The AMR package contains a data set
example_isolates_unclean, which might look data that users
have extracted from their laboratory systems:
-
+
example_isolates_unclean#> # A tibble: 3,000 × 8#> patient_id hospital date bacteria AMX AMC CIP GEN
@@ -222,7 +219,7 @@ included data were retrieved on 24 Jun 2024.
The codes of the AMR packages that come from as.mo() are
short, but still human readable. More importantly, as.mo()
supports all kinds of input:
-
+
as.mo("Klebsiella pneumoniae")#> Class 'mo'#> [1] B_KLBSL_PNMN
@@ -242,7 +239,7 @@ retrieve taxonomic properties, such as the name, genus, species, family,
order, and even Gram-stain. They all start with mo_ and
they use as.mo() internally, so that still any arbitrary
user input can be used:
-
+
mo_family("K. pneumoniae")#> [1] "Enterobacteriaceae"mo_genus("K. pneumoniae")
@@ -261,14 +258,14 @@ user input can be used:
#> [1] "1098101000112102" "446870005" "1098201000112108" "409801009" #> [5] "56415008" "714315002" "713926009"
Now we can thus clean our data:
-
+
our_data$bacteria<-as.mo(our_data$bacteria, info =TRUE)#> ℹ Microorganism translation was uncertain for four microorganisms. Run#> mo_uncertainties() to review these uncertainties, or use#> add_custom_microorganisms() to add custom entries.
Apparently, there was some uncertainty about the translation to
taxonomic codes. Let’s check this:
-
+
mo_uncertainties()#> Matching scores are based on the resemblance between the input and the full#> taxonomic name, and the pathogenicity in humans. See ?mo_matching_score.
@@ -325,10 +322,10 @@ diffusion values, read more about that on the
The outcome of the function can easily be added to our data:
-
+
our_data<-our_data%>%mutate(first =first_isolate(info =TRUE))#> ℹ Determining first isolates using an episode length of 365 days
@@ -407,16 +404,16 @@ the methods on the first_isolate
So we end up with 2 724 isolates for analysis. Now our data looks
like:
-
+
our_data_1st#> # A tibble: 2,724 × 9#> patient_id hospital date bacteria AMX AMC CIP GEN first
@@ -441,7 +438,7 @@ like:
The base R summary() function gives a good first
impression, as it comes with support for the new mo and
sir classes that we now have in our data set:
-
+
summary(our_data_1st)#> patient_id hospital date #> Length:2724 Length:2724 Min. :2011-01-01
@@ -490,7 +487,7 @@ impression, as it comes with support for the new mo and
To just get an idea how the species are distributed, create a
frequency table with count() based on the name of the
microorganisms:
Using so-called antibiotic class selectors, you can select or filter
columns based on the antibiotic class that your antibiotic results are
in:
-
+
our_data_1st%>%select(date, aminoglycosides())#> ℹ For aminoglycosides() using column 'GEN' (gentamicin)
@@ -662,7 +659,7 @@ failure
function to create any of the above antibiogram types. For starters,
this is what the included example_isolates data set looks
like:
-
+
example_isolates#> # A tibble: 2,000 × 46#> date patient age gender ward mo PEN OXA FLC AMX
@@ -691,7 +688,7 @@ like:
should be used. The antibiotics argument in the
antibiogram() function supports any (combination) of the
previously mentioned antibiotic class selectors:
-
+
antibiogram(example_isolates, antibiotics =c(aminoglycosides(), carbapenems()))#> ℹ The function aminoglycosides() should be used inside a dplyr verb or
@@ -835,7 +832,7 @@ Chinese, Czech, Danish, Dutch, Finnish, French, German, Greek, Italian,
Japanese, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish,
Swedish, Turkish, or Ukrainian. In this next example, we force the
language to be Spanish using the language argument:
-
+
antibiogram(example_isolates, mo_transform ="gramstain", antibiotics =aminoglycosides(),
@@ -889,7 +886,7 @@ language to be Spanish using the language argument:
To create a combined antibiogram, use antibiotic codes or names with
a plus + character like this:
To create a syndromic antibiogram, the syndromic_group
argument must be used. This can be any column in the data, or e.g. an
ifelse() with calculations based on certain columns:
-
+
antibiogram(example_isolates, antibiotics =c(aminoglycosides(), carbapenems()), syndromic_group ="ward")
@@ -1169,7 +1166,7 @@ Antibiogram) in which cases are predefined based on clinical or
demographic characteristics (e.g., endocarditis in 75+ females). This
next example is a simplification without clinical characteristics, but
just gives an idea of how a WISCA can be created:
-
+
wisca<-antibiogram(example_isolates, antibiotics =c("AMC", "AMC+CIP", "TZP", "TZP+TOB"), mo_transform ="gramstain",
@@ -1237,7 +1234,7 @@ just gives an idea of how a WISCA can be created:
Antibiograms can be plotted using autoplot() from the
ggplot2 packages, since this AMR package
provides an extension to that function:
To calculate antimicrobial resistance in a more sensible way, also by
@@ -1266,12 +1263,12 @@ proportion of R (proportion_R()
I (proportion_SI(), equal to
susceptibility()). These functions can be used on their
own:
# Load required librarieslibrary(tidymodels)# For machine learning workflows, and data manipulation (dplyr, tidyr, ...)
-#> Error in get(paste0(generic, ".", class), envir = get_method_env()) :
-#> object 'type_sum.accel' not found#> ── Attaching packages ────────────────────────────────────── tidymodels 1.2.0 ──#> ✔broom 1.0.7 ✔recipes 1.1.0#> ✔dials 1.3.0 ✔rsample 1.2.1
@@ -142,7 +140,7 @@ package.
#> ✖dplyr::filter() masks stats::filter()#> ✖dplyr::lag() masks stats::lag()#> ✖recipes::step() masks stats::step()
-#> • Use tidymodels_prefer() to resolve common conflicts.
+#> • Dig deeper into tidy modeling with R at https://www.tmwr.orglibrary(AMR)# For AMR data analysis# Load the example_isolates dataset
diff --git a/articles/EUCAST.html b/articles/EUCAST.html
index a5af120d4..745116b29 100644
--- a/articles/EUCAST.html
+++ b/articles/EUCAST.html
@@ -29,7 +29,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/articles/MDR.html b/articles/MDR.html
index 464504a79..f217f63db 100644
--- a/articles/MDR.html
+++ b/articles/MDR.html
@@ -29,7 +29,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/articles/PCA.html b/articles/PCA.html
index 21b5ec62f..f85a033b6 100644
--- a/articles/PCA.html
+++ b/articles/PCA.html
@@ -29,7 +29,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
@@ -97,8 +97,6 @@ is currently being developed.
example_isolates data set in this package looks like:
library(AMR)
-#> Error in get(paste0(generic, ".", class), envir = get_method_env()) :
-#> object 'type_sum.accel' not foundlibrary(dplyr)glimpse(example_isolates)#> Rows: 2,000
diff --git a/articles/WHONET.html b/articles/WHONET.html
index 855777da3..5255c7647 100644
--- a/articles/WHONET.html
+++ b/articles/WHONET.html
@@ -29,7 +29,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
@@ -108,8 +108,6 @@ the tidyverse for all of my analyses. All of them. If you don’t know it
yet, I suggest you read about it on their website: https://www.tidyverse.org/.
library(dplyr)# part of tidyverse
-#> Error in get(paste0(generic, ".", class), envir = get_method_env()) :
-#> object 'type_sum.accel' not foundlibrary(ggplot2)# part of tidyverselibrary(AMR)# this packagelibrary(cleaner)# to create frequency tables
A data set with 485 rows and 14 columns, containing the following
+
A data set with 486 rows and 14 columns, containing the following
column names: ab, cid, name, group, atc,
atc_group1, atc_group2, abbreviations,
synonyms, oral_ddd, oral_units,
iv_ddd, iv_units, and loinc.
