0.064 FALSE FALSE
"EUCAST 2023" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR" 2 "MEM" "ECOFF" 0.064 0.064 FALSE FALSE
"EUCAST 2023" "human" "human" "DISK" "B_STNTR_MLTP" 2 "SXT" "Stenotrophomonas maltophilia" "1.25ug/23.75ug" 50 16 FALSE FALSE
"EUCAST 2023" "human" "human" "MIC" "B_STNTR_MLTP" 2 "SXT" "Stenotrophomonas maltophilia" 1e-04 4 FALSE FALSE
"EUCAST 2023" "human" "human" "MIC" "B_STPHY" 3 "AZM" "Staphs" 2 2 FALSE FALSE
@@ -3012,7 +3012,7 @@
"EUCAST 2023" "human" "human" "MIC" "B_STPHY_LGDN" 2 "PEN" "Staphs" 0.125 0.125 FALSE FALSE
"EUCAST 2023" "human" "human" "DISK" "Screen" "B_STPHY_PSDN" 2 "OXA" "Staphs" "1 unit" 20 20 FALSE FALSE
"EUCAST 2023" "human" "human" "DISK" "Screen" "B_STPHY_SCHL" 2 "OXA" "Staphs" "1 unit" 20 20 FALSE FALSE
"EUCAST 2023" "human" "human" "DISK" "Screen" "B_STPHY_SCHL_CGLN" 1 "OXA" "Staphs" "1 unit" 20 20 FALSE FALSE
"EUCAST 2023" "human" "human" "DISK" "Screen" "B_STPHY_CGLN" 1 "OXA" "Staphs" "1 unit" 20 20 FALSE FALSE
"EUCAST 2023" "human" "human" "DISK" "B_STPHY_SPRP" 2 "AMP" "Staphs" "2ug" 18 18 FALSE FALSE
"EUCAST 2023" "human" "human" "MIC" "Screen" "B_STPHY_SPRP" 2 "FOX" "Staphs" 8 8 FALSE FALSE
"EUCAST 2023" "human" "human" "DISK" "Uncomplicated urinary tract infection" "B_STPHY_SPRP" 2 "NIT" "Staphs" "100ug" 13 13 TRUE FALSE
@@ -4298,15 +4298,15 @@
"EUCAST 2022" "human" "human" "DISK" "B_PSTRL_MLTC" 2 "SXT" "Pasteurella multocida" "1.25ug/23.75ug" 23 23 FALSE FALSE
"EUCAST 2022" "human" "human" "MIC" "B_PSTRL_MLTC" 2 "SXT" "Pasteurella multocida" 0.25 0.25 FALSE FALSE
"EUCAST 2022" "human" "human" "DISK" "Screen" "B_PSTRL_MLTC" 2 "TCY" "Pasteurella multocida" "30ug" 24 24 FALSE FALSE
"EUCAST 2022" "human" "human" "DISK" "Uncomplicated urinary tract infection" "B_RLTLL" 3 "MEC" "Enterobacteriaceae" "10ug" 15 15 TRUE FALSE
"EUCAST 2022" "human" "human" "MIC" "Uncomplicated urinary tract infection" "B_RLTLL" 3 "MEC" "Enterobacteriaceae" 8 8 TRUE FALSE
"EUCAST 2022" "human" "human" "DISK" "Uncomplicated urinary tract infection" "B_KLBSL" 3 "MEC" "Enterobacteriaceae" "10ug" 15 15 TRUE FALSE
"EUCAST 2022" "human" "human" "MIC" "Uncomplicated urinary tract infection" "B_KLBSL" 3 "MEC" "Enterobacteriaceae" 8 8 TRUE FALSE
"EUCAST 2022" "ECOFF" "ECOFF" "DISK" "B_SHGLL_FLXN" 2 "PEF" "ECOFF" "5ug" 24 24 FALSE FALSE
"EUCAST 2022" "human" "human" "MIC" "B_SLMNL" 3 "CIP" "Enterobacteriaceae" 0.064 0.064 FALSE FALSE
"EUCAST 2022" "human" "human" "DISK" "Screen" "B_SLMNL" 3 "PEF" "Enterobacteriaceae" "5ug" 24 24 FALSE FALSE
"EUCAST 2022" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "AZM" "ECOFF" 32 32 FALSE FALSE
"EUCAST 2022" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "FOX" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2022" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "MEM" "ECOFF" 0.064 0.064 FALSE FALSE
"EUCAST 2022" "ECOFF" "ECOFF" "MIC" "B_SLMNL_RTDS" 2 "MEM" "ECOFF" 0.064 0.064 FALSE FALSE
"EUCAST 2022" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR" 2 "MEM" "ECOFF" 0.064 0.064 FALSE FALSE
