1
0
mirror of https://github.com/msberends/AMR.git synced 2025-09-03 16:39:37 +02:00

(v1.7.1.9054) mdro() update - fixes #49, first_isolate() speedup

This commit is contained in:
2021-11-28 23:01:26 +01:00
parent 9a2c431e16
commit 694cf5ba77
72 changed files with 780 additions and 669 deletions

View File

@@ -30,8 +30,6 @@
<![endif]-->
</head>
<body data-spy="scroll" data-target="#toc">
<div class="container template-article">
<header><div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
@@ -44,7 +42,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.7.1.9030</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.7.1.9054</span>
</span>
</div>
@@ -169,7 +167,7 @@
</ul>
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/msberends/AMR" class="external-link">
<a href="https://github.com/msberends/AMR">
<span class="fab fa-github"></span>
Source Code
@@ -185,15 +183,15 @@
</header><script src="SPSS_files/header-attrs-2.9/header-attrs.js"></script><div class="row">
</header><script src="SPSS_files/header-attrs-2.11/header-attrs.js"></script><div class="row">
<div class="col-md-9 contents">
<div class="page-header toc-ignore">
<h1 data-toc-skip>How to import data from SPSS / SAS / Stata</h1>
<h4 data-toc-skip class="author">Matthijs S. Berends</h4>
<h4 class="author">Matthijs S. Berends</h4>
<h4 data-toc-skip class="date">29 August 2021</h4>
<h4 class="date">28 November 2021</h4>
<small class="dont-index">Source: <a href="https://github.com/msberends/AMR/blob/main/vignettes/SPSS.Rmd" class="external-link"><code>vignettes/SPSS.Rmd</code></a></small>
<small class="dont-index">Source: <a href="https://github.com/msberends/AMR/blob/master/vignettes/SPSS.Rmd"><code>vignettes/SPSS.Rmd</code></a></small>
<div class="hidden name"><code>SPSS.Rmd</code></div>
</div>
@@ -202,17 +200,17 @@
<div id="spss-sas-stata" class="section level2">
<h2 class="hasAnchor">
<a href="#spss-sas-stata" class="anchor" aria-hidden="true"></a>SPSS / SAS / Stata</h2>
<a href="#spss-sas-stata" class="anchor"></a>SPSS / SAS / Stata</h2>
<p>SPSS (Statistical Package for the Social Sciences) is probably the most well-known software package for statistical analysis. SPSS is easier to learn than R, because in SPSS you only have to click a menu to run parts of your analysis. Because of its user-friendliness, it is taught at universities and particularly useful for students who are new to statistics. From my experience, I would guess that pretty much all (bio)medical students know it at the time they graduate. SAS and Stata are comparable statistical packages popular in big industries.</p>
</div>
<div id="compared-to-r" class="section level2">
<h2 class="hasAnchor">
<a href="#compared-to-r" class="anchor" aria-hidden="true"></a>Compared to R</h2>
<a href="#compared-to-r" class="anchor"></a>Compared to R</h2>
<p>As said, SPSS is easier to learn than R. But SPSS, SAS and Stata come with major downsides when comparing it with R:</p>
<ul>
<li>
<p><strong>R is highly modular.</strong></p>
<p>The <a href="https://cran.r-project.org/" class="external-link">official R network (CRAN)</a> features more than 16,000 packages at the time of writing, our <code>AMR</code> package being one of them. All these packages were peer-reviewed before publication. Aside from this official channel, there are also developers who choose not to submit to CRAN, but rather keep it on their own public repository, like GitHub. So there may even be a lot more than 14,000 packages out there.</p>
<p>The <a href="https://cran.r-project.org/">official R network (CRAN)</a> features more than 16,000 packages at the time of writing, our <code>AMR</code> package being one of them. All these packages were peer-reviewed before publication. Aside from this official channel, there are also developers who choose not to submit to CRAN, but rather keep it on their own public repository, like GitHub. So there may even be a lot more than 14,000 packages out there.</p>
<p>Bottom line is, you can really extend it yourself or ask somebody to do this for you. Take for example our <code>AMR</code> package. Among other things, it adds reliable reference data to R to help you with the data cleaning and analysis. SPSS, SAS and Stata will never know what a valid MIC value is or what the Gram stain of <em>E. coli</em> is. Or that all species of <em>Klebiella</em> are resistant to amoxicillin and that Floxapen<sup>®</sup> is a trade name of flucloxacillin. These facts and properties are often needed to clean existing data, which would be very inconvenient in a software package without reliable reference data. See below for a demonstration.</p>
</li>
<li>
@@ -221,27 +219,27 @@
</li>
<li>
<p><strong>R can be easily automated.</strong></p>
<p>Over the last years, <a href="https://rmarkdown.rstudio.com/" class="external-link">R Markdown</a> has really made an interesting development. With R Markdown, you can very easily produce reports, whether the format has to be Word, PowerPoint, a website, a PDF document or just the raw data to Excel. It even allows the use of a reference file containing the layout style (e.g. fonts and colours) of your organisation. I use this a lot to generate weekly and monthly reports automatically. Just write the code once and enjoy the automatically updated reports at any interval you like.</p>
