1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-08 10:31:53 +02:00

(v1.4.0.9008) like variations

This commit is contained in:
2020-10-26 12:23:03 +01:00
parent f720c9ba0b
commit 760d69a3e0
64 changed files with 919 additions and 582 deletions

View File

@ -39,7 +39,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.4.0</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.4.0.9008</span>
</span>
</div>
@ -187,7 +187,8 @@
</header><script src="resistance_predict_files/header-attrs-2.3/header-attrs.js"></script><script src="resistance_predict_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row">
</header><script src="resistance_predict_files/accessible-code-block-0.0.1/empty-anchor.js"></script><link href="resistance_predict_files/anchor-sections-1.0/anchor-sections.css" rel="stylesheet">
<script src="resistance_predict_files/anchor-sections-1.0/anchor-sections.js"></script><div class="row">
<div class="col-md-9 contents">
<div class="page-header toc-ignore">
<h1 data-toc-skip>How to predict antimicrobial resistance</h1>
@ -206,13 +207,12 @@
<p>As with many uses in R, we need some additional packages for AMR analysis. Our package works closely together with the <a href="https://www.tidyverse.org">tidyverse packages</a> <a href="https://dplyr.tidyverse.org/"><code>dplyr</code></a> and <a href="https://ggplot2.tidyverse.org"><code>ggplot2</code></a> by Dr Hadley Wickham. The tidyverse tremendously improves the way we conduct data science - it allows for a very natural way of writing syntaxes and creating beautiful plots in R.</p>
<p>Our <code>AMR</code> package depends on these packages and even extends their use and functions.</p>
<div class="sourceCode" id="cb1"><pre class="downlit">
<span class="fu"><a href="https://rdrr.io/r/base/library.html">library</a></span>(<span class="kw"><a href="https://dplyr.tidyverse.org">dplyr</a></span>)
<span class="fu"><a href="https://rdrr.io/r/base/library.html">library</a></span>(<span class="kw"><a href="http://ggplot2.tidyverse.org">ggplot2</a></span>)
<span class="fu"><a href="https://rdrr.io/r/base/library.html">library</a></span>(<span class="kw"><a href="https://msberends.github.io/AMR">AMR</a></span>)
<span class="kw"><a href="https://rdrr.io/r/base/library.html">library</a></span><span class="op">(</span><span class="va"><a href="https://dplyr.tidyverse.org">dplyr</a></span><span class="op">)</span>
<span class="kw"><a href="https://rdrr.io/r/base/library.html">library</a></span><span class="op">(</span><span class="va"><a href="http://ggplot2.tidyverse.org">ggplot2</a></span><span class="op">)</span>
<span class="kw"><a href="https://rdrr.io/r/base/library.html">library</a></span><span class="op">(</span><span class="va"><a href="https://msberends.github.io/AMR/">AMR</a></span><span class="op">)</span>
<span class="co"># (if not yet installed, install with:)</span>
<span class="co"># install.packages(c("tidyverse", "AMR"))</span>
</pre></div>
<span class="co"># install.packages(c("tidyverse", "AMR"))</span></pre></div>
</div>
<div id="prediction-analysis" class="section level2">
<h2 class="hasAnchor">
@ -236,7 +236,7 @@
<pre><code># NOTE: Using column `date` as input for `col_date`.</code></pre>
<p>This text is only a printed summary - the actual result (output) of the function is a <code>data.frame</code> containing for each year: the number of observations, the actual observed resistance, the estimated resistance and the standard error below and above the estimation:</p>
<div class="sourceCode" id="cb4"><pre class="downlit">
<span class="kw">predict_TZP</span>
<span class="va">predict_TZP</span>
<span class="co"># year value se_min se_max observations observed estimated</span>
<span class="co"># 1 2002 0.20000000 NA NA 15 0.20000000 0.05616378</span>
<span class="co"># 2 2003 0.06250000 NA NA 32 0.06250000 0.06163839</span>
@ -266,36 +266,31 @@
<span class="co"># 26 2027 0.41315710 0.3244399 0.5018743 NA NA 0.41315710</span>
<span class="co"># 27 2028 0.43730688 0.3418075 0.5328063 NA NA 0.43730688</span>
<span class="co"># 28 2029 0.46175755 0.3597639 0.5637512 NA NA 0.46175755</span>
<span class="co"># 29 2030 0.48639359 0.3782932 0.5944939 NA NA 0.48639359</span>
</pre></div>
<span class="co"># 29 2030 0.48639359 0.3782932 0.5944939 NA NA 0.48639359</span></pre></div>
<p>The function <code>plot</code> is available in base R, and can be extended by other packages to depend the output based on the type of input. We extended its function to cope with resistance predictions:</p>