"EUCAST 2022" "human" "human" "DISK" "B_STNTR_MLTP" 2 "SXT" "Stenotrophomonas maltophilia" "1.25ug/23.75ug" 50 16 FALSE FALSE
"EUCAST 2022" "human" "human" "MIC" "B_STNTR_MLTP" 2 "SXT" "Stenotrophomonas maltophilia" 1e-04 4 FALSE FALSE
"EUCAST 2022" "human" "human" "MIC" "B_STPHY" 3 "AZM" "Staphs" 2 2 FALSE FALSE
@@ -4446,7 +4446,7 @@
"EUCAST 2022" "human" "human" "MIC" "B_STPHY_LGDN" 2 "PEN" "Staphs" 0.125 0.125 FALSE FALSE
"EUCAST 2022" "human" "human" "DISK" "Screen" "B_STPHY_PSDN" 2 "OXA" "Staphs" "1 unit" 20 20 FALSE FALSE
"EUCAST 2022" "human" "human" "DISK" "Screen" "B_STPHY_SCHL" 2 "OXA" "Staphs" "1 unit" 20 20 FALSE FALSE
"EUCAST 2022" "human" "human" "DISK" "Screen" "B_STPHY_SCHL_CGLN" 1 "OXA" "Staphs" "1 unit" 20 20 FALSE FALSE
"EUCAST 2022" "human" "human" "DISK" "Screen" "B_STPHY_CGLN" 1 "OXA" "Staphs" "1 unit" 20 20 FALSE FALSE
"EUCAST 2022" "human" "human" "DISK" "B_STPHY_SPRP" 2 "AMP" "Staphs" "2ug" 18 18 FALSE FALSE
"EUCAST 2022" "human" "human" "MIC" "Screen" "B_STPHY_SPRP" 2 "FOX" "Staphs" 8 8 FALSE FALSE
"EUCAST 2022" "human" "human" "DISK" "Uncomplicated urinary tract infection" "B_STPHY_SPRP" 2 "NIT" "Staphs" "100ug" 13 13 TRUE FALSE
@@ -6152,8 +6152,8 @@
"EUCAST 2021" "human" "human" "MIC" "B_PSTRL_MLTC" 2 "SXT" "Pasteurella multocida" 0.25 0.25 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_PSTRL_MLTC" 2 "TCY" "ECOFF" 2 2 FALSE FALSE
"EUCAST 2021" "human" "human" "DISK" "Screen" "B_PSTRL_MLTC" 2 "TCY" "Pasteurella multocida" "30ug" 24 24 FALSE FALSE
"EUCAST 2021" "human" "human" "DISK" "Uncomplicated urinary tract infection" "B_RLTLL" 3 "MEC" "Enterobacteriaceae" "10ug" 15 15 TRUE FALSE
"EUCAST 2021" "human" "human" "MIC" "Uncomplicated urinary tract infection" "B_RLTLL" 3 "MEC" "Enterobacteriaceae" 8 8 TRUE FALSE
"EUCAST 2021" "human" "human" "DISK" "Uncomplicated urinary tract infection" "B_KLBSL" 3 "MEC" "Enterobacteriaceae" "10ug" 15 15 TRUE FALSE
"EUCAST 2021" "human" "human" "MIC" "Uncomplicated urinary tract infection" "B_KLBSL" 3 "MEC" "Enterobacteriaceae" 8 8 TRUE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_SERRT" 3 "CAZ" "ECOFF" 0.5 0.5 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_SERRT" 3 "CTX" "ECOFF" 1 1 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_SERRT" 3 "DOR" "ECOFF" 0.5 0.5 FALSE FALSE
@@ -6225,11 +6225,11 @@
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "FOX" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "MEM" "ECOFF" 0.125 0.125 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "TZP" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_SLMNL_RTDS" 2 "AMP" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_SLMNL_RTDS" 2 "CXM" "ECOFF" 16 16 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_SLMNL_RTDS" 2 "FOX" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_SLMNL_RTDS" 2 "MEM" "ECOFF" 0.125 0.125 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_SLMNL_RTDS" 2 "TZP" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR" 2 "AMP" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR" 2 "CXM" "ECOFF" 16 16 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR" 2 "FOX" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR" 2 "MEM" "ECOFF" 0.125 0.125 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR" 2 "TZP" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STNTR_MLTP" 2 "DOX" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STNTR_MLTP" 2 "MNO" "ECOFF" 1 1 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STNTR_MLTP" 2 "SXT" "ECOFF" 2 2 FALSE FALSE
