1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-13 13:31:37 +01:00

added vanA to vanE positive Enterococci

This commit is contained in:
dr. M.S. (Matthijs) Berends 2018-09-05 09:49:19 +02:00
parent b388e3fee7
commit 790bd1622d
8 changed files with 9 additions and 9 deletions

View File

@ -23,7 +23,7 @@
* Introduction to AMR as a vignette
#### Changed
* Added 226 microorganisms to the `microorganisms` data set and removed the few viruses it contained, now *n* = 2,664 (2,225 bacteria, 285 fungi/yeasts, 153 parasites, 1 other)
* Added 231 microorganisms to the `microorganisms` data set and removed the few viruses it contained, now *n* = 2,669 (2,230 bacteria, 285 fungi/yeasts, 153 parasites, 1 other)
* Added three antimicrobial agents to the `antibiotics` data set: Terbinafine (D