@@ -146,21 +146,21 @@ make the structure of your data generally look like this:
-
2025-02-13
+
2025-02-14
abcd
Escherichia coli
S
S
-
2025-02-13
+
2025-02-14
abcd
Escherichia coli
S
R
-
2025-02-13
+
2025-02-14
efgh
Escherichia coli
R
@@ -697,15 +697,15 @@ previously mentioned antibiotic class selectors:
#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)#> ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
-
+
-
+
-
+
Pathogen
@@ -719,93 +719,93 @@ previously mentioned antibiotic class selectors:
CoNS
-
0% (0/43)
-
86% (267/309)
-
52% (25/48)
-
0% (0/43)
-
52% (25/48)
-
22% (12/55)
+
0% (0-8%)
+
86% (82-90%)
+
52% (37-67%)
+
0% (0-8%)
+
52% (37-67%)
+
22% (12-35%)
E. coli
-
100% (171/171)
-
98% (451/460)
-
100% (422/422)
+
100% (98-100%)
+
98% (96-99%)
+
100% (99-100%)
-
100% (418/418)
-
97% (450/462)
+
100% (99-100%)
+
97% (96-99%)
E. faecalis
-
0% (0/39)
-
0% (0/39)
-
100% (38/38)
-
0% (0/39)
+
0% (0-9%)
+
0% (0-9%)
+
100% (91-100%)
+
0% (0-9%)
-
0% (0/39)
+
0% (0-9%)
K. pneumoniae
-
90% (52/58)
-
100% (51/51)
+
90% (79-96%)
+
100% (93-100%)
-
100% (53/53)
-
90% (52/58)
+
100% (93-100%)
+
90% (79-96%)
P. aeruginosa
-
100% (30/30)
+
100% (88-100%)
-
0% (0/30)
+
0% (0-12%)
-
100% (30/30)
+
100% (88-100%)
P. mirabilis
-
94% (32/34)
-
94% (30/32)
+
94% (80-99%)
+
94% (79-99%)
-
94% (32/34)
+
94% (80-99%)
S. aureus
-
99% (231/233)
+
99% (97-100%)
-
98% (84/86)
+
98% (92-100%)
S. epidermidis
-
0% (0/44)
-
79% (128/163)
+
0% (0-8%)
+
79% (71-85%)
-
0% (0/44)
+
0% (0-8%)
-
51% (45/89)
+
51% (40-61%)
S. hominis
-
92% (74/80)
+
92% (84-97%)
-
85% (53/62)
+
85% (74-93%)
S. pneumoniae
-
0% (0/117)
-
0% (0/117)
+
0% (0-3%)
+
0% (0-3%)
-
0% (0/117)
+
0% (0-3%)
-
0% (0/117)
+
0% (0-3%)
@@ -827,13 +827,6 @@ language to be Spanish using the language argument:
#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
-
-
-
-
-
-
-
Patógeno
Amikacina
@@ -844,17 +837,17 @@ language to be Spanish using the language argument:
Gram negativo
-
98% (251/256)
-
96% (659/684)
-
0% (0/35)
-
96% (658/686)
+
98% (96-99%)
+
96% (95-98%)
+
0% (0-10%)
+
96% (94-97%)
Gram positivo
-
0% (0/436)
-
63% (740/1170)
-
0% (0/436)
-
34% (228/665)
+
0% (0-1%)
+
63% (60-66%)
+
0% (0-1%)
+
34% (31-38%)
@@ -883,57 +876,57 @@ a plus + character like this:
CoNS
-
30% (10/33)
-
97% (267/274)
+
30% (16-49%)
+
97% (95-99%)
E. coli
-
94% (393/416)
-
100% (457/459)
-
99% (455/461)
+
94% (92-96%)
+
100% (98-100%)
+
99% (97-100%)
K. pneumoniae
-
89% (47/53)
-
93% (54/58)
-
93% (54/58)
+
89% (77-96%)
+
93% (83-98%)
+
93% (83-98%)
P. aeruginosa
-
100% (30/30)
-
100% (30/30)
+
100% (88-100%)
+
100% (88-100%)
P. mirabilis
-
100% (34/34)
-
100% (34/34)
+