@@ -6486,7 +6486,7 @@
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STPHY_LGDN" 2 "VAN" "ECOFF" 4 4 FALSE FALSE
"EUCAST 2021" "human" "human" "DISK" "Screen" "B_STPHY_PSDN" 2 "OXA" "Staphs" "1ug" 20 20 FALSE FALSE
"EUCAST 2021" "human" "human" "DISK" "Screen" "B_STPHY_SCHL" 2 "OXA" "Staphs" "1ug" 20 20 FALSE FALSE
"EUCAST 2021" "human" "human" "DISK" "Screen" "B_STPHY_SCHL_CGLN" 1 "OXA" "Staphs" "1ug" 20 20 FALSE FALSE
"EUCAST 2021" "human" "human" "DISK" "Screen" "B_STPHY_CGLN" 1 "OXA" "Staphs" "1ug" 20 20 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STPHY_SCIR" 2 "CIP" "ECOFF" 1 1 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STPHY_SMLN" 2 "CIP" "ECOFF" 1 1 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STPHY_SMLN" 2 "VAN" "ECOFF" 4 4 FALSE FALSE
@@ -6593,11 +6593,11 @@
"EUCAST 2021" "human" "human" "MIC" "B_STRPT_ANGN" 2 "TZD" "Viridans strept" 0.5 0.5 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STRPT_ANGN" 2 "TZP" "ECOFF" 1 1 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STRPT_ANGN" 2 "VAN" "ECOFF" 1 1 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STRPT_BOVS" 2 "LNZ" "ECOFF" 2 2 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STRPT_BOVS" 2 "LVX" "ECOFF" 2 2 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STRPT_BOVS" 2 "MFX" "ECOFF" 0.5 0.5 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STRPT_BOVS" 2 "PEN" "ECOFF" 0.25 0.25 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STRPT_BOVS" 2 "VAN" "ECOFF" 1 1 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STRPT_EQNS" 2 "LNZ" "ECOFF" 2 2 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STRPT_EQNS" 2 "LVX" "ECOFF" 2 2 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STRPT_EQNS" 2 "MFX" "ECOFF" 0.5 0.5 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STRPT_EQNS" 2 "PEN" "ECOFF" 0.25 0.25 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STRPT_EQNS" 2 "VAN" "ECOFF" 1 1 FALSE FALSE
"EUCAST 2021" "human" "human" "MIC" "B_STRPT_CNST" 2 "DFX" "Viridans strept" 0.032 0.032 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STRPT_CNST" 2 "MFX" "ECOFF" 0.5 0.5 FALSE FALSE
"EUCAST 2021" "ECOFF" "ECOFF" "MIC" "B_STRPT_CNST" 2 "PEN" "ECOFF" 0.25 0.25 FALSE FALSE
@@ -8354,11 +8354,11 @@