<p>For an even more professional environment, you could create <a href="https://shiny.rstudio.com/" class="external-link">Shiny apps</a>: live manipulation of data using a custom made website. The webdesign knowledge needed (JavaScript, CSS, HTML) is almost <em>zero</em>.</p>
<p>Over the last years, <a href="https://rmarkdown.rstudio.com/">R Markdown</a> has really made an interesting development. With R Markdown, you can very easily produce reports, whether the format has to be Word, PowerPoint, a website, a PDF document or just the raw data to Excel. It even allows the use of a reference file containing the layout style (e.g. fonts and colours) of your organisation. I use this a lot to generate weekly and monthly reports automatically. Just write the code once and enjoy the automatically updated reports at any interval you like.</p>
<p>For an even more professional environment, you could create <a href="https://shiny.rstudio.com/">Shiny apps</a>: live manipulation of data using a custom made website. The webdesign knowledge needed (JavaScript, CSS, HTML) is almost <em>zero</em>.</p>
</li>
<li>
<p><strong>R has a huge community.</strong></p>
<p>Many R users just ask questions on websites like <a href="https://stackoverflow.com" class="external-link">StackOverflow.com</a>, the largest online community for programmers. At the time of writing, <a href="https://stackoverflow.com/questions/tagged/r?sort=votes" class="external-link">415,751 R-related questions</a> have already been asked on this platform (that covers questions and answers for any programming language). In my own experience, most questions are answered within a couple of minutes.</p>
<p>Many R users just ask questions on websites like <a href="https://stackoverflow.com">StackOverflow.com</a>, the largest online community for programmers. At the time of writing, <a href="https://stackoverflow.com/questions/tagged/r?sort=votes">427,872 R-related questions</a> have already been asked on this platform (that covers questions and answers for any programming language). In my own experience, most questions are answered within a couple of minutes.</p>
</li>
<li>
<p><strong>R understands any data type, including SPSS/SAS/Stata.</strong></p>
<p>And thats not vice versa Im afraid. You can import data from any source into R. For example from SPSS, SAS and Stata (<a href="https://haven.tidyverse.org/" class="external-link">link</a>), from Minitab, Epi Info and EpiData (<a href="https://cran.r-project.org/package=foreign" class="external-link">link</a>), from Excel (<a href="https://readxl.tidyverse.org/" class="external-link">link</a>), from flat files like CSV, TXT or TSV (<a href="https://readr.tidyverse.org/" class="external-link">link</a>), or directly from databases and datawarehouses from anywhere on the world (<a href="https://dbplyr.tidyverse.org/" class="external-link">link</a>). You can even scrape websites to download tables that are live on the internet (<a href="https://github.com/hadley/rvest" class="external-link">link</a>) or get the results of an API call and transform it into data in only one command (<a href="https://github.com/Rdatatable/data.table/wiki/Convenience-features-of-fread" class="external-link">link</a>).</p>
<p>And thats not vice versa Im afraid. You can import data from any source into R. For example from SPSS, SAS and Stata (<a href="https://haven.tidyverse.org/">link</a>), from Minitab, Epi Info and EpiData (<a href="https://cran.r-project.org/package=foreign">link</a>), from Excel (<a href="https://readxl.tidyverse.org/">link</a>), from flat files like CSV, TXT or TSV (<a href="https://readr.tidyverse.org/">link</a>), or directly from databases and datawarehouses from anywhere on the world (<a href="https://dbplyr.tidyverse.org/">link</a>). You can even scrape websites to download tables that are live on the internet (<a href="https://github.com/hadley/rvest">link</a>) or get the results of an API call and transform it into data in only one command (<a href="https://github.com/Rdatatable/data.table/wiki/Convenience-features-of-fread">link</a>).</p>
<p>And the best part - you can export from R to most data formats as well. So you can import an SPSS file, do your analysis neatly in R and export the resulting tables to Excel files for sharing.</p>
</li>
<li>
<p><strong>R is completely free and open-source.</strong></p>