This data set is in R available as antibiotics, after
you load the AMR package.
-
It was last updated on 10 October 2024 14:38:20 UTC. Find more info
+
It was last updated on 15 January 2025 15:14:09 UTC. Find more info
about the structure of this data set here.
The tab-separated text, Microsoft Excel, SPSS, and Stata files all
contain the ATC codes, common abbreviations, trade names and LOINC codes
@@ -539,7 +539,7 @@ Names and Codes)
Aminoglycoside antibacterials
Other aminoglycosides
ak, ami, amik, …
-
amicacin, amikacillin, amikacin, …
+
amicacin, amikacillin, amikacinbase, …
1.0
diff --git a/articles/index.html b/articles/index.html
index 285e0f347..61b0052bd 100644
--- a/articles/index.html
+++ b/articles/index.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/articles/resistance_predict.html b/articles/resistance_predict.html
index 2ba5bb511..3039dc875 100644
--- a/articles/resistance_predict.html
+++ b/articles/resistance_predict.html
@@ -29,7 +29,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
@@ -96,8 +96,6 @@ plots in R.
extends their use and functions.
library(dplyr)
-#> Error in get(paste0(generic, ".", class), envir = get_method_env()) :
-#> object 'type_sum.accel' not foundlibrary(ggplot2)library(AMR)
@@ -141,7 +139,7 @@ number of observations, the actual observed resistance, the estimated
resistance and the standard error below and above the estimation:
predict_TZP
-#> # A tibble: 33 × 7
+#> # A tibble: 34 × 7#> year value se_min se_max observations observed estimated#> *<dbl><dbl><dbl><dbl><int><dbl><dbl>#> 12002 0.2 NANA 15 0.2 0.0562
@@ -154,7 +152,7 @@ resistance and the standard error below and above the estimation:
#> 82009 0.0164NANA 61 0.0164 0.106 #> 92010 0.0566NANA 53 0.0566 0.116 #> 102011 0.183 NANA 93 0.183 0.127
-#> # ℹ 23 more rows
+#> # ℹ 24 more rows
The function plot is available in base R, and can be
extended by other packages to depend the output based on the type of
input. We extended its function to cope with resistance predictions:
diff --git a/articles/resistance_predict_files/figure-html/unnamed-chunk-4-1.png b/articles/resistance_predict_files/figure-html/unnamed-chunk-4-1.png
index 772320a54..dce431473 100644
Binary files a/articles/resistance_predict_files/figure-html/unnamed-chunk-4-1.png and b/articles/resistance_predict_files/figure-html/unnamed-chunk-4-1.png differ
diff --git a/articles/resistance_predict_files/figure-html/unnamed-chunk-5-1.png b/articles/resistance_predict_files/figure-html/unnamed-chunk-5-1.png
index 8f4bd4a77..13317f8ba 100644
Binary files a/articles/resistance_predict_files/figure-html/unnamed-chunk-5-1.png and b/articles/resistance_predict_files/figure-html/unnamed-chunk-5-1.png differ
diff --git a/articles/resistance_predict_files/figure-html/unnamed-chunk-5-2.png b/articles/resistance_predict_files/figure-html/unnamed-chunk-5-2.png
index 44d53b397..6df80a44e 100644
Binary files a/articles/resistance_predict_files/figure-html/unnamed-chunk-5-2.png and b/articles/resistance_predict_files/figure-html/unnamed-chunk-5-2.png differ
diff --git a/articles/resistance_predict_files/figure-html/unnamed-chunk-6-1.png b/articles/resistance_predict_files/figure-html/unnamed-chunk-6-1.png
index 9228af130..bf2bb4110 100644
Binary files a/articles/resistance_predict_files/figure-html/unnamed-chunk-6-1.png and b/articles/resistance_predict_files/figure-html/unnamed-chunk-6-1.png differ
diff --git a/articles/resistance_predict_files/figure-html/unnamed-chunk-7-1.png b/articles/resistance_predict_files/figure-html/unnamed-chunk-7-1.png
index f6b11fa4d..346282b23 100644
Binary files a/articles/resistance_predict_files/figure-html/unnamed-chunk-7-1.png and b/articles/resistance_predict_files/figure-html/unnamed-chunk-7-1.png differ
diff --git a/articles/welcome_to_AMR.html b/articles/welcome_to_AMR.html
index bb1252972..bcaffc313 100644
--- a/articles/welcome_to_AMR.html
+++ b/articles/welcome_to_AMR.html
@@ -29,7 +29,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
@@ -106,7 +106,7 @@ this a successful and durable project!
10.33612/diss.177417131 and DOI
10.33612/diss.192486375).
After installing this package, R knows ~79 000 distinct microbial
-species and all ~600 antibiotic, antimycotic and antiviral drugs by name
+species and all ~610 antibiotic, antimycotic and antiviral drugs by name
and code (including ATC, EARS-Net, ASIARS-Net, PubChem, LOINC and SNOMED
CT), and knows all about valid SIR and MIC values. The integral
breakpoint guidelines from CLSI and EUCAST are included from the last 10
diff --git a/authors.html b/authors.html
index 2745ae682..96c8f2fbc 100644
--- a/authors.html
+++ b/authors.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/index.html b/index.html
index 43a21962c..30161c99d 100644
--- a/index.html
+++ b/index.html
@@ -32,7 +32,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/news/index.html b/news/index.html
index 90c432eba..8e63ce536 100644
--- a/news/index.html
+++ b/news/index.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
@@ -48,18 +48,18 @@
-
AMR 2.1.1.9122
+
AMR 2.1.1.9123
(this beta version will eventually become v3.0. We’re happy to reach a new major milestone soon, which will be all about the new One Health support! Install this beta using the instructions here.)
-
A New Milestone: AMR v3.0 with One Health Support (= Human + Veterinary + Environmental)
+
A New Milestone: AMR v3.0 with One Health Support (= Human + Veterinary + Environmental)
This package now supports not only tools for AMR data analysis in clinical settings, but also for veterinary and environmental microbiology. This was made possible through a collaboration with the University of Prince Edward Island’s Atlantic Veterinary College, Canada. To celebrate this great improvement of the package, we also updated the package logo to reflect this change.
-
Breaking
+
Breaking
Removed all functions and references that used the deprecated rsi class, which were all replaced with their sir equivalents over a year ago
-
New
+
New
One Health implementation
Function as.sir() now has extensive support for veterinary breakpoints from CLSI. Use breakpoint_type = "animal" and set the host argument to a variable that contains animal species names.
@@ -104,7 +104,7 @@
-
Changed
+
Changed
SIR interpretation
It is now possible to use column names for argument ab, mo, and uti: as.sir(..., ab = "column1", mo = "column2", uti = "column3"). This greatly improves the flexibility for users.
Users can now set their own criteria (using regular expressions) as to what should be considered S, I, R, SDD, and NI.