100% (90-100%)
+
100% (90-100%)
S. aureus
-
100% (231/231)
-
100% (91/91)
+
100% (98-100%)
+
100% (96-100%)
S. epidermidis
-
100% (128/128)
-
100% (46/46)
+
100% (97-100%)
+
100% (92-100%)
S. hominis
-
100% (74/74)
-
100% (53/53)
+
100% (95-100%)
+
100% (93-100%)
S. pneumoniae
-
100% (112/112)
-
100% (112/112)
-
100% (112/112)
+
100% (97-100%)
+
100% (97-100%)
+
100% (97-100%)
@@ -958,7 +951,7 @@ argument must be used. This can be any column in the data, or e.g. an
-
+
@@ -977,17 +970,17 @@ argument must be used. This can be any column in the data, or e.g. an
Clinical
CoNS
-
89% (183/205)
-
57% (20/35)
+
89% (84-93%)
+
57% (39-74%)
-
57% (20/35)
-
26% (8/31)
+
57% (39-74%)
+
26% (12-45%)
ICU
CoNS
-
79% (58/73)
+
79% (68-88%)
@@ -997,7 +990,7 @@ argument must be used. This can be any column in the data, or e.g. an
Outpatient
CoNS
-
84% (26/31)
+
84% (66-95%)
@@ -1006,58 +999,58 @@ argument must be used. This can be any column in the data, or e.g. an
Clinical
E. coli
-
100% (104/104)
-
98% (291/297)
-
100% (266/266)
+
100% (97-100%)
+
98% (96-99%)
+
100% (99-100%)
-
100% (276/276)
-
98% (293/299)
+
100% (99-100%)
+
98% (96-99%)
ICU
E. coli
-
100% (52/52)
-
99% (135/137)
-
100% (133/133)
+
100% (93-100%)
+
99% (95-100%)
+
100% (97-100%)
-
100% (118/118)
-
96% (132/137)
+
100% (97-100%)
+
96% (92-99%)
Clinical
K. pneumoniae
-
92% (47/51)
-
100% (44/44)
+
92% (81-98%)
+
100% (92-100%)
-
100% (46/46)
-
92% (47/51)
+
100% (92-100%)
+
92% (81-98%)
Clinical
P. mirabilis
-
100% (30/30)
+
100% (88-100%)
-
100% (30/30)
+
100% (88-100%)
Clinical
S. aureus
-
99% (148/150)
+
99% (95-100%)
-
97% (61/63)
+
97% (89-100%)
ICU
S. aureus
-
100% (66/66)
+
100% (95-100%)
@@ -1067,51 +1060,51 @@ argument must be used. This can be any column in the data, or e.g. an
Clinical
S. epidermidis
-
82% (65/79)
+
82% (72-90%)
-
55% (24/44)
+
55% (39-70%)
ICU
S. epidermidis
-
72% (54/75)
+
72% (60-82%)
-
41% (17/41)
+
41% (26-58%)
Clinical
S. hominis
-
96% (43/45)
+
96% (85-99%)
-
94% (29/31)
+
94% (79-99%)
Clinical
S. pneumoniae
-
0% (0/78)
-
0% (0/78)
+
0% (0-5%)
+
0% (0-5%)
-
0% (0/78)
+
0% (0-5%)
-
0% (0/78)
+
0% (0-5%)
ICU
S. pneumoniae
-
0% (0/30)
-
0% (0/30)
+
0% (0-12%)
+
0% (0-12%)
-
0% (0/30)
+
0% (0-12%)
-
0% (0/30)
+
0% (0-12%)
@@ -1157,34 +1150,34 @@ just gives an idea of how a WISCA can be created:
WISCA Group 1
Gram-negative
-
76% (216/285)
-
95% (270/284)
-
89% (231/261)
-
99% (270/274)
+
76% (70-81%)
+
95% (92-97%)
+
89% (84-92%)
+
99% (96-100%)
WISCA Group 2
Gram-negative
-
76% (336/441)
-
98% (432/442)
-
88% (334/380)
-
98% (409/419)
+
76% (72-80%)
+
98% (96-99%)
+
88% (84-91%)
+
98% (96-99%)
WISCA Group 1
Gram-positive
-