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "FOX" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "MEM" "ECOFF" 0.125 0.125 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "TZP" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_SLMNL_RTDS" 2 "AMP" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_SLMNL_RTDS" 2 "CXM" "ECOFF" 16 16 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_SLMNL_RTDS" 2 "FOX" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_SLMNL_RTDS" 2 "MEM" "ECOFF" 0.125 0.125 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_SLMNL_RTDS" 2 "TZP" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR" 2 "AMP" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR" 2 "CXM" "ECOFF" 16 16 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR" 2 "FOX" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR" 2 "MEM" "ECOFF" 0.125 0.125 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR" 2 "TZP" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_STNTR_MLTP" 2 "DOX" "ECOFF" 8 8 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_STNTR_MLTP" 2 "MNO" "ECOFF" 1 1 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_STNTR_MLTP" 2 "SXT" "ECOFF" 2 2 FALSE FALSE
@@ -8729,11 +8729,11 @@
"EUCAST 2020" "human" "human" "MIC" "B_STRPT_ANGN" 2 "TZD" "Viridans strept" 0.25 0.25 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_STRPT_ANGN" 2 "TZP" "ECOFF" 1 1 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_STRPT_ANGN" 2 "VAN" "ECOFF" 1 1 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_STRPT_BOVS" 2 "LNZ" "ECOFF" 2 2 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_STRPT_BOVS" 2 "LVX" "ECOFF" 2 2 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_STRPT_BOVS" 2 "MFX" "ECOFF" 0.5 0.5 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_STRPT_BOVS" 2 "PEN" "ECOFF" 0.25 0.25 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_STRPT_BOVS" 2 "VAN" "ECOFF" 1 1 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_STRPT_EQNS" 2 "LNZ" "ECOFF" 2 2 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_STRPT_EQNS" 2 "LVX" "ECOFF" 2 2 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_STRPT_EQNS" 2 "MFX" "ECOFF" 0.5 0.5 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_STRPT_EQNS" 2 "PEN" "ECOFF" 0.25 0.25 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_STRPT_EQNS" 2 "VAN" "ECOFF" 1 1 FALSE FALSE
"EUCAST 2020" "human" "human" "MIC" "B_STRPT_CNST" 2 "DFX" "Viridans strept" 0.032 0.032 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_STRPT_CNST" 2 "MFX" "ECOFF" 0.5 0.5 FALSE FALSE
"EUCAST 2020" "ECOFF" "ECOFF" "MIC" "B_STRPT_CNST" 2 "PEN" "ECOFF" 0.25 0.25 FALSE FALSE
@@ -17058,15 +17058,15 @@
"CLSI 2024" "human" "human" "MIC" "B_SLMNL" 3 "SXT" "Table 2A-2" 2 4 FALSE FALSE
"CLSI 2024" "human" "human" "DISK" "B_SLMNL" 3 "TCY" "Table 2A-2" "30ug" 15 11 FALSE FALSE
"CLSI 2024" "human" "human" "MIC" "B_SLMNL" 3 "TCY" "Table 2A-2" 4 16 FALSE FALSE
"CLSI 2024" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_CHLR" 2 "FLR" "VET01 Table 2A" 4 16 FALSE FALSE
"CLSI 2024" "animal" "swine" "DISK" "Respiratory" "B_SLMNL_CHLR" 2 "TIO" "VET01 Table 2A" "30ug" 21 17 FALSE FALSE
"CLSI 2024" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_CHLR" 2 "TIO" "VET01 Table 2A" 2 8 FALSE FALSE
"CLSI 2024" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_ENTR" 2 "FLR" "VET01 Table 2A" 4 16 FALSE FALSE