@@ -120,9 +120,10 @@
antibiotics data set
Added “clindamycin inducible screening” as CLI1. Since clindamycin is a lincosamide, the antibiotic selector lincosamides() now contains the argument only_treatable = TRUE (similar to other antibiotic selectors that contain non-treatable drugs)
Added Amorolfine (AMO, D01AE16), which is now also part of the antifungals() selector
+
Added Efflux (EFF), to allow mapping to AMRFinderPlus
When using antibiotic selectors (such as aminoglycosides()) that exclude non-treatable drugs (such as gentamicin-high), the function now always returns a warning that these can be included using only_treatable = FALSE
@@ -164,14 +165,14 @@
-
Other
+
Other
Greatly improved vctrs integration, a Tidyverse package working in the background for many Tidyverse functions. For users, this means that functions such as dplyr’s bind_rows(), rowwise() and c_across() are now supported for e.g. columns of class mic. Despite this, this AMR package is still zero-dependent on any other package, including dplyr and vctrs.
Greatly updated and expanded documentation
Added Larisse Bolton, Jordan Stull, Matthew Saab, and Javier Sanchez as contributors, to thank them for their valuable input
Stopped support for SAS (.xpt) files, since their file structure and extremely inefficient and requires more disk space than GitHub allows in a single commit.
-
Older Versions
+
Older Versions
This changelog only contains changes from AMR v3.0 (October 2024) and later.
diff --git a/pkgdown.yml b/pkgdown.yml
index 272d1895a..28909a302 100644
--- a/pkgdown.yml
+++ b/pkgdown.yml
@@ -12,7 +12,7 @@ articles:
resistance_predict: resistance_predict.html
welcome_to_AMR: welcome_to_AMR.html
WHONET: WHONET.html
-last_built: 2024-12-20T09:59Z
+last_built: 2025-01-15T15:21Z
urls:
reference: https://msberends.github.io/AMR/reference
article: https://msberends.github.io/AMR/articles
diff --git a/reference/AMR-options.html b/reference/AMR-options.html
index 90ac1e19c..3d86a008f 100644
--- a/reference/AMR-options.html
+++ b/reference/AMR-options.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/AMR.html b/reference/AMR.html
index 967988a33..650b45355 100644
--- a/reference/AMR.html
+++ b/reference/AMR.html
@@ -5,14 +5,14 @@ This work was published in the Journal of Statistical Software (Volume 104(3); d
) and formed the basis of two PhD theses (doi:10.33612/diss.177417131
and doi:10.33612/diss.192486375
).
-After installing this package, R knows ~79 000 microorganisms (updated June 2024) and all ~600 antibiotic, antimycotic and antiviral drugs by name and code (including ATC, EARS-Net, ASIARS-Net, PubChem, LOINC and SNOMED CT), and knows all about valid SIR and MIC values. The integral clinical breakpoint guidelines from CLSI and EUCAST are included, even with epidemiological cut-off (ECOFF) values. It supports and can read any data format, including WHONET data. This package works on Windows, macOS and Linux with all versions of R since R-3.0 (April 2013). It was designed to work in any setting, including those with very limited resources. It was created for both routine data analysis and academic research at the Faculty of Medical Sciences of the public University of Groningen, in collaboration with non-profit organisations Certe Medical Diagnostics and Advice Foundation and University Medical Center Groningen.
+After installing this package, R knows ~79 000 microorganisms (updated June 2024) and all ~610 antibiotic, antimycotic and antiviral drugs by name and code (including ATC, EARS-Net, ASIARS-Net, PubChem, LOINC and SNOMED CT), and knows all about valid SIR and MIC values. The integral clinical breakpoint guidelines from CLSI and EUCAST are included, even with epidemiological cut-off (ECOFF) values. It supports and can read any data format, including WHONET data. This package works on Windows, macOS and Linux with all versions of R since R-3.0 (April 2013). It was designed to work in any setting, including those with very limited resources. It was created for both routine data analysis and academic research at the Faculty of Medical Sciences of the public University of Groningen, in collaboration with non-profit organisations Certe Medical Diagnostics and Advice Foundation and University Medical Center Groningen.
The AMR package is available in English, Chinese, Czech, Danish, Dutch, Finnish, French, German, Greek, Italian, Japanese, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish, Swedish, Turkish, and Ukrainian. Antimicrobial drug (group) names and colloquial microorganism names are provided in these languages.">
Skip to contents
@@ -21,7 +21,7 @@ The AMR package is available in English, Chinese, Czech, Danish, Dutch, Finnish,
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
@@ -69,7 +69,7 @@ The AMR package is available in English, Chinese, Czech, Danish, Dutch, Finnish,
) and formed the basis of two PhD theses (doi:10.33612/diss.177417131
and doi:10.33612/diss.192486375
).
-
After installing this package, R knows ~79 000 microorganisms (updated June 2024) and all ~600 antibiotic, antimycotic and antiviral drugs by name and code (including ATC, EARS-Net, ASIARS-Net, PubChem, LOINC and SNOMED CT), and knows all about valid SIR and MIC values. The integral clinical breakpoint guidelines from CLSI and EUCAST are included, even with epidemiological cut-off (ECOFF) values. It supports and can read any data format, including WHONET data. This package works on Windows, macOS and Linux with all versions of R since R-3.0 (April 2013). It was designed to work in any setting, including those with very limited resources. It was created for both routine data analysis and academic research at the Faculty of Medical Sciences of the public University of Groningen, in collaboration with non-profit organisations Certe Medical Diagnostics and Advice Foundation and University Medical Center Groningen.
+
After installing this package, R knows ~79 000 microorganisms (updated June 2024) and all ~610 antibiotic, antimycotic and antiviral drugs by name and code (including ATC, EARS-Net, ASIARS-Net, PubChem, LOINC and SNOMED CT), and knows all about valid SIR and MIC values. The integral clinical breakpoint guidelines from CLSI and EUCAST are included, even with epidemiological cut-off (ECOFF) values. It supports and can read any data format, including WHONET data. This package works on Windows, macOS and Linux with all versions of R since R-3.0 (April 2013). It was designed to work in any setting, including those with very limited resources. It was created for both routine data analysis and academic research at the Faculty of Medical Sciences of the public University of Groningen, in collaboration with non-profit organisations Certe Medical Diagnostics and Advice Foundation and University Medical Center Groningen.
The AMR package is available in English, Chinese, Czech, Danish, Dutch, Finnish, French, German, Greek, Italian, Japanese, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish, Swedish, Turkish, and Ukrainian. Antimicrobial drug (group) names and colloquial microorganism names are provided in these languages.
When used inside selecting or filtering, this returns a character vector of column names, with additional class "ab_selector". When used individually, this returns an 'ab' vector with all possible antimicrobial that the function would be able to select or filter.
+
When used inside selecting or filtering, this returns a character vector of column names, with additional class "ab_selector". When used individually, this returns an 'ab' vector with all possible antimicrobials that the function would be able to select or filter.
Details
@@ -199,6 +201,7 @@ In short, if you have a column name that resembles an antimicrobial drug, it wil
nitrofurans() can select: furazidin (FUR), furazolidone (FRZ), nifurtoinol (NFR), nitrofurantoin (NIT), and nitrofurazone (NIZ)
oxazolidinones() can select: cadazolid (CDZ), cycloserine (CYC), linezolid (LNZ), tedizolid (TZD), and thiacetazone (THA)
For the antibiotics data set: a tibble with 485 observations and 14 variables:
+
For the antibiotics data set: a tibble with 486 observations and 14 variables:
ab Antibiotic ID as used in this package (such as AMC), using the official EARS-Net (European Antimicrobial Resistance Surveillance Network) codes where available. This is a unique identifier.
cid Compound ID as found in PubChem. This is a unique identifier.