<p>No strings attached. It was created and is being maintained by volunteers who believe that (data) science should be open and publicly available to everybody. SPSS, SAS and Stata are quite expensive. IBM SPSS Staticstics only comes with subscriptions nowadays, varying <a href="https://www.ibm.com/products/spss-statistics/pricing" class="external-link">between USD 1,300 and USD 8,500</a> per user <em>per year</em>. SAS Analytics Pro costs <a href="https://www.sas.com/store/products-solutions/sas-analytics-pro/prodPERSANL.html" class="external-link">around USD 10,000</a> per computer. Stata also has a business model with subscription fees, varying <a href="https://www.stata.com/order/new/bus/single-user-licenses/dl/" class="external-link">between USD 600 and USD 2,800</a> per computer per year, but lower prices come with a limitation of the number of variables you can work with. And still they do not offer the above benefits of R.</p>
<p>No strings attached. It was created and is being maintained by volunteers who believe that (data) science should be open and publicly available to everybody. SPSS, SAS and Stata are quite expensive. IBM SPSS Staticstics only comes with subscriptions nowadays, varying <a href="https://www.ibm.com/products/spss-statistics/pricing">between USD 1,300 and USD 8,500</a> per user <em>per year</em>. SAS Analytics Pro costs <a href="https://www.sas.com/store/products-solutions/sas-analytics-pro/prodPERSANL.html">around USD 10,000</a> per computer. Stata also has a business model with subscription fees, varying <a href="https://www.stata.com/order/new/bus/single-user-licenses/dl/">between USD 600 and USD 2,800</a> per computer per year, but lower prices come with a limitation of the number of variables you can work with. And still they do not offer the above benefits of R.</p>
<p>If you are working at a midsized or small company, you can save it tens of thousands of dollars by using R instead of e.g. SPSS - gaining even more functions and flexibility. And all R enthousiasts can do as much PR as they want (like I do here), because nobody is officially associated with or affiliated by R. It is really free.</p>
</li>
<li>
<p><strong>R is (nowadays) the preferred analysis software in academic papers.</strong></p>
<p>At present, R is among the world most powerful statistical languages, and it is generally very popular in science (Bollmann <em>et al.</em>, 2017). For all the above reasons, the number of references to R as an analysis method in academic papers <a href="https://r4stats.com/2014/08/20/r-passes-spss-in-scholarly-use-stata-growing-rapidly/" class="external-link">is rising continuously</a> and has even surpassed SPSS for academic use (Muenchen, 2014).</p>
<p>I believe that the thing with SPSS is, that it has always had a great user interface which is very easy to learn and use. Back when they developed it, they had very little competition, let alone from R. R didnt even had a professional user interface until the last decade (called RStudio, see below). How people used R between the nineties and 2010 is almost completely incomparable to how R is being used now. The language itself <a href="https://www.tidyverse.org/packages/" class="external-link">has been restyled completely</a> by volunteers who are dedicated professionals in the field of data science. SPSS was great when there was nothing else that could compete. But now in 2021, I dont see any reason why SPSS would be of any better use than R.</p>
<p>At present, R is among the world most powerful statistical languages, and it is generally very popular in science (Bollmann <em>et al.</em>, 2017). For all the above reasons, the number of references to R as an analysis method in academic papers <a href="https://r4stats.com/2014/08/20/r-passes-spss-in-scholarly-use-stata-growing-rapidly/">is rising continuously</a> and has even surpassed SPSS for academic use (Muenchen, 2014).</p>
<p>I believe that the thing with SPSS is, that it has always had a great user interface which is very easy to learn and use. Back when they developed it, they had very little competition, let alone from R. R didnt even had a professional user interface until the last decade (called RStudio, see below). How people used R between the nineties and 2010 is almost completely incomparable to how R is being used now. The language itself <a href="https://www.tidyverse.org/packages/">has been restyled completely</a> by volunteers who are dedicated professionals in the field of data science. SPSS was great when there was nothing else that could compete. But now in 2021, I dont see any reason why SPSS would be of any better use than R.</p>
</li>
</ul>
<p>To demonstrate the first point:</p>
@@ -253,13 +251,11 @@
<span class="fu"><a href="../reference/as.mic.html">as.mic</a></span><span class="op">(</span><span class="st">"testvalue"</span><span class="op">)</span>
<span class="co"># Class &lt;mic&gt;</span>
<span class="co"># [1] &lt;NA&gt;</span>
<span class="co"># the Gram stain is available for all bacteria:</span>
<span class="fu"><a href="../reference/mo_property.html">mo_gramstain</a></span><span class="op">(</span><span class="st">"E. coli"</span><span class="op">)</span>
<span class="co"># [1] "Gram-negative"</span>
<span class="co"># Klebsiella is intrinsic resistant to amoxicillin, according to EUCAST:</span>
<span class="va">klebsiella_test</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span>mo <span class="op">=</span> <span class="st">"klebsiella"</span>,