"CLSI 2024" "animal" "swine" "DISK" "Respiratory" "B_SLMNL_ENTR" 2 "TIO" "VET01 Table 2A" "30ug" 21 17 FALSE FALSE
"CLSI 2024" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_ENTR" 2 "TIO" "VET01 Table 2A" 2 8 FALSE FALSE
"CLSI 2024" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "AZM" "ECOFF" 32 32 FALSE FALSE
"CLSI 2024" "human" "human" "DISK" "B_SLMNL_ENTR_ENTR" 1 "AZM" "Table 2A-2" "15ug" 13 12 FALSE FALSE
"CLSI 2024" "human" "human" "MIC" "B_SLMNL_ENTR_ENTR" 1 "AZM" "Table 2A-2" 16 32 FALSE FALSE
"CLSI 2024" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "FOX" "ECOFF" 8 8 FALSE FALSE
"CLSI 2024" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "MEM" "ECOFF" 0.064 0.064 FALSE FALSE
"CLSI 2024" "ECOFF" "ECOFF" "MIC" "B_SLMNL_RTDS" 2 "MEM" "ECOFF" 0.064 0.064 FALSE FALSE
"CLSI 2024" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR" 2 "MEM" "ECOFF" 0.064 0.064 FALSE FALSE
"CLSI 2024" "human" "human" "MIC" "B_SMYCS" 3 "AMC" "M24 Table 7" 8 32 FALSE FALSE
"CLSI 2024" "human" "human" "MIC" "B_SMYCS" 3 "AMK" "M24 Table 7" 8 16 FALSE FALSE
"CLSI 2024" "human" "human" "MIC" "B_SMYCS" 3 "CIP" "M24 Table 7" 1 4 FALSE FALSE
@@ -19258,16 +19258,16 @@
"CLSI 2023" "human" "human" "MIC" "Extraintestinal" "B_SLMNL" 3 "LVX" "Table 2A" 0.125 2 FALSE FALSE
"CLSI 2023" "human" "human" "MIC" "Extraintestinal" "B_SLMNL" 3 "OFX" "Table 2A" 0.125 2 FALSE FALSE
"CLSI 2023" "human" "human" "DISK" "B_SLMNL" 3 "PEF" "Table 2A" "5ug" 24 23 FALSE FALSE
"CLSI 2023" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_CHLR" 2 "FLR" "VET01 Table 2A" 4 16 FALSE FALSE
"CLSI 2023" "animal" "swine" "DISK" "Respiratory" "B_SLMNL_CHLR" 2 "TIO" "VET01 Table 2A" "30ug" 21 17 FALSE FALSE
"CLSI 2023" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_CHLR" 2 "TIO" "VET01 Table 2A" 2 8 FALSE FALSE
"CLSI 2023" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_ENTR" 2 "FLR" "VET01 Table 2A" 4 16 FALSE FALSE
"CLSI 2023" "animal" "swine" "DISK" "Respiratory" "B_SLMNL_ENTR" 2 "TIO" "VET01 Table 2A" "30ug" 21 17 FALSE FALSE
"CLSI 2023" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_ENTR" 2 "TIO" "VET01 Table 2A" 2 8 FALSE FALSE
"CLSI 2023" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "AZM" "ECOFF" 32 32 FALSE FALSE
"CLSI 2023" "human" "human" "DISK" "B_SLMNL_ENTR_ENTR" 1 "AZM" "Table 2A" "15ug" 13 12 FALSE FALSE
"CLSI 2023" "human" "human" "MIC" "B_SLMNL_ENTR_ENTR" 1 "AZM" "Table 2A" 16 32 FALSE FALSE
"CLSI 2023" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_ENTR_ENTR" 1 "FLR" "VET01 Table 2A" 4 16 FALSE FALSE
"CLSI 2023" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "FOX" "ECOFF" 8 8 FALSE FALSE
"CLSI 2023" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "MEM" "ECOFF" 0.064 0.064 FALSE FALSE
"CLSI 2023" "ECOFF" "ECOFF" "MIC" "B_SLMNL_RTDS" 2 "MEM" "ECOFF" 0.064 0.064 FALSE FALSE
"CLSI 2023" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR" 2 "MEM" "ECOFF" 0.064 0.064 FALSE FALSE
"CLSI 2023" "human" "human" "MIC" "B_SMYCS" 3 "AMC" "M24 Table 7" 8 32 FALSE FALSE
