1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-12 19:01:50 +02:00

new antibiotics

This commit is contained in:
2019-05-10 16:44:59 +02:00
parent 73f1ee1159
commit 68cc7ef0d0
147 changed files with 6228 additions and 4187 deletions

View File

@ -41,16 +41,16 @@ Our package contains a function `resistance_predict()`, which takes the same inp
It is basically as easy as:
```{r, eval = FALSE}
# resistance prediction of piperacillin/tazobactam (pita):
resistance_predict(tbl = septic_patients, col_date = "date", col_ab = "pita")
# resistance prediction of piperacillin/tazobactam (TZP):
resistance_predict(tbl = septic_patients, col_date = "date", col_ab = "TZP")
# or:
septic_patients %>%
resistance_predict(col_ab = "pita")
resistance_predict(col_ab = "TZP")
# to bind it to object 'predict_pita' for example:
predict_pita <- septic_patients %>%
resistance_predict(col_ab = "pita")
# to bind it to object 'predict_TZP' for example:
predict_TZP <- septic_patients %>%
resistance_predict(col_ab = "TZP")
```
The function will look for a date column itself if `col_date` is not set.
@ -58,20 +58,20 @@ The function will look for a date column itself if `col_date` is not set.
When running any of these commands, a summary of the regression model will be printed unless using `resistance_predict(..., info = FALSE)`.
```{r, echo = FALSE}
predict_pita <- septic_patients %>%
resistance_predict(col_ab = "pita")
predict_TZP <- septic_patients %>%
resistance_predict(col_ab = "TZP")
```
This text is only a printed summary - the actual result (output) of the function is a `data.frame` containing for each year: the number of observations, the actual observed resistance, the estimated resistance and the standard error below and above the estimation:
```{r}
predict_pita
predict_TZP
```
The function `plot` is available in base R, and can be extended by other packages to depend the output based on the type of input. We extended its function to cope with resistance predictions:
```{r, fig.height = 5.5}
plot(predict_pita)
plot(predict_TZP)
```
This is the fastest way to plot the result. It automatically adds the right axes, error bars, titles, number of available observations and type of model.
@ -79,10 +79,10 @@ This is the fastest way to plot the result. It automatically adds the right axes
We also support the `ggplot2` package with our custom function `ggplot_rsi_predict()` to create more appealing plots:
```{r}
ggplot_rsi_predict(predict_pita)
ggplot_rsi_predict(predict_TZP)
# choose for error bars instead of a ribbon
ggplot_rsi_predict(predict_pita, ribbon = FALSE)
ggplot_rsi_predict(predict_TZP, ribbon = FALSE)
```
### Choosing the right model
@ -92,7 +92,7 @@ Resistance is not easily predicted; if we look at vancomycin resistance in Gram
```{r}
septic_patients %>%
filter(mo_gramstain(mo) == "Gram positive") %>%
resistance_predict(col_ab = "vanc", year_min = 2010, info = FALSE) %>%
resistance_predict(col_ab = "VAN", year_min = 2010, info = FALSE) %>%
ggplot_rsi_predict()
```
@ -113,7 +113,7 @@ For the vancomycin resistance in Gram positive bacteria, a linear model might be
```{r}
septic_patients %>%
filter(mo_gramstain(mo) == "Gram positive") %>%
resistance_predict(col_ab = "vanc", year_min = 2010, info = FALSE, model = "linear") %>%
resistance_predict(col_ab = "VAN", year_min = 2010, info = FALSE, model = "linear") %>%
ggplot_rsi_predict()
```
@ -121,7 +121,7 @@ This seems more likely, doesn't it?
The model itself is also available from the object, as an `attribute`:
```{r}
model <- attributes(predict_pita)$model
model <- attributes(predict_TZP)$model
summary(model)$family