<span class="va">klebsiella_test</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html">data.frame</a></span><span class="op">(</span>mo <span class="op">=</span> <span class="st">"klebsiella"</span>,
amox <span class="op">=</span> <span class="st">"S"</span>,
stringsAsFactors <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>
<span class="va">klebsiella_test</span> <span class="co"># (our original data)</span>
@@ -267,8 +263,7 @@
<span class="co"># 1 klebsiella S</span>
<span class="fu"><a href="../reference/eucast_rules.html">eucast_rules</a></span><span class="op">(</span><span class="va">klebsiella_test</span>, info <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span> <span class="co"># (the edited data by EUCAST rules)</span>
<span class="co"># mo amox</span>
<span class="co"># 1 klebsiella R</span>
<span class="co"># 1 klebsiella S</span>
<span class="co"># hundreds of trade names can be translated to a name, trade name or an ATC code:</span>
<span class="fu"><a href="../reference/ab_property.html">ab_name</a></span><span class="op">(</span><span class="st">"floxapen"</span><span class="op">)</span>
<span class="co"># [1] "Flucloxacillin"</span>
@@ -281,17 +276,17 @@
</div>
<div id="import-data-from-spsssasstata" class="section level2">
<h2 class="hasAnchor">
<a href="#import-data-from-spsssasstata" class="anchor" aria-hidden="true"></a>Import data from SPSS/SAS/Stata</h2>
<a href="#import-data-from-spsssasstata" class="anchor"></a>Import data from SPSS/SAS/Stata</h2>
<div id="rstudio" class="section level3">
<h3 class="hasAnchor">
<a href="#rstudio" class="anchor" aria-hidden="true"></a>RStudio</h3>
<p>To work with R, probably the best option is to use <a href="https://www.rstudio.com/products/rstudio/" class="external-link">RStudio</a>. It is an open-source and free desktop environment which not only allows you to run R code, but also supports project management, version management, package management and convenient import menus to work with other data sources. You can also install <a href="https://www.rstudio.com/products/rstudio/" class="external-link">RStudio Server</a> on a private or corporate server, which brings nothing less than the complete RStudio software to you as a website (at home or at work).</p>
<a href="#rstudio" class="anchor"></a>RStudio</h3>
<p>To work with R, probably the best option is to use <a href="https://www.rstudio.com/products/rstudio/">RStudio</a>. It is an open-source and free desktop environment which not only allows you to run R code, but also supports project management, version management, package management and convenient import menus to work with other data sources. You can also install <a href="https://www.rstudio.com/products/rstudio/">RStudio Server</a> on a private or corporate server, which brings nothing less than the complete RStudio software to you as a website (at home or at work).</p>
<p>To import a data file, just click <em>Import Dataset</em> in the Environment tab:</p>
<p><img src="https://github.com/msberends/AMR/raw/main/docs/import1.png"></p>
<p>If additional packages are needed, RStudio will ask you if they should be installed on beforehand.</p>
<p>In the the window that opens, you can define all options (parameters) that should be used for import and youre ready to go:</p>
<p><img src="https://github.com/msberends/AMR/raw/main/docs/import2.png"></p>
<p>If you want named variables to be imported as factors so it resembles SPSS more, use <code><a href="https://haven.tidyverse.org/reference/as_factor.html" class="external-link">as_factor()</a></code>.</p>
<p>If you want named variables to be imported as factors so it resembles SPSS more, use <code><a href="https://haven.tidyverse.org/reference/as_factor.html">as_factor()</a></code>.</p>
<p>The difference is this:</p>
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="va">SPSS_data</span>
@@ -328,70 +323,70 @@
</div>
<div id="base-r" class="section level3">
<h3 class="hasAnchor">
<a href="#base-r" class="anchor" aria-hidden="true"></a>Base R</h3>
<p>To import data from SPSS, SAS or Stata, you can use the <a href="https://haven.tidyverse.org/" class="external-link">great <code>haven</code> package</a> yourself:</p>
<a href="#base-r" class="anchor"></a>Base R</h3>
<p>To import data from SPSS, SAS or Stata, you can use the <a href="https://haven.tidyverse.org/">great <code>haven</code> package</a> yourself:</p>
<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="co"># download and install the latest version:</span>
<span class="fu"><a href="https://rdrr.io/r/utils/install.packages.html" class="external-link">install.packages</a></span><span class="op">(</span><span class="st">"haven"</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/utils/install.packages.html">install.packages</a></span><span class="op">(</span><span class="st">"haven"</span><span class="op">)</span>
<span class="co"># load the package you just installed:</span>
<span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://haven.tidyverse.org" class="external-link">haven</a></span><span class="op">)</span> </code></pre></div>