"CLSI 2023" "human" "human" "MIC" "B_SMYCS" 3 "AMK" "M24 Table 7" 8 16 FALSE FALSE
"CLSI 2023" "human" "human" "MIC" "B_SMYCS" 3 "CIP" "M24 Table 7" 1 4 FALSE FALSE
@@ -21286,16 +21286,16 @@
"CLSI 2022" "human" "human" "MIC" "Extraintestinal" "B_SLMNL" 3 "LVX" "Table 2A" 0.125 2 FALSE FALSE
"CLSI 2022" "human" "human" "MIC" "Extraintestinal" "B_SLMNL" 3 "OFX" "Table 2A" 0.125 2 FALSE FALSE
"CLSI 2022" "human" "human" "DISK" "B_SLMNL" 3 "PEF" "Table 2A" "5ug" 24 23 FALSE FALSE
"CLSI 2022" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_CHLR" 2 "FLR" "VET01 Table 2A" 4 16 FALSE FALSE
"CLSI 2022" "animal" "swine" "DISK" "Respiratory" "B_SLMNL_CHLR" 2 "TIO" "VET01 Table 2A" "30ug" 21 17 FALSE FALSE
"CLSI 2022" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_CHLR" 2 "TIO" "VET01 Table 2A" 2 8 FALSE FALSE
"CLSI 2022" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_ENTR" 2 "FLR" "VET01 Table 2A" 4 16 FALSE FALSE
"CLSI 2022" "animal" "swine" "DISK" "Respiratory" "B_SLMNL_ENTR" 2 "TIO" "VET01 Table 2A" "30ug" 21 17 FALSE FALSE
"CLSI 2022" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_ENTR" 2 "TIO" "VET01 Table 2A" 2 8 FALSE FALSE
"CLSI 2022" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "AZM" "ECOFF" 32 32 FALSE FALSE
"CLSI 2022" "human" "human" "DISK" "B_SLMNL_ENTR_ENTR" 1 "AZM" "Table 2A" "15ug" 13 12 FALSE FALSE
"CLSI 2022" "human" "human" "MIC" "B_SLMNL_ENTR_ENTR" 1 "AZM" "Table 2A" 16 32 FALSE FALSE
"CLSI 2022" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_ENTR_ENTR" 1 "FLR" "VET01 Table 2A" 4 16 FALSE FALSE
"CLSI 2022" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "FOX" "ECOFF" 8 8 FALSE FALSE
"CLSI 2022" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR_ENTR" 1 "MEM" "ECOFF" 0.064 0.064 FALSE FALSE
"CLSI 2022" "ECOFF" "ECOFF" "MIC" "B_SLMNL_RTDS" 2 "MEM" "ECOFF" 0.064 0.064 FALSE FALSE
"CLSI 2022" "ECOFF" "ECOFF" "MIC" "B_SLMNL_ENTR" 2 "MEM" "ECOFF" 0.064 0.064 FALSE FALSE
"CLSI 2022" "human" "human" "MIC" "Parenteral" "B_STNTR_MLTP" 2 "CAZ" "Table 2B-4" 8 32 FALSE FALSE
"CLSI 2022" "human" "human" "MIC" "B_STNTR_MLTP" 2 "CHL" "Table 2B-4" 8 32 FALSE FALSE
"CLSI 2022" "human" "human" "DISK" "Parenteral" "B_STNTR_MLTP" 2 "FDC" "Table 2B-4" "30ug" 15 15 FALSE FALSE
@@ -22941,9 +22941,9 @@
"CLSI 2021" "human" "human" "MIC" "Extraintestinal" "B_SLMNL" 3 "LVX" "Table 2A" 0.125 2 FALSE FALSE
"CLSI 2021" "human" "human" "MIC" "Extraintestinal" "B_SLMNL" 3 "OFX" "Table 2A" 0.125 2 FALSE FALSE
"CLSI 2021" "human" "human" "DISK" "B_SLMNL" 3 "PEF" "Table 2A" "5ug" 24 23 FALSE FALSE
"CLSI 2021" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_CHLR" 2 "FLR" "VET01 Table 2A" 4 16 FALSE FALSE
"CLSI 2021" "animal" "swine" "DISK" "Respiratory" "B_SLMNL_CHLR" 2 "TIO" "VET01 Table 2A" "30ug" 21 17 FALSE FALSE
"CLSI 2021" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_CHLR" 2 "TIO" "VET01 Table 2A" 2 8 FALSE FALSE
"CLSI 2021" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_ENTR" 2 "FLR" "VET01 Table 2A" 4 16 FALSE FALSE
"CLSI 2021" "animal" "swine" "DISK" "Respiratory" "B_SLMNL_ENTR" 2 "TIO" "VET01 Table 2A" "30ug" 21 17 FALSE FALSE