76% (310/406)
-
89% (347/392)
-
81% (100/123)
-
95% (184/193)
+
76% (72-80%)
+
89% (85-92%)
+
81% (73-88%)
+
95% (91-98%)
WISCA Group 2
Gram-positive
-
76% (556/732)
-
89% (617/695)
-
88% (196/222)
-
95% (340/357)
+
76% (73-79%)
+
89% (86-91%)
+
88% (83-92%)
+
95% (92-97%)
diff --git a/articles/AMR_for_Python.html b/articles/AMR_for_Python.html
index 5e6af0db5..c48f293ae 100644
--- a/articles/AMR_for_Python.html
+++ b/articles/AMR_for_Python.html
@@ -31,7 +31,7 @@
AMR (for R)
- 2.1.1.9146
+ 2.1.1.9147
diff --git a/articles/AMR_with_tidymodels.html b/articles/AMR_with_tidymodels.html
index f10c2ac3c..a0f48069f 100644
--- a/articles/AMR_with_tidymodels.html
+++ b/articles/AMR_with_tidymodels.html
@@ -31,7 +31,7 @@
AMR (for R)
- 2.1.1.9146
+ 2.1.1.9147
@@ -130,7 +130,7 @@ package.
library(tidymodels)# For machine learning workflows, and data manipulation (dplyr, tidyr, ...)#> ── Attaching packages ────────────────────────────────────── tidymodels 1.2.0 ──#> ✔broom 1.0.7 ✔recipes 1.1.1
-#> ✔dials 1.3.0 ✔rsample 1.2.1
+#> ✔dials 1.4.0 ✔rsample 1.2.1#> ✔dplyr 1.1.4 ✔tibble 3.2.1#> ✔ggplot2 3.5.1 ✔tidyr 1.3.1#> ✔infer 1.0.7 ✔tune 1.2.1
@@ -142,7 +142,7 @@ package.
#> ✖dplyr::filter() masks stats::filter()#> ✖dplyr::lag() masks stats::lag()#> ✖recipes::step() masks stats::step()
-#> • Learn how to get started at https://www.tidymodels.org/start/
+#> • Dig deeper into tidy modeling with R at https://www.tmwr.orglibrary(AMR)# For AMR data analysis# Load the example_isolates dataset
diff --git a/articles/EUCAST.html b/articles/EUCAST.html
index 8d021f4ef..d8e220d0f 100644
--- a/articles/EUCAST.html
+++ b/articles/EUCAST.html
@@ -31,7 +31,7 @@
AMR (for R)
- 2.1.1.9146
+ 2.1.1.9147
diff --git a/articles/MDR.html b/articles/MDR.html
index 4994da7e5..86b0406d3 100644
--- a/articles/MDR.html
+++ b/articles/MDR.html
@@ -31,7 +31,7 @@
AMR (for R)
- 2.1.1.9146
+ 2.1.1.9147
diff --git a/articles/PCA.html b/articles/PCA.html
index 18a9d30f6..136970cc9 100644
--- a/articles/PCA.html
+++ b/articles/PCA.html
@@ -31,7 +31,7 @@
AMR (for R)
- 2.1.1.9146
+ 2.1.1.9147
diff --git a/articles/WHONET.html b/articles/WHONET.html
index 314c1204d..e130fbbad 100644
--- a/articles/WHONET.html
+++ b/articles/WHONET.html
@@ -31,7 +31,7 @@
AMR (for R)
- 2.1.1.9146
+ 2.1.1.9147
@@ -310,9 +310,6 @@ using the included ggplot_sir()group_by(Country)%>%select(Country, AMP_ND2, AMC_ED20, CAZ_ED10, CIP_ED5)%>%ggplot_sir(translate_ab ="ab", facet ="Country", datalabels =FALSE)
-
#> Warning: Using scale_sir_colours() for the fill aesthetic has been superseded by
-#> scale_fill_sir(), please use that instead. This warning will be shown
-#> once per session.