<span class="kw"><a href="https://rdrr.io/r/base/library.html">library</a></span><span class="op">(</span><span class="va"><a href="https://haven.tidyverse.org">haven</a></span><span class="op">)</span> </code></pre></div>
<p>You can now import files as follows:</p>
<div id="spss" class="section level4">
<h4 class="hasAnchor">
<a href="#spss" class="anchor" aria-hidden="true"></a>SPSS</h4>
<a href="#spss" class="anchor"></a>SPSS</h4>
<p>To read files from SPSS into R:</p>
<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="co"># read any SPSS file based on file extension (best way):</span>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_spss.html" class="external-link">read_spss</a></span><span class="op">(</span>file <span class="op">=</span> <span class="st">"path/to/file"</span><span class="op">)</span>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_spss.html">read_spss</a></span><span class="op">(</span>file <span class="op">=</span> <span class="st">"path/to/file"</span><span class="op">)</span>
<span class="co"># read .sav or .zsav file:</span>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_spss.html" class="external-link">read_sav</a></span><span class="op">(</span>file <span class="op">=</span> <span class="st">"path/to/file"</span><span class="op">)</span>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_spss.html">read_sav</a></span><span class="op">(</span>file <span class="op">=</span> <span class="st">"path/to/file"</span><span class="op">)</span>
<span class="co"># read .por file:</span>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_spss.html" class="external-link">read_por</a></span><span class="op">(</span>file <span class="op">=</span> <span class="st">"path/to/file"</span><span class="op">)</span></code></pre></div>
<p>Do not forget about <code><a href="https://haven.tidyverse.org/reference/as_factor.html" class="external-link">as_factor()</a></code>, as mentioned above.</p>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_spss.html">read_por</a></span><span class="op">(</span>file <span class="op">=</span> <span class="st">"path/to/file"</span><span class="op">)</span></code></pre></div>
<p>Do not forget about <code><a href="https://haven.tidyverse.org/reference/as_factor.html">as_factor()</a></code>, as mentioned above.</p>
<p>To export your R objects to the SPSS file format:</p>
<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="co"># save as .sav file:</span>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_spss.html" class="external-link">write_sav</a></span><span class="op">(</span>data <span class="op">=</span> <span class="va">yourdata</span>, path <span class="op">=</span> <span class="st">"path/to/file"</span><span class="op">)</span>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_spss.html">write_sav</a></span><span class="op">(</span>data <span class="op">=</span> <span class="va">yourdata</span>, path <span class="op">=</span> <span class="st">"path/to/file"</span><span class="op">)</span>
<span class="co"># save as compressed .zsav file:</span>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_spss.html" class="external-link">write_sav</a></span><span class="op">(</span>data <span class="op">=</span> <span class="va">yourdata</span>, path <span class="op">=</span> <span class="st">"path/to/file"</span>, compress <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></code></pre></div>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_spss.html">write_sav</a></span><span class="op">(</span>data <span class="op">=</span> <span class="va">yourdata</span>, path <span class="op">=</span> <span class="st">"path/to/file"</span>, compress <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></code></pre></div>
</div>
<div id="sas" class="section level4">
<h4 class="hasAnchor">
<a href="#sas" class="anchor" aria-hidden="true"></a>SAS</h4>
<a href="#sas" class="anchor"></a>SAS</h4>
<p>To read files from SAS into R:</p>
<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="co"># read .sas7bdat + .sas7bcat files:</span>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_sas.html" class="external-link">read_sas</a></span><span class="op">(</span>data_file <span class="op">=</span> <span class="st">"path/to/file"</span>, catalog_file <span class="op">=</span> <span class="cn">NULL</span><span class="op">)</span>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_sas.html">read_sas</a></span><span class="op">(</span>data_file <span class="op">=</span> <span class="st">"path/to/file"</span>, catalog_file <span class="op">=</span> <span class="cn">NULL</span><span class="op">)</span>
<span class="co"># read SAS transport files (version 5 and version 8):</span>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_xpt.html" class="external-link">read_xpt</a></span><span class="op">(</span>file <span class="op">=</span> <span class="st">"path/to/file"</span><span class="op">)</span></code></pre></div>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_xpt.html">read_xpt</a></span><span class="op">(</span>file <span class="op">=</span> <span class="st">"path/to/file"</span><span class="op">)</span></code></pre></div>