"CLSI 2021" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_ENTR" 2 "TIO" "VET01 Table 2A" 2 8 FALSE FALSE
"CLSI 2021" "human" "human" "DISK" "B_SLMNL_ENTR_ENTR" 1 "AZM" "Table 2A" "15ug" 13 12 FALSE FALSE
"CLSI 2021" "human" "human" "MIC" "B_SLMNL_ENTR_ENTR" 1 "AZM" "Table 2A" 16 32 FALSE FALSE
"CLSI 2021" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_ENTR_ENTR" 1 "FLR" "VET01 Table 2A" 4 16 FALSE FALSE
@@ -24478,9 +24478,9 @@
"CLSI 2020" "human" "human" "MIC" "Extraintestinal" "B_SLMNL" 3 "LVX" "Table 2A" 0.125 2 FALSE FALSE
"CLSI 2020" "human" "human" "MIC" "Extraintestinal" "B_SLMNL" 3 "OFX" "Table 2A" 0.125 2 FALSE FALSE
"CLSI 2020" "human" "human" "DISK" "B_SLMNL" 3 "PEF" "Table 2A" "5ug" 24 23 FALSE FALSE
"CLSI 2020" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_CHLR" 2 "FLR" "VET08 Table 2A" 4 16 FALSE FALSE
"CLSI 2020" "animal" "swine" "DISK" "Respiratory" "B_SLMNL_CHLR" 2 "TIO" "VET08 Table 2A" "30ug" 21 17 FALSE FALSE
"CLSI 2020" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_CHLR" 2 "TIO" "VET08 Table 2A" 2 8 FALSE FALSE
"CLSI 2020" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_ENTR" 2 "FLR" "VET08 Table 2A" 4 16 FALSE FALSE
"CLSI 2020" "animal" "swine" "DISK" "Respiratory" "B_SLMNL_ENTR" 2 "TIO" "VET08 Table 2A" "30ug" 21 17 FALSE FALSE
"CLSI 2020" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_ENTR" 2 "TIO" "VET08 Table 2A" 2 8 FALSE FALSE
"CLSI 2020" "human" "human" "DISK" "B_SLMNL_ENTR_ENTR" 1 "AZM" "Table 2A" "15ug" 13 12 FALSE FALSE
"CLSI 2020" "human" "human" "MIC" "B_SLMNL_ENTR_ENTR" 1 "AZM" "Table 2A" 16 32 FALSE FALSE
"CLSI 2020" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_ENTR_ENTR" 1 "FLR" "VET08 Table 2A" 4 16 FALSE FALSE
@@ -25988,9 +25988,9 @@
"CLSI 2019" "human" "human" "MIC" "B_SLMNL" 3 "OFX" "Table 2A" 0.125 2 FALSE FALSE
"CLSI 2019" "human" "human" "MIC" "Extraintestinal" "B_SLMNL" 3 "OFX" "Table 2A" 0.125 2 FALSE FALSE
"CLSI 2019" "human" "human" "DISK" "B_SLMNL" 3 "PEF" "Table 2A" "5ug" 24 23 FALSE FALSE
"CLSI 2019" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_CHLR" 2 "FLR" "VET08 Table 2A" 4 16 FALSE FALSE
"CLSI 2019" "animal" "swine" "DISK" "Respiratory" "B_SLMNL_CHLR" 2 "TIO" "VET08 Table 2A" "30ug" 21 17 FALSE FALSE
"CLSI 2019" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_CHLR" 2 "TIO" "VET08 Table 2A" 2 8 FALSE FALSE
"CLSI 2019" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_ENTR" 2 "FLR" "VET08 Table 2A" 4 16 FALSE FALSE
"CLSI 2019" "animal" "swine" "DISK" "Respiratory" "B_SLMNL_ENTR" 2 "TIO" "VET08 Table 2A" "30ug" 21 17 FALSE FALSE
"CLSI 2019" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_ENTR" 2 "TIO" "VET08 Table 2A" 2 8 FALSE FALSE
"CLSI 2019" "human" "human" "DISK" "B_SLMNL_ENTR_ENTR" 1 "AZM" "Table 2A" "15ug" 13 12 FALSE FALSE
"CLSI 2019" "human" "human" "MIC" "B_SLMNL_ENTR_ENTR" 1 "AZM" "Table 2A" 16 32 FALSE FALSE
"CLSI 2019" "animal" "swine" "MIC" "Respiratory" "B_SLMNL_ENTR_ENTR" 1 "FLR" "VET08 Table 2A" 4 16 FALSE FALSE

