1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-12 17:41:50 +02:00

new EUCAST rules: clinical breakpoints

This commit is contained in:
2018-10-17 17:32:34 +02:00
parent d5a41de711
commit 693f64bdbf
20 changed files with 1165 additions and 171 deletions

View File

@ -202,7 +202,7 @@ Adjust it with any parameter you know from the `ggplot2` package:
septic_patients %>%
select(amox, nitr, fosf, trim, cipr) %>%
ggplot_rsi(datalabels = FALSE,
width = 0.5, colour = "black", size = 1, linetype = 2, alpha = 0.25)
width = 0.5, colour = "purple", size = 1, linetype = 2, alpha = 0.5)
```
![example_3_rsi](man/figures/rsi_example3.png)
@ -225,6 +225,41 @@ septic_patients %>%
You could use this to group on anything in your plots: Gram stain, age (group), genus, geographic location, et cetera.
Is there a significant difference between hospital A and D when it comes to Fosfomycin?
```r
check_A_and_D <- septic_patients %>%
filter(hospital_id %in% c("A", "D")) %>% # filter on only hospitals A and D
select(hospital_id, fosf) %>% # select the hospitals and fosfomycin
group_by(hospital_id) %>%
count_df(combine_IR = TRUE) %>% # count all isolates per group (hospital_id)
tidyr::spread(hospital_id, Value) %>% # transform output so A and D are columns
select(A, D) %>% # and select these only
as.matrix() # transform to good old matrix for fisher.test
check_A_and_D
# A D
# [1,] 24 33
# [2,] 25 77
```
Total sum is lower than 1,000 so we'd prefer a [Fisher's exact test](https://en.wikipedia.org/wiki/Fisher%27s_exact_test), not a [*G*-test](https://en.wikipedia.org/wiki/G-test) (or its formerly used equivalent, the famous [Chi<sup>2</sup> test](https://en.wikipedia.org/wiki/Chi-squared_test)):
```
fisher.test(check_A_and_D)
#
# Fisher's Exact Test for Count Data
#
# data: .
# p-value = 0.03104
# alternative hypothesis: true odds ratio is not equal to 1
# 95 percent confidence interval:
# 1.054283 4.735995
# sample estimates:
# odds ratio
# 2.228006
```
Well, there you go!
#### MIC
```r