<p>To export your R objects to the SAS file format:</p>
<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="co"># save as regular SAS file:</span>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_sas.html" class="external-link">write_sas</a></span><span class="op">(</span>data <span class="op">=</span> <span class="va">yourdata</span>, path <span class="op">=</span> <span class="st">"path/to/file"</span><span class="op">)</span>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_sas.html">write_sas</a></span><span class="op">(</span>data <span class="op">=</span> <span class="va">yourdata</span>, path <span class="op">=</span> <span class="st">"path/to/file"</span><span class="op">)</span>
<span class="co"># the SAS transport format is an open format </span>
<span class="co"># (required for submission of the data to the FDA)</span>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_xpt.html" class="external-link">write_xpt</a></span><span class="op">(</span>data <span class="op">=</span> <span class="va">yourdata</span>, path <span class="op">=</span> <span class="st">"path/to/file"</span>, version <span class="op">=</span> <span class="fl">8</span><span class="op">)</span></code></pre></div>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_xpt.html">write_xpt</a></span><span class="op">(</span>data <span class="op">=</span> <span class="va">yourdata</span>, path <span class="op">=</span> <span class="st">"path/to/file"</span>, version <span class="op">=</span> <span class="fl">8</span><span class="op">)</span></code></pre></div>
</div>
<div id="stata" class="section level4">
<h4 class="hasAnchor">
<a href="#stata" class="anchor" aria-hidden="true"></a>Stata</h4>
<a href="#stata" class="anchor"></a>Stata</h4>
<p>To read files from Stata into R:</p>
<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="co"># read .dta file:</span>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_dta.html" class="external-link">read_stata</a></span><span class="op">(</span>file <span class="op">=</span> <span class="st">"/path/to/file"</span><span class="op">)</span>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_dta.html">read_stata</a></span><span class="op">(</span>file <span class="op">=</span> <span class="st">"/path/to/file"</span><span class="op">)</span>
<span class="co"># works exactly the same:</span>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_dta.html" class="external-link">read_dta</a></span><span class="op">(</span>file <span class="op">=</span> <span class="st">"/path/to/file"</span><span class="op">)</span></code></pre></div>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_dta.html">read_dta</a></span><span class="op">(</span>file <span class="op">=</span> <span class="st">"/path/to/file"</span><span class="op">)</span></code></pre></div>
<p>To export your R objects to the Stata file format:</p>
<div class="sourceCode" id="cb9"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="co"># save as .dta file, Stata version 14:</span>
<span class="co"># (supports Stata v8 until v15 at the time of writing)</span>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_dta.html" class="external-link">write_dta</a></span><span class="op">(</span>data <span class="op">=</span> <span class="va">yourdata</span>, path <span class="op">=</span> <span class="st">"/path/to/file"</span>, version <span class="op">=</span> <span class="fl">14</span><span class="op">)</span></code></pre></div>
<span class="fu"><a href="https://haven.tidyverse.org/reference/read_dta.html">write_dta</a></span><span class="op">(</span>data <span class="op">=</span> <span class="va">yourdata</span>, path <span class="op">=</span> <span class="st">"/path/to/file"</span>, version <span class="op">=</span> <span class="fl">14</span><span class="op">)</span></code></pre></div>
</div>
</div>
</div>
@@ -408,13 +403,11 @@
<footer><div class="copyright">
<p></p>
<p>Developed by <a href="https://www.rug.nl/staff/m.s.berends/" class="external-link external-link">Matthijs S. Berends</a>, <a href="https://www.rug.nl/staff/c.f.luz/" class="external-link external-link">Christian F. Luz</a>, <a href="https://www.rug.nl/staff/a.w.friedrich/" class="external-link external-link">Alexander W. Friedrich</a>, <a href="https://www.rug.nl/staff/b.sinha/" class="external-link external-link">Bhanu N. M. Sinha</a>, <a href="https://www.rug.nl/staff/c.j.albers/" class="external-link external-link">Casper J. Albers</a>, <a href="https://www.rug.nl/staff/c.glasner/" class="external-link external-link">Corinna Glasner</a>.</p>
<p>Developed by <a href="https://www.rug.nl/staff/m.s.berends/">Matthijs S. Berends</a>, Christian F. Luz, Dennis Souverein, Erwin E. A. Hassing.</p>
</div>
<div class="pkgdown">
<p></p>
<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link external-link">pkgdown</a> 1.6.1.9001.</p>