<div class="sourceCode" id="cb5"><pre class="downlit">
<span class="fu"><a href="../reference/plot.html">plot</a></span>(<span class="kw">predict_TZP</span>)
</pre></div>
<span class="fu"><a href="../reference/plot.html">plot</a></span><span class="op">(</span><span class="va">predict_TZP</span><span class="op">)</span></pre></div>
<p><img src="resistance_predict_files/figure-html/unnamed-chunk-4-1.png" width="720"></p>
<p>This is the fastest way to plot the result. It automatically adds the right axes, error bars, titles, number of available observations and type of model.</p>
<p>We also support the <code>ggplot2</code> package with our custom function <code><a href="../reference/resistance_predict.html">ggplot_rsi_predict()</a></code> to create more appealing plots:</p>
<div class="sourceCode" id="cb6"><pre class="downlit">
<span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span>(<span class="kw">predict_TZP</span>)
</pre></div>
<span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span><span class="op">(</span><span class="va">predict_TZP</span><span class="op">)</span></pre></div>
<p><img src="resistance_predict_files/figure-html/unnamed-chunk-5-1.png" width="720"></p>
<div class="sourceCode" id="cb7"><pre class="downlit">
<span class="co"># choose for error bars instead of a ribbon</span>
<span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span>(<span class="kw">predict_TZP</span>, ribbon = <span class="fl">FALSE</span>)
</pre></div>
<span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span><span class="op">(</span><span class="va">predict_TZP</span>, ribbon <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></pre></div>
<p><img src="resistance_predict_files/figure-html/unnamed-chunk-5-2.png" width="720"></p>
<div id="choosing-the-right-model" class="section level3">
<h3 class="hasAnchor">
<a href="#choosing-the-right-model" class="anchor"></a>Choosing the right model</h3>
<p>Resistance is not easily predicted; if we look at vancomycin resistance in Gram-positive bacteria, the spread (i.e. standard error) is enormous:</p>
<div class="sourceCode" id="cb8"><pre class="downlit">
<span class="kw">example_isolates</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="https://dplyr.tidyverse.org/reference/filter.html">filter</a></span>(<span class="fu"><a href="../reference/mo_property.html">mo_gramstain</a></span>(<span class="kw">mo</span>, language = <span class="kw">NULL</span>) <span class="op">==</span> <span class="st">"Gram-positive"</span>) <span class="op">%&gt;%</span>
<span class="fu"><a href="../reference/resistance_predict.html">resistance_predict</a></span>(col_ab = <span class="st">"VAN"</span>, year_min = <span class="fl">2010</span>, info = <span class="fl">FALSE</span>, model = <span class="st">"binomial"</span>) <span class="op">%&gt;%</span>
<span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span>()
<span class="co"># NOTE: Using column `date` as input for `col_date`.</span>
</pre></div>
<span class="va">example_isolates</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="https://dplyr.tidyverse.org/reference/filter.html">filter</a></span><span class="op">(</span><span class="fu"><a href="../reference/mo_property.html">mo_gramstain</a></span><span class="op">(</span><span class="va">mo</span>, language <span class="op">=</span> <span class="cn">NULL</span><span class="op">)</span> <span class="op">==</span> <span class="st">"Gram-positive"</span><span class="op">)</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="../reference/resistance_predict.html">resistance_predict</a></span><span class="op">(</span>col_ab <span class="op">=</span> <span class="st">"VAN"</span>, year_min <span class="op">=</span> <span class="fl">2010</span>, info <span class="op">=</span> <span class="cn">FALSE</span>, model <span class="op">=</span> <span class="st">"binomial"</span><span class="op">)</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span><span class="op">(</span><span class="op">)</span>
<span class="co"># NOTE: Using column `date` as input for `col_date`.</span></pre></div>
<p><img src="resistance_predict_files/figure-html/unnamed-chunk-6-1.png" width="720"></p>
<p>Vancomycin resistance could be 100% in ten years, but might also stay around 0%.</p>