@@ -134,7 +134,7 @@
Examples
antibiotics
-#># A tibble: 485 × 14
+#># A tibble: 486 × 14#> ab cid name group atc atc_group1 atc_group2 abbreviations synonyms#><ab><dbl><chr><chr><lis><chr><chr><list><named >#> 1 AMA 4649 4-ami… Anti… <chr> Drugs for… Aminosali… <chr [1]><chr>
@@ -147,7 +147,7 @@
#> 8 AMX 33613 Amoxi… Beta… <chr> Beta-lact… Penicilli… <chr [3]><chr>#> 9 AMC 23665637 Amoxi… Beta… <chr> Beta-lact… Combinati… <chr [5]><chr>#>10 AXS 465441 Amoxi… Beta… <chr>NANA<chr [1]><chr>
-#># ℹ 475 more rows
+#># ℹ 476 more rows#># ℹ 5 more variables: oral_ddd <dbl>, oral_units <chr>, iv_ddd <dbl>,#># iv_units <chr>, loinc <list>antivirals
diff --git a/reference/as.ab.html b/reference/as.ab.html
index e4751db0e..b8cb8dee6 100644
--- a/reference/as.ab.html
+++ b/reference/as.ab.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/as.av.html b/reference/as.av.html
index d25c35ecf..5024a029c 100644
--- a/reference/as.av.html
+++ b/reference/as.av.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/as.disk.html b/reference/as.disk.html
index 8946150e4..f003d2ffe 100644
--- a/reference/as.disk.html
+++ b/reference/as.disk.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/as.mic.html b/reference/as.mic.html
index 9ea2d65ba..19ef2a509 100644
--- a/reference/as.mic.html
+++ b/reference/as.mic.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/as.mo.html b/reference/as.mo.html
index 59362fe38..3bd5a6d00 100644
--- a/reference/as.mo.html
+++ b/reference/as.mo.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/as.sir.html b/reference/as.sir.html
index 7fa050880..27996fb28 100644
--- a/reference/as.sir.html
+++ b/reference/as.sir.html
@@ -21,7 +21,7 @@ All breakpoints used for interpretation are available in our clinical_breakpoint
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
@@ -786,16 +786,16 @@ A microorganism is categorised as "Resistant" when there is a high likelihood of
#># A tibble: 57 × 16#> datetime index ab_given mo_given host_given ab mo #>*<dttm><int><chr><chr><chr><ab><mo>
-#> 1 2024-12-20 10:00:38 4 AMX B_STRPT… human AMX B_STRPT_PNMN
-#> 2 2024-12-20 10:00:46 4 genta Escheri… human GEN B_[ORD]_ENTRBCTR
-#> 3 2024-12-20 10:00:46 4 genta Escheri… human GEN B_[ORD]_ENTRBCTR
-#> 4 2024-12-20 10:00:47 4 genta Escheri… cattle GEN B_ESCHR_COLI
-#> 5 2024-12-20 10:00:47 4 genta Escheri… cattle GEN B_ESCHR_COLI
-#> 6 2024-12-20 10:00:38 3 AMX B_STRPT… human AMX B_STRPT_PNMN
-#> 7 2024-12-20 10:00:46 3 tobra Escheri… human TOB B_[ORD]_ENTRBCTR
-#> 8 2024-12-20 10:00:46 3 tobra Escheri… human TOB B_[ORD]_ENTRBCTR
-#> 9 2024-12-20 10:00:47 3 tobra Escheri… horses TOB B_ESCHR_COLI
-#>10 2024-12-20 10:00:47 3 tobra Escheri… horses TOB B_ESCHR_COLI
+#> 1 2025-01-15 15:22:23 4 AMX B_STRPT… human AMX B_STRPT_PNMN
+#> 2 2025-01-15 15:22:31 4 genta Escheri… human GEN B_[ORD]_ENTRBCTR
+#> 3 2025-01-15 15:22:31 4 genta Escheri… human GEN B_[ORD]_ENTRBCTR
+#> 4 2025-01-15 15:22:32 4 genta Escheri… cattle GEN B_ESCHR_COLI
+#> 5 2025-01-15 15:22:32 4 genta Escheri… cattle GEN B_ESCHR_COLI
+#> 6 2025-01-15 15:22:23 3 AMX B_STRPT… human AMX B_STRPT_PNMN
+#> 7 2025-01-15 15:22:31 3 tobra Escheri… human TOB B_[ORD]_ENTRBCTR
+#> 8 2025-01-15 15:22:31 3 tobra Escheri… human TOB B_[ORD]_ENTRBCTR
+#> 9 2025-01-15 15:22:32 3 tobra Escheri… horses TOB B_ESCHR_COLI
+#>10 2025-01-15 15:22:32 3 tobra Escheri… horses TOB B_ESCHR_COLI #># ℹ 47 more rows#># ℹ 9 more variables: host <chr>, method <chr>, input <dbl>, outcome <sir>,#># notes <chr>, guideline <chr>, ref_table <chr>, uti <lgl>,
diff --git a/reference/atc_online.html b/reference/atc_online.html
index 49e80dd55..c33238a2c 100644
--- a/reference/atc_online.html
+++ b/reference/atc_online.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/av_from_text.html b/reference/av_from_text.html
index a9f06523e..2e3e3ae45 100644
--- a/reference/av_from_text.html
+++ b/reference/av_from_text.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/av_property.html b/reference/av_property.html
index cd7b47b84..ee83c6ccf 100644
--- a/reference/av_property.html
+++ b/reference/av_property.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/availability.html b/reference/availability.html
index 0b11168ef..b851c1952 100644
--- a/reference/availability.html
+++ b/reference/availability.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/bug_drug_combinations.html b/reference/bug_drug_combinations.html
index 443dc6896..9bb8e6deb 100644
--- a/reference/bug_drug_combinations.html
+++ b/reference/bug_drug_combinations.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
@@ -182,12 +182,12 @@
#> 2"" Gent… " 13… " 2.0% … "100.0% (39/… " 10.3% (6/58)"" 0.0% (0/30)"#> 3"" Kana… "100… """100.0% (39/… """100.0% (30/30…#> 4"" Tobr… " 78… " 2.6% … "100.0% (39/… " 10.3% (6/58)"" 0.0% (0/30)"
-#> 5"Ampheni… Chlo… """""""""100.0% (30/30…
-#> 6"Antimyc… Rifa… """100.0% … """100.0% (58/58… "100.0% (30/30…
-#> 7"Beta-la… Amox… " 93… " 50.0% … """100.0% (58/58… "100.0% (30/30…
-#> 8"" Amox… " 42… " 13.1% … """ 10.3% (6/58)""100.0% (30/30…
-#> 9"" Ampi… " 93… " 50.0% … """100.0% (58/58… "100.0% (30/30…
-#>10"" Benz… " 77… "100.0% … """100.0% (58/58… "100.0% (30/30…
+#> 5"Antimyc… Rifa… """100.0% … """100.0% (58/58… "100.0% (30/30…
+#> 6"Beta-la… Amox… " 93… " 50.0% … """100.0% (58/58… "100.0% (30/30…
+#> 7"" Amox… " 42… " 13.1% … """ 10.3% (6/58)""100.0% (30/30…
+#> 8"" Ampi… " 93… " 50.0% … """100.0% (58/58… "100.0% (30/30…
+#> 9"" Benz… " 77… "100.0% … """100.0% (58/58… "100.0% (30/30…
+#>10"" Fluc… " 42… """"""""#># ℹ 29 more rows#># ℹ 5 more variables: `P. mirabilis` <chr>, `S. aureus` <chr>,#># `S. epidermidis` <chr>, `S. hominis` <chr>, `S. pneumoniae` <chr>
diff --git a/reference/clinical_breakpoints.html b/reference/clinical_breakpoints.html
index acd974e01..627a59bcd 100644
--- a/reference/clinical_breakpoints.html
+++ b/reference/clinical_breakpoints.html
@@ -21,7 +21,7 @@ Use as.sir() to transform MICs or disks measurements to SIR values.">AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/count.html b/reference/count.html
index 5f44a00b2..126d85005 100644
--- a/reference/count.html
+++ b/reference/count.html
@@ -9,7 +9,7 @@ count_resistant() should be used to count resistant isolates, count_susceptible(
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/custom_eucast_rules.html b/reference/custom_eucast_rules.html
index 0db00a51e..d6e9bd873 100644
--- a/reference/custom_eucast_rules.html
+++ b/reference/custom_eucast_rules.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
@@ -135,7 +135,7 @@
#>#> 1. If TZP is "R" then set to "R":#> amoxicillin (AMX), ampicillin (AMP), azlocillin (AZL), mezlocillin (MEZ), piperacillin (PIP), piperacillin/tazobactam (TZP)
-
These 31 antibiotic groups are allowed in the rules (case-insensitive) and can be used in any combination:
clinical_breakpoints
diff --git a/reference/intrinsic_resistant.html b/reference/intrinsic_resistant.html
index c4188430e..503814233 100644
--- a/reference/intrinsic_resistant.html
+++ b/reference/intrinsic_resistant.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/italicise_taxonomy.html b/reference/italicise_taxonomy.html
index bf979302b..1ed2cd716 100644
--- a/reference/italicise_taxonomy.html
+++ b/reference/italicise_taxonomy.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/join.html b/reference/join.html
index 4a7e5cac1..fec487760 100644
--- a/reference/join.html
+++ b/reference/join.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/key_antimicrobials.html b/reference/key_antimicrobials.html
index d9a967b70..7e4bba493 100644
--- a/reference/key_antimicrobials.html
+++ b/reference/key_antimicrobials.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/kurtosis.html b/reference/kurtosis.html
index a51fa7ec1..95985d83d 100644
--- a/reference/kurtosis.html
+++ b/reference/kurtosis.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/like.html b/reference/like.html
index 9f8b49615..e246361b8 100644
--- a/reference/like.html
+++ b/reference/like.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/mdro.html b/reference/mdro.html
index ba0e7f5f2..b96f56d0a 100644
--- a/reference/mdro.html
+++ b/reference/mdro.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/mean_amr_distance.html b/reference/mean_amr_distance.html
index 2d17da8e2..714ca28c4 100644
--- a/reference/mean_amr_distance.html
+++ b/reference/mean_amr_distance.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/microorganisms.codes.html b/reference/microorganisms.codes.html
index 240cf39df..930d544e6 100644
--- a/reference/microorganisms.codes.html
+++ b/reference/microorganisms.codes.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/microorganisms.groups.html b/reference/microorganisms.groups.html
index 8e2ec732b..3c1990a0c 100644
--- a/reference/microorganisms.groups.html
+++ b/reference/microorganisms.groups.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/microorganisms.html b/reference/microorganisms.html
index 5943b4101..196231798 100644
--- a/reference/microorganisms.html
+++ b/reference/microorganisms.html
@@ -9,7 +9,7 @@ This data set is carefully crafted, yet made 100% reproducible from public and a
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/mo_matching_score.html b/reference/mo_matching_score.html
index fe1006976..12deb7490 100644
--- a/reference/mo_matching_score.html
+++ b/reference/mo_matching_score.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/mo_property.html b/reference/mo_property.html
index e80739b00..0f83ce4dd 100644
--- a/reference/mo_property.html
+++ b/reference/mo_property.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/mo_source.html b/reference/mo_source.html
index c069fcc1a..9b0b09f04 100644
--- a/reference/mo_source.html
+++ b/reference/mo_source.html
@@ -9,7 +9,7 @@ This is the fastest way to have your organisation (or analysis) specific codes p
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/pca.html b/reference/pca.html
index c034b48ce..a09eb035c 100644
--- a/reference/pca.html
+++ b/reference/pca.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/phenicols.html b/reference/phenicols.html
new file mode 100644
index 000000000..07f8b21e2
--- /dev/null
+++ b/reference/phenicols.html
@@ -0,0 +1,8 @@
+
+
+
+
+
+
+
+
diff --git a/reference/plot.html b/reference/plot.html
index a6c2061c6..5e4e8f530 100644
--- a/reference/plot.html
+++ b/reference/plot.html
@@ -9,7 +9,7 @@ Especially the scale_*_mic() functions are relevant wrappers to plot MIC values
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/proportion.html b/reference/proportion.html
index 9d62af627..f4b5fd8b3 100644
--- a/reference/proportion.html
+++ b/reference/proportion.html
@@ -9,7 +9,7 @@ resistance() should be used to calculate resistance, susceptibility() should be
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/random.html b/reference/random.html
index 0a63b34bf..0c6650dd5 100644
--- a/reference/random.html
+++ b/reference/random.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/resistance_predict-1.png b/reference/resistance_predict-1.png
index cb55074a9..7b444dec8 100644
Binary files a/reference/resistance_predict-1.png and b/reference/resistance_predict-1.png differ
diff --git a/reference/resistance_predict-2.png b/reference/resistance_predict-2.png
index 725c36de1..5fb769723 100644
Binary files a/reference/resistance_predict-2.png and b/reference/resistance_predict-2.png differ
diff --git a/reference/resistance_predict-3.png b/reference/resistance_predict-3.png
index f3817b578..ae63d27c4 100644
Binary files a/reference/resistance_predict-3.png and b/reference/resistance_predict-3.png differ
diff --git a/reference/resistance_predict-4.png b/reference/resistance_predict-4.png
index 90b97c14e..8cd50cb57 100644
Binary files a/reference/resistance_predict-4.png and b/reference/resistance_predict-4.png differ
diff --git a/reference/resistance_predict.html b/reference/resistance_predict.html
index 47942a9db..dee1ce94a 100644
--- a/reference/resistance_predict.html
+++ b/reference/resistance_predict.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/skewness.html b/reference/skewness.html
index 820687069..c446df3f0 100644
--- a/reference/skewness.html
+++ b/reference/skewness.html
@@ -9,7 +9,7 @@ When negative ('left-skewed'): the left tail is longer; the mass of the distribu
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/reference/translate.html b/reference/translate.html
index 762b7f2e1..64c3f3dab 100644
--- a/reference/translate.html
+++ b/reference/translate.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9122
+ 2.1.1.9123
diff --git a/search.json b/search.json
index 29c0176df..63b5f40ab 100644
--- a/search.json
+++ b/search.json
@@ -1 +1 @@
-[{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"How to conduct AMR data analysis","text":"Conducting AMR data analysis unfortunately requires -depth knowledge different scientific fields, makes hard right. least, requires: Good questions (always start !) reliable data thorough understanding (clinical) epidemiology, understand clinical epidemiological relevance possible bias results thorough understanding (clinical) microbiology/infectious diseases, understand microorganisms causal infections implications pharmaceutical treatment, well understanding intrinsic acquired microbial resistance Experience data analysis microbiological tests results, understand determination limitations MIC values interpretations SIR values Availability biological taxonomy microorganisms probably normalisation factors pharmaceuticals, defined daily doses (DDD) Available (inter-)national guidelines, profound methods apply course, instantly provide knowledge experience. AMR package, aimed providing (1) tools simplify antimicrobial resistance data cleaning, transformation analysis, (2) methods easily incorporate international guidelines (3) scientifically reliable reference data, including requirements mentioned . AMR package enables standardised reproducible AMR data analysis, application evidence-based rules, determination first isolates, translation various codes microorganisms antimicrobial agents, determination (multi-drug) resistant microorganisms, calculation antimicrobial resistance, prevalence future trends.","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"preparation","dir":"Articles","previous_headings":"","what":"Preparation","title":"How to conduct AMR data analysis","text":"tutorial, create fake demonstration data work . can skip Cleaning data already data ready. start analysis, try make structure data generally look like :","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"needed-r-packages","dir":"Articles","previous_headings":"Preparation","what":"Needed R packages","title":"How to conduct AMR data analysis","text":"many uses R, need additional packages AMR data analysis. package works closely together tidyverse packages dplyr ggplot2 RStudio. tidyverse tremendously improves way conduct data science - allows natural way writing syntaxes creating beautiful plots R. also use cleaner package, can used cleaning data creating frequency tables. Error get(paste0(generic, “.”, class), envir = get_method_env()) : object ‘type_sum.accel’ found AMR package contains data set example_isolates_unclean, might look data users extracted laboratory systems: AMR data analysis, like microorganism column contain valid, --date taxonomy, antibiotic columns cleaned SIR values well.","code":"library(dplyr) library(ggplot2) library(AMR) # (if not yet installed, install with:) # install.packages(c(\"dplyr\", \"ggplot2\", \"AMR\")) example_isolates_unclean #> # A tibble: 3,000 × 8 #> patient_id hospital date bacteria AMX AMC CIP GEN #> #> 1 J3 A 2012-11-21 E. coli R I S S #> 2 R7 A 2018-04-03 K. pneumoniae R I S S #> 3 P3 A 2014-09-19 E. coli R S S S #> 4 P10 A 2015-12-10 E. coli S I S S #> 5 B7 A 2015-03-02 E. coli S S S S #> 6 W3 A 2018-03-31 S. aureus R S R S #> 7 J8 A 2016-06-14 E. coli R S S S #> 8 M3 A 2015-10-25 E. coli R S S S #> 9 J3 A 2019-06-19 E. coli S S S S #> 10 G6 A 2015-04-27 S. aureus S S S S #> # ℹ 2,990 more rows # we will use 'our_data' as the data set name for this tutorial our_data <- example_isolates_unclean"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"taxonomy-of-microorganisms","dir":"Articles","previous_headings":"Preparation","what":"Taxonomy of microorganisms","title":"How to conduct AMR data analysis","text":".mo(), users can transform arbitrary microorganism names codes current taxonomy. AMR package contains --date taxonomic data. specific, currently included data retrieved 24 Jun 2024. codes AMR packages come .mo() short, still human readable. importantly, .mo() supports kinds input: first character codes denote taxonomic kingdom, Bacteria (B), Fungi (F), Protozoa (P). AMR package also contain functions directly retrieve taxonomic properties, name, genus, species, family, order, even Gram-stain. start mo_ use .mo() internally, still arbitrary user input can used: Now can thus clean data: Apparently, uncertainty translation taxonomic codes. Let’s check : ’s good.","code":"as.mo(\"Klebsiella pneumoniae\") #> Class 'mo' #> [1] B_KLBSL_PNMN as.mo(\"K. pneumoniae\") #> Class 'mo' #> [1] B_KLBSL_PNMN as.mo(\"KLEPNE\") #> Class 'mo' #> [1] B_KLBSL_PNMN as.mo(\"KLPN\") #> Class 'mo' #> [1] B_KLBSL_PNMN mo_family(\"K. pneumoniae\") #> [1] \"Enterobacteriaceae\" mo_genus(\"K. pneumoniae\") #> [1] \"Klebsiella\" mo_species(\"K. pneumoniae\") #> [1] \"pneumoniae\" mo_gramstain(\"Klebsiella pneumoniae\") #> [1] \"Gram-negative\" mo_ref(\"K. pneumoniae\") #> [1] \"Trevisan, 1887\" mo_snomed(\"K. pneumoniae\") #> [[1]] #> [1] \"1098101000112102\" \"446870005\" \"1098201000112108\" \"409801009\" #> [5] \"56415008\" \"714315002\" \"713926009\" our_data$bacteria <- as.mo(our_data$bacteria, info = TRUE) #> ℹ Microorganism translation was uncertain for four microorganisms. Run #> mo_uncertainties() to review these uncertainties, or use #> add_custom_microorganisms() to add custom entries. mo_uncertainties() #> Matching scores are based on the resemblance between the input and the full #> taxonomic name, and the pathogenicity in humans. See ?mo_matching_score. #> #> -------------------------------------------------------------------------------- #> \"E. coli\" -> Escherichia coli (B_ESCHR_COLI, 0.688) #> Also matched: Enterococcus crotali (0.650), Escherichia coli coli #> (0.643), Escherichia coli expressing (0.611), Enterobacter cowanii #> (0.600), Enterococcus columbae (0.595), Enterococcus camelliae (0.591), #> Enterococcus casseliflavus (0.577), Enterobacter cloacae cloacae #> (0.571), Enterobacter cloacae complex (0.571), and Enterobacter cloacae #> dissolvens (0.565) #> -------------------------------------------------------------------------------- #> \"K. pneumoniae\" -> Klebsiella pneumoniae (B_KLBSL_PNMN, 0.786) #> Also matched: Klebsiella pneumoniae ozaenae (0.707), Klebsiella #> pneumoniae pneumoniae (0.688), Klebsiella pneumoniae rhinoscleromatis #> (0.658), Klebsiella pasteurii (0.500), Klebsiella planticola (0.500), #> Kingella potus (0.400), Kluyveromyces pseudotropicale (0.386), #> Kluyveromyces pseudotropicalis (0.363), Kosakonia pseudosacchari #> (0.361), and Kluyveromyces pseudotropicalis pseudotropicalis (0.361) #> -------------------------------------------------------------------------------- #> \"S. aureus\" -> Staphylococcus aureus (B_STPHY_AURS, 0.690) #> Also matched: Staphylococcus aureus aureus (0.643), Staphylococcus #> argenteus (0.625), Staphylococcus aureus anaerobius (0.625), #> Staphylococcus auricularis (0.615), Salmonella Aurelianis (0.595), #> Salmonella Aarhus (0.588), Salmonella Amounderness (0.587), #> Staphylococcus argensis (0.587), Streptococcus australis (0.587), and #> Salmonella choleraesuis arizonae (0.562) #> -------------------------------------------------------------------------------- #> \"S. pneumoniae\" -> Streptococcus pneumoniae (B_STRPT_PNMN, 0.750) #> Also matched: Streptococcus pseudopneumoniae (0.700), Streptococcus #> phocae salmonis (0.552), Serratia proteamaculans quinovora (0.545), #> Streptococcus pseudoporcinus (0.536), Staphylococcus piscifermentans #> (0.533), Staphylococcus pseudintermedius (0.532), Serratia #> proteamaculans proteamaculans (0.526), Streptococcus gallolyticus #> pasteurianus (0.526), Salmonella Portanigra (0.524), and Streptococcus #> periodonticum (0.519) #> #> Only the first 10 other matches of each record are shown. Run #> print(mo_uncertainties(), n = ...) to view more entries, or save #> mo_uncertainties() to an object."},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"antibiotic-results","dir":"Articles","previous_headings":"Preparation","what":"Antibiotic results","title":"How to conduct AMR data analysis","text":"column antibiotic test results must also cleaned. AMR package comes three new data types work test results: mic minimal inhibitory concentrations (MIC), disk disk diffusion diameters, sir SIR data interpreted already. package can also determine SIR values based MIC disk diffusion values, read .sir() page. now, just clean SIR columns data using dplyr: basically cleaning, time start data inclusion.","code":"# method 1, be explicit about the columns: our_data <- our_data %>% mutate_at(vars(AMX:GEN), as.sir) # method 2, let the AMR package determine the eligible columns our_data <- our_data %>% mutate_if(is_sir_eligible, as.sir) # result: our_data #> # A tibble: 3,000 × 8 #> patient_id hospital date bacteria AMX AMC CIP GEN #> #> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S #> 2 R7 A 2018-04-03 B_KLBSL_PNMN R I S S #> 3 P3 A 2014-09-19 B_ESCHR_COLI R S S S #> 4 P10 A 2015-12-10 B_ESCHR_COLI S I S S #> 5 B7 A 2015-03-02 B_ESCHR_COLI S S S S #> 6 W3 A 2018-03-31 B_STPHY_AURS R S R S #> 7 J8 A 2016-06-14 B_ESCHR_COLI R S S S #> 8 M3 A 2015-10-25 B_ESCHR_COLI R S S S #> 9 J3 A 2019-06-19 B_ESCHR_COLI S S S S #> 10 G6 A 2015-04-27 B_STPHY_AURS S S S S #> # ℹ 2,990 more rows"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"first-isolates","dir":"Articles","previous_headings":"Preparation","what":"First isolates","title":"How to conduct AMR data analysis","text":"need know isolates can actually use analysis without repetition bias. conduct analysis antimicrobial resistance, must include first isolate every patient per episode (Hindler et al., Clin Infect Dis. 2007). , easily get overestimate underestimate resistance antibiotic. Imagine patient admitted MRSA found 5 different blood cultures following weeks (yes, countries like Netherlands blood drawing policies). resistance percentage oxacillin isolates overestimated, included MRSA . clearly selection bias. Clinical Laboratory Standards Institute (CLSI) appoints follows: (…) preparing cumulative antibiogram guide clinical decisions empirical antimicrobial therapy initial infections, first isolate given species per patient, per analysis period (eg, one year) included, irrespective body site, antimicrobial susceptibility profile, phenotypical characteristics (eg, biotype). first isolate easily identified, cumulative antimicrobial susceptibility test data prepared using first isolate generally comparable cumulative antimicrobial susceptibility test data calculated methods, providing duplicate isolates excluded. M39-A4 Analysis Presentation Cumulative Antimicrobial Susceptibility Test Data, 4th Edition. CLSI, 2014. Chapter 6.4 AMR package includes methodology first_isolate() function able apply four different methods defined Hindler et al. 2007: phenotype-based, episode-based, patient-based, isolate-based. right method depends goals analysis, default phenotype-based method case method properly correct duplicate isolates. Read methods first_isolate() page. outcome function can easily added data: 91% suitable resistance analysis! can now filter filter() function, also dplyr package: future use, two syntaxes can shortened: end 2 724 isolates analysis. Now data looks like: Time analysis.","code":"our_data <- our_data %>% mutate(first = first_isolate(info = TRUE)) #> ℹ Determining first isolates using an episode length of 365 days #> ℹ Using column 'bacteria' as input for col_mo. #> ℹ Using column 'date' as input for col_date. #> ℹ Using column 'patient_id' as input for col_patient_id. #> ℹ Basing inclusion on all antimicrobial results, using a points threshold #> of 2 #> => Found 2,724 'phenotype-based' first isolates (90.8% of total where a #> microbial ID was available) our_data_1st <- our_data %>% filter(first == TRUE) our_data_1st <- our_data %>% filter_first_isolate() our_data_1st #> # A tibble: 2,724 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S TRUE #> 2 R7 A 2018-04-03 B_KLBSL_PNMN R I S S TRUE #> 3 P3 A 2014-09-19 B_ESCHR_COLI R S S S TRUE #> 4 P10 A 2015-12-10 B_ESCHR_COLI S I S S TRUE #> 5 B7 A 2015-03-02 B_ESCHR_COLI S S S S TRUE #> 6 W3 A 2018-03-31 B_STPHY_AURS R S R S TRUE #> 7 M3 A 2015-10-25 B_ESCHR_COLI R S S S TRUE #> 8 J3 A 2019-06-19 B_ESCHR_COLI S S S S TRUE #> 9 G6 A 2015-04-27 B_STPHY_AURS S S S S TRUE #> 10 P4 A 2011-06-21 B_ESCHR_COLI S S S S TRUE #> # ℹ 2,714 more rows"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"analysing-the-data","dir":"Articles","previous_headings":"","what":"Analysing the data","title":"How to conduct AMR data analysis","text":"base R summary() function gives good first impression, comes support new mo sir classes now data set:","code":"summary(our_data_1st) #> patient_id hospital date #> Length:2724 Length:2724 Min. :2011-01-01 #> Class :character Class :character 1st Qu.:2013-04-07 #> Mode :character Mode :character Median :2015-06-03 #> Mean :2015-06-09 #> 3rd Qu.:2017-08-11 #> Max. :2019-12-27 #> bacteria AMX AMC #> Class :mo Class:sir Class:sir #> :0 %S :41.6% (n=1133) %S :52.6% (n=1432) #> Unique:4 %SDD : 0.0% (n=0) %SDD : 0.0% (n=0) #> #1 :B_ESCHR_COLI %I :16.4% (n=446) %I :12.2% (n=333) #> #2 :B_STPHY_AURS %R :42.0% (n=1145) %R :35.2% (n=959) #> #3 :B_STRPT_PNMN %NI : 0.0% (n=0) %NI : 0.0% (n=0) #> CIP GEN first #> Class:sir Class:sir Mode:logical #> %S :52.5% (n=1431) %S :61.0% (n=1661) TRUE:2724 #> %SDD : 0.0% (n=0) %SDD : 0.0% (n=0) #> %I : 6.5% (n=176) %I : 3.0% (n=82) #> %R :41.0% (n=1117) %R :36.0% (n=981) #> %NI : 0.0% (n=0) %NI : 0.0% (n=0) glimpse(our_data_1st) #> Rows: 2,724 #> Columns: 9 #> $ patient_id \"J3\", \"R7\", \"P3\", \"P10\", \"B7\", \"W3\", \"M3\", \"J3\", \"G6\", \"P4\"… #> $ hospital \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\",… #> $ date 2012-11-21, 2018-04-03, 2014-09-19, 2015-12-10, 2015-03-02… #> $ bacteria \"B_ESCHR_COLI\", \"B_KLBSL_PNMN\", \"B_ESCHR_COLI\", \"B_ESCHR_COL… #> $ AMX R, R, R, S, S, R, R, S, S, S, S, R, S, S, R, R, R, R, S, R,… #> $ AMC I, I, S, I, S, S, S, S, S, S, S, S, S, S, S, S, S, R, S, S,… #> $ CIP S, S, S, S, S, R, S, S, S, S, S, S, S, S, S, S, S, S, S, S,… #> $ GEN S, S, S, S, S, S, S, S, S, S, S, R, S, S, S, S, S, S, S, S,… #> $ first TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,… # number of unique values per column: sapply(our_data_1st, n_distinct) #> patient_id hospital date bacteria AMX AMC CIP #> 260 3 1854 4 3 3 3 #> GEN first #> 3 1"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"availability-of-species","dir":"Articles","previous_headings":"Analysing the data","what":"Availability of species","title":"How to conduct AMR data analysis","text":"just get idea species distributed, create frequency table count() based name microorganisms:","code":"our_data %>% count(mo_name(bacteria), sort = TRUE) #> # A tibble: 4 × 2 #> `mo_name(bacteria)` n #> #> 1 Escherichia coli 1518 #> 2 Staphylococcus aureus 730 #> 3 Streptococcus pneumoniae 426 #> 4 Klebsiella pneumoniae 326 our_data_1st %>% count(mo_name(bacteria), sort = TRUE) #> # A tibble: 4 × 2 #> `mo_name(bacteria)` n #> #> 1 Escherichia coli 1321 #> 2 Staphylococcus aureus 682 #> 3 Streptococcus pneumoniae 402 #> 4 Klebsiella pneumoniae 319"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"select-and-filter-with-antibiotic-selectors","dir":"Articles","previous_headings":"Analysing the data","what":"Select and filter with antibiotic selectors","title":"How to conduct AMR data analysis","text":"Using -called antibiotic class selectors, can select filter columns based antibiotic class antibiotic results :","code":"our_data_1st %>% select(date, aminoglycosides()) #> ℹ For aminoglycosides() using column 'GEN' (gentamicin) #> # A tibble: 2,724 × 2 #> date GEN #> #> 1 2012-11-21 S #> 2 2018-04-03 S #> 3 2014-09-19 S #> 4 2015-12-10 S #> 5 2015-03-02 S #> 6 2018-03-31 S #> 7 2015-10-25 S #> 8 2019-06-19 S #> 9 2015-04-27 S #> 10 2011-06-21 S #> # ℹ 2,714 more rows our_data_1st %>% select(bacteria, betalactams()) #> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC' #> (amoxicillin/clavulanic acid) #> # A tibble: 2,724 × 3 #> bacteria AMX AMC #> #> 1 B_ESCHR_COLI R I #> 2 B_KLBSL_PNMN R I #> 3 B_ESCHR_COLI R S #> 4 B_ESCHR_COLI S I #> 5 B_ESCHR_COLI S S #> 6 B_STPHY_AURS R S #> 7 B_ESCHR_COLI R S #> 8 B_ESCHR_COLI S S #> 9 B_STPHY_AURS S S #> 10 B_ESCHR_COLI S S #> # ℹ 2,714 more rows our_data_1st %>% select(bacteria, where(is.sir)) #> # A tibble: 2,724 × 5 #> bacteria AMX AMC CIP GEN #> #> 1 B_ESCHR_COLI R I S S #> 2 B_KLBSL_PNMN R I S S #> 3 B_ESCHR_COLI R S S S #> 4 B_ESCHR_COLI S I S S #> 5 B_ESCHR_COLI S S S S #> 6 B_STPHY_AURS R S R S #> 7 B_ESCHR_COLI R S S S #> 8 B_ESCHR_COLI S S S S #> 9 B_STPHY_AURS S S S S #> 10 B_ESCHR_COLI S S S S #> # ℹ 2,714 more rows # filtering using AB selectors is also possible: our_data_1st %>% filter(any(aminoglycosides() == \"R\")) #> ℹ For aminoglycosides() using column 'GEN' (gentamicin) #> # A tibble: 981 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 J5 A 2017-12-25 B_STRPT_PNMN R S S R TRUE #> 2 X1 A 2017-07-04 B_STPHY_AURS R S S R TRUE #> 3 B3 A 2016-07-24 B_ESCHR_COLI S S S R TRUE #> 4 V7 A 2012-04-03 B_ESCHR_COLI S S S R TRUE #> 5 C9 A 2017-03-23 B_ESCHR_COLI S S S R TRUE #> 6 R1 A 2018-06-10 B_STPHY_AURS S S S R TRUE #> 7 S2 A 2013-07-19 B_STRPT_PNMN S S S R TRUE #> 8 P5 A 2019-03-09 B_STPHY_AURS S S S R TRUE #> 9 Q8 A 2019-08-10 B_STPHY_AURS S S S R TRUE #> 10 K5 A 2013-03-15 B_STRPT_PNMN S S S R TRUE #> # ℹ 971 more rows our_data_1st %>% filter(all(betalactams() == \"R\")) #> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC' #> (amoxicillin/clavulanic acid) #> # A tibble: 462 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE #> 2 R10 A 2013-12-20 B_STPHY_AURS R R S S TRUE #> 3 R7 A 2015-10-25 B_STPHY_AURS R R S S TRUE #> 4 R8 A 2019-10-25 B_STPHY_AURS R R S S TRUE #> 5 B6 A 2016-11-20 B_ESCHR_COLI R R R R TRUE #> 6 I7 A 2015-08-19 B_ESCHR_COLI R R S S TRUE #> 7 N3 A 2014-12-29 B_STRPT_PNMN R R R S TRUE #> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE #> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE #> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE #> # ℹ 452 more rows # even works in base R (since R 3.0): our_data_1st[all(betalactams() == \"R\"), ] #> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC' #> (amoxicillin/clavulanic acid) #> # A tibble: 462 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE #> 2 R10 A 2013-12-20 B_STPHY_AURS R R S S TRUE #> 3 R7 A 2015-10-25 B_STPHY_AURS R R S S TRUE #> 4 R8 A 2019-10-25 B_STPHY_AURS R R S S TRUE #> 5 B6 A 2016-11-20 B_ESCHR_COLI R R R R TRUE #> 6 I7 A 2015-08-19 B_ESCHR_COLI R R S S TRUE #> 7 N3 A 2014-12-29 B_STRPT_PNMN R R R S TRUE #> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE #> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE #> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE #> # ℹ 452 more rows"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"generate-antibiograms","dir":"Articles","previous_headings":"Analysing the data","what":"Generate antibiograms","title":"How to conduct AMR data analysis","text":"Since AMR v2.0 (March 2023), easy create different types antibiograms, support 20 different languages. four antibiogram types, proposed Klinker et al. (2021, DOI 10.1177/20499361211011373), supported new antibiogram() function: Traditional Antibiogram (TA) e.g, susceptibility Pseudomonas aeruginosa piperacillin/tazobactam (TZP) Combination Antibiogram (CA) e.g, sdditional susceptibility Pseudomonas aeruginosa TZP + tobramycin versus TZP alone Syndromic Antibiogram (SA) e.g, susceptibility Pseudomonas aeruginosa TZP among respiratory specimens (obtained among ICU patients ) Weighted-Incidence Syndromic Combination Antibiogram (WISCA) e.g, susceptibility Pseudomonas aeruginosa TZP among respiratory specimens (obtained among ICU patients ) male patients age >=65 years heart failure section, show use antibiogram() function create antibiogram types. starters, included example_isolates data set looks like:","code":"example_isolates #> # A tibble: 2,000 × 46 #> date patient age gender ward mo PEN OXA FLC AMX #> #> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA #> # ℹ 1,990 more rows #> # ℹ 36 more variables: AMC , AMP , TZP , CZO , FEP , #> # CXM , FOX , CTX , CAZ , CRO , GEN , #> # TOB , AMK , KAN , TMP , SXT , NIT , #> # FOS , LNZ , CIP , MFX , VAN , TEC , #> # TCY , TGC , DOX , ERY , CLI , AZM , #> # IPM , MEM