<p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
</div>
</footer>
@@ -423,7 +416,5 @@
</body>
</html>

View File

@@ -0,0 +1,12 @@
// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
var i, h, a;
for (i = 0; i < hs.length; i++) {
h = hs[i];
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
a = h.attributes;
while (a.length > 0) h.removeAttribute(a[0].name);
}
});

View File

@@ -42,7 +42,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.7.1.9053</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.7.1.9054</span>
</span>
</div>
@@ -188,7 +188,7 @@
<div class="page-header toc-ignore">
<h1 data-toc-skip>Data sets for download / own use</h1>
<h4 class="date">01 November 2021</h4>
<h4 class="date">28 November 2021</h4>
<small class="dont-index">Source: <a href="https://github.com/msberends/AMR/blob/master/vignettes/datasets.Rmd"><code>vignettes/datasets.Rmd</code></a></small>
<div class="hidden name"><code>datasets.Rmd</code></div>
@@ -493,7 +493,7 @@ If you are reading this page from within R, please <a href="https://msberends.gi
<a href="#antibiotic-agents" class="anchor"></a>Antibiotic agents</h2>
<p>A data set with 456 rows and 14 columns, containing the following column names:<br><em>ab</em>, <em>cid</em>, <em>name</em>, <em>group</em>, <em>atc</em>, <em>atc_group1</em>, <em>atc_group2</em>, <em>abbreviations</em>, <em>synonyms</em>, <em>oral_ddd</em>, <em>oral_units</em>, <em>iv_ddd</em>, <em>iv_units</em> and <em>loinc</em>.</p>
<p>This data set is in R available as <code>antibiotics</code>, after you load the <code>AMR</code> package.</p>
<p>It was last updated on 2 September 2021 11:50:06 UTC. Find more info about the structure of this data set <a href="https://msberends.github.io/AMR/reference/antibiotics.html">here</a>.</p>
<p>It was last updated on 28 November 2021 15:08:22 UTC. Find more info about the structure of this data set <a href="https://msberends.github.io/AMR/reference/antibiotics.html">here</a>.</p>
<p><strong>Direct download links:</strong></p>
<ul>
<li>Download as <a href="https://github.com/msberends/AMR/raw/main/data-raw/../data-raw/antibiotics.rds">R file</a> (32 kB)<br>
@@ -1253,7 +1253,7 @@ If you are reading this page from within R, please <a href="https://msberends.gi
<footer><div class="copyright">
<p>Developed by <a href="https://www.rug.nl/staff/m.s.berends/">Matthijs S. Berends</a>, Dennis Souverein, Erwin E. A. Hassing, Christian F. Luz.</p>
<p>Developed by <a href="https://www.rug.nl/staff/m.s.berends/">Matthijs S. Berends</a>, Christian F. Luz, Dennis Souverein, Erwin E. A. Hassing.</p>
</div>
<div class="pkgdown">

View File

@@ -57,8 +57,6 @@
<!-- mathjax -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script>
@@ -70,15 +68,9 @@
</head>
<body data-spy="scroll" data-target="#toc">
<div class="container template-article-index">
<header>
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
@@ -92,7 +84,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.7.1.9051</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.7.1.9054</span>
</span>
</div>
@@ -272,11 +264,11 @@
<footer>
<div class="copyright">
<p><p>Developed by <a href="https://www.rug.nl/staff/m.s.berends/" class="external-link">Matthijs S. Berends</a>, Christian F. Luz.</p></p>
<p>Developed by <a href='https://www.rug.nl/staff/m.s.berends/'>Matthijs S. Berends</a>, Christian F. Luz, Dennis Souverein, Erwin E. A. Hassing.</p>
</div>
<div class="pkgdown">
<p><p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 1.6.1.9001.</p></p>
<p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
</div>
</footer>
@@ -285,8 +277,6 @@
</body>
</html>

View File

@@ -30,8 +30,6 @@
<![endif]-->
</head>
<body data-spy="scroll" data-target="#toc">
<div class="container template-article">
<header><div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
@@ -44,7 +42,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.7.1.9048</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.7.1.9054</span>
</span>
</div>
@@ -169,7 +167,7 @@
</ul>
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/msberends/AMR" class="external-link">
<a href="https://github.com/msberends/AMR">
<span class="fab fa-github"></span>
Source Code
@@ -191,17 +189,17 @@
<h1 data-toc-skip>Welcome to the <code>AMR</code> package</h1>
<small class="dont-index">Source: <a href="https://github.com/msberends/AMR/blob/main/vignettes/welcome_to_AMR.Rmd" class="external-link"><code>vignettes/welcome_to_AMR.Rmd</code></a></small>
<small class="dont-index">Source: <a href="https://github.com/msberends/AMR/blob/master/vignettes/welcome_to_AMR.Rmd"><code>vignettes/welcome_to_AMR.Rmd</code></a></small>
<div class="hidden name"><code>welcome_to_AMR.Rmd</code></div>
</div>
<p>Note: to keep the package as small as possible, we only included this vignette. You can read more vignettes on our website about how to conduct AMR data analysis, determine MDROs, find explanation of EUCAST rules, and much more: <a href="https://msberends.github.io/AMR/articles/" class="uri">https://msberends.github.io/AMR/articles/</a>.</p>