<p>You can define the model with the <code>model</code> parameter. The model chosen above is a generalised linear regression model using a binomial distribution, assuming that a period of zero resistance was followed by a period of increasing resistance leading slowly to more and more resistance.</p>
@ -337,28 +332,26 @@
</table>
<p>For the vancomycin resistance in Gram-positive bacteria, a linear model might be more appropriate since no binomial distribution is to be expected based on the observed years:</p>
<div class="sourceCode" id="cb9"><pre class="downlit">
<span class="kw">example_isolates</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="https://dplyr.tidyverse.org/reference/filter.html">filter</a></span>(<span class="fu"><a href="../reference/mo_property.html">mo_gramstain</a></span>(<span class="kw">mo</span>, language = <span class="kw">NULL</span>) <span class="op">==</span> <span class="st">"Gram-positive"</span>) <span class="op">%&gt;%</span>
<span class="fu"><a href="../reference/resistance_predict.html">resistance_predict</a></span>(col_ab = <span class="st">"VAN"</span>, year_min = <span class="fl">2010</span>, info = <span class="fl">FALSE</span>, model = <span class="st">"linear"</span>) <span class="op">%&gt;%</span>
<span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span>()
<span class="co"># NOTE: Using column `date` as input for `col_date`.</span>
</pre></div>
<span class="va">example_isolates</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="https://dplyr.tidyverse.org/reference/filter.html">filter</a></span><span class="op">(</span><span class="fu"><a href="../reference/mo_property.html">mo_gramstain</a></span><span class="op">(</span><span class="va">mo</span>, language <span class="op">=</span> <span class="cn">NULL</span><span class="op">)</span> <span class="op">==</span> <span class="st">"Gram-positive"</span><span class="op">)</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="../reference/resistance_predict.html">resistance_predict</a></span><span class="op">(</span>col_ab <span class="op">=</span> <span class="st">"VAN"</span>, year_min <span class="op">=</span> <span class="fl">2010</span>, info <span class="op">=</span> <span class="cn">FALSE</span>, model <span class="op">=</span> <span class="st">"linear"</span><span class="op">)</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span><span class="op">(</span><span class="op">)</span>
<span class="co"># NOTE: Using column `date` as input for `col_date`.</span></pre></div>
<p><img src="resistance_predict_files/figure-html/unnamed-chunk-7-1.png" width="720"></p>
<p>This seems more likely, doesnt it?</p>
<p>The model itself is also available from the object, as an <code>attribute</code>:</p>
<div class="sourceCode" id="cb10"><pre class="downlit">
<span class="kw">model</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/attributes.html">attributes</a></span>(<span class="kw">predict_TZP</span>)<span class="op">$</span><span class="kw">model</span>
<span class="va">model</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/attributes.html">attributes</a></span><span class="op">(</span><span class="va">predict_TZP</span><span class="op">)</span><span class="op">$</span><span class="va">model</span>
<span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span>(<span class="kw">model</span>)<span class="op">$</span><span class="kw">family</span>
<span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">model</span><span class="op">)</span><span class="op">$</span><span class="va">family</span>
<span class="co"># </span>
<span class="co"># Family: binomial </span>
<span class="co"># Link function: logit</span>
<span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span>(<span class="kw">model</span>)<span class="op">$</span><span class="kw">coefficients</span>
<span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">model</span><span class="op">)</span><span class="op">$</span><span class="va">coefficients</span>
<span class="co"># Estimate Std. Error z value Pr(&gt;|z|)</span>
<span class="co"># (Intercept) -200.67944891 46.17315349 -4.346237 1.384932e-05</span>
<span class="co"># year 0.09883005 0.02295317 4.305725 1.664395e-05</span>
</pre></div>
<span class="co"># year 0.09883005 0.02295317 4.305725 1.664395e-05</span></pre></div>
</div>
</div>
</div>
@ -378,7 +371,7 @@
</div>
<div class="pkgdown">
<p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.5.1.9000.</p>
<p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
</div>
</footer>