Binary file not shown.

Binary file not shown.

View File

@@ -1 +1 @@
032dfd1b044cc838f0915b0eef919471
e8c57a559ad846e72c700c88929e880d

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

View File

@@ -6,9 +6,9 @@
# https://github.com/msberends/AMR #
# #
# PLEASE CITE THIS SOFTWARE AS: #
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
# Data. Journal of Statistical Software, 104(3), 1-31. #
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
# Journal of Statistical Software, 104(3), 1-31. #
# https://doi.org/10.18637/jss.v104.i03 #
# #
# Developed at the University of Groningen and the University Medical #

Binary file not shown.

View File

@@ -1 +1 @@
f3912da07889fcf0f4d1a8b8f0433ea7
c9ba186023a0003c8153215646983621

Binary file not shown.

Binary file not shown.

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -1 +1 @@
a79ae177d6b45404514789f45ba0f963
38ecf0124387ac47c553dd1348e2163a

Binary file not shown.

Binary file not shown.

Binary file not shown.

File diff suppressed because one or more lines are too long

Binary file not shown.

Binary file not shown.

View File

@@ -6,9 +6,9 @@
# https://github.com/msberends/AMR #
# #
# PLEASE CITE THIS SOFTWARE AS: #
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
# Data. Journal of Statistical Software, 104(3), 1-31. #
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
# Journal of Statistical Software, 104(3), 1-31. #
# https://doi.org/10.18637/jss.v104.i03 #
# #
# Developed at the University of Groningen and the University Medical #

View File

@@ -6,9 +6,9 @@
# https://github.com/msberends/AMR #
# #
# PLEASE CITE THIS SOFTWARE AS: #
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
# Data. Journal of Statistical Software, 104(3), 1-31. #
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
# Journal of Statistical Software, 104(3), 1-31. #
# https://doi.org/10.18637/jss.v104.i03 #
# #
# Developed at the University of Groningen and the University Medical #

View File

@@ -6,9 +6,9 @@
# https://github.com/msberends/AMR #
# #
# PLEASE CITE THIS SOFTWARE AS: #
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
# Data. Journal of Statistical Software, 104(3), 1-31. #
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
# Journal of Statistical Software, 104(3), 1-31. #
# https://doi.org/10.18637/jss.v104.i03 #
# #
# Developed at the University of Groningen and the University Medical #

View File

@@ -6,9 +6,9 @@
# https://github.com/msberends/AMR #
# #
# PLEASE CITE THIS SOFTWARE AS: #
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
# Data. Journal of Statistical Software, 104(3), 1-31. #
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
# Journal of Statistical Software, 104(3), 1-31. #
# https://doi.org/10.18637/jss.v104.i03 #
# #
# Developed at the University of Groningen and the University Medical #

View File

@@ -6,9 +6,9 @@
# https://github.com/msberends/AMR #
# #
# PLEASE CITE THIS SOFTWARE AS: #
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
# Data. Journal of Statistical Software, 104(3), 1-31. #
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
# Journal of Statistical Software, 104(3), 1-31. #
# https://doi.org/10.18637/jss.v104.i03 #
# #
# Developed at the University of Groningen and the University Medical #

View File

@@ -6,9 +6,9 @@
# https://github.com/msberends/AMR #
# #
# PLEASE CITE THIS SOFTWARE AS: #
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
# Data. Journal of Statistical Software, 104(3), 1-31. #
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
# Journal of Statistical Software, 104(3), 1-31. #
# https://doi.org/10.18637/jss.v104.i03 #
# #
# Developed at the University of Groningen and the University Medical #

View File

@@ -6,9 +6,9 @@
# https://github.com/msberends/AMR #
# #
# PLEASE CITE THIS SOFTWARE AS: #
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
# Data. Journal of Statistical Software, 104(3), 1-31. #
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
# Journal of Statistical Software, 104(3), 1-31. #
# https://doi.org/10.18637/jss.v104.i03 #
# #
# Developed at the University of Groningen and the University Medical #

View File

@@ -6,9 +6,9 @@
# https://github.com/msberends/AMR #
# #
# PLEASE CITE THIS SOFTWARE AS: #
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
# Data. Journal of Statistical Software, 104(3), 1-31. #
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
# Journal of Statistical Software, 104(3), 1-31. #
# https://doi.org/10.18637/jss.v104.i03 #
# #
# Developed at the University of Groningen and the University Medical #

File diff suppressed because it is too large Load Diff

View File

@@ -6,9 +6,9 @@
# https://github.com/msberends/AMR #
# #
# PLEASE CITE THIS SOFTWARE AS: #
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
# Data. Journal of Statistical Software, 104(3), 1-31. #
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
# Journal of Statistical Software, 104(3), 1-31. #
# https://doi.org/10.18637/jss.v104.i03 #
# #
# Developed at the University of Groningen and the University Medical #

View File

@@ -6,9 +6,9 @@
# https://github.com/msberends/AMR #
# #
# PLEASE CITE THIS SOFTWARE AS: #
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
# Data. Journal of Statistical Software, 104(3), 1-31. #
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
# Journal of Statistical Software, 104(3), 1-31. #
# https://doi.org/10.18637/jss.v104.i03 #
# #
# Developed at the University of Groningen and the University Medical #

Binary file not shown.

BIN
data-raw/taxonomy0b.rds Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.