<p>Note: to keep the package size as small as possible, we only included this vignette on CRAN. You can read more vignettes on our website about how to conduct AMR data analysis, determine MDROs, find explanation of EUCAST rules, and much more: <a href="https://msberends.github.io/AMR/articles/" class="uri">https://msberends.github.io/AMR/articles/</a>.</p>
<hr>
<p><code>AMR</code> is a free, open-source and independent R package to simplify the analysis and prediction of Antimicrobial Resistance (AMR) and to work with microbial and antimicrobial data and properties, by using evidence-based methods. <strong>Our aim is to provide a standard</strong> for clean and reproducible antimicrobial resistance data analysis, that can therefore empower epidemiological analyses to continuously enable surveillance and treatment evaluation in any setting.</p>
<p>After installing this package, R knows ~70,000 distinct microbial species and all ~560 antibiotic, antimycotic and antiviral drugs by name and code (including ATC, EARS-NET, LOINC and SNOMED CT), and knows all about valid R/SI and MIC values. It supports any data format, including WHONET/EARS-Net data.</p>
<p><code>AMR</code> is a free, open-source and independent R package (see <a href="https://msberends.github.io/AMR/#copyright">Copyright</a>) to simplify the analysis and prediction of Antimicrobial Resistance (AMR) and to work with microbial and antimicrobial data and properties, by using evidence-based methods. <strong>Our aim is to provide a standard</strong> for clean and reproducible antimicrobial resistance data analysis, that can therefore empower epidemiological analyses to continuously enable surveillance and treatment evaluation in any setting.</p>
<p>After installing this package, R knows ~71,000 distinct microbial species and all ~560 antibiotic, antimycotic and antiviral drugs by name and code (including ATC, EARS-Net, PubChem, LOINC and SNOMED CT), and knows all about valid R/SI and MIC values. It supports any data format, including WHONET/EARS-Net data. Antimicrobial names and group names are available in Danish, Dutch, English, French, German, Italian, Portuguese and Spanish.</p>
<p>This package is fully independent of any other R package and works on Windows, macOS and Linux with all versions of R since R-3.0.0 (April 2013). <strong>It was designed to work in any setting, including those with very limited resources</strong>. Since its first public release in early 2018, this package has been downloaded from more than 160 countries.</p>
<p>This package can be used for:</p>
<ul>
@@ -223,7 +221,7 @@
<li>Principal component analysis for AMR</li>
</ul>
<p>All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.) in this <code>AMR</code> package are publicly and freely available. We continually export our data sets to formats for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and suitable for input in any software program, such as laboratory information systems. Please find <a href="https://msberends.github.io/AMR/articles/datasets.html">all download links on our website</a>, which is automatically updated with every code change.</p>
<p>The package was created for both routine data analysis and academic research at the Faculty of Medical Sciences of the University of Groningen, in collaboration with non-profit organisations Certe Medical Diagnostics and Advice and University Medical Center Groningen. This R package is actively maintained (see <a href="https://msberends.github.io/AMR/news/index.html">Changelog</a>) and is free software (see <a href="https://msberends.github.io/AMR/#copyright">Copyright</a>).</p>
<p>This R package was created for both routine data analysis and academic research at the Faculty of Medical Sciences of the <a href="https://www.rug.nl">University of Groningen</a>, in collaboration with non-profit organisations <a href="https://www.certe.nl">Certe Medical Diagnostics and Advice Foundation</a> and <a href="https://www.umcg.nl">University Medical Center Groningen</a>. This R package formed the basis of two PhD theses (<a href="https://doi.org/10.33612/diss.177417131">DOI 10.33612/diss.177417131</a> and <a href="https://doi.org/10.33612/diss.192486375">DOI 10.33612/diss.177417131</a>) but is actively and durably maintained (see <a href="https://msberends.github.io/AMR/news/index.html">changelog)</a>) by two public healthcare organisations in the Netherlands.</p>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
@@ -235,13 +233,11 @@
<footer><div class="copyright">
<p></p>
<p>Developed by <a href="https://www.rug.nl/staff/m.s.berends/" class="external-link external-link">Matthijs S. Berends</a>, Christian F. Luz.</p>
<p>Developed by <a href="https://www.rug.nl/staff/m.s.berends/">Matthijs S. Berends</a>, Christian F. Luz, Dennis Souverein, Erwin E. A. Hassing.</p>
</div>
<div class="pkgdown">
<p></p>
<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link external-link">pkgdown</a> 1.6.1.9001.</p>
<p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
</div>
</footer>
@@ -250,7 +246,5 @@
</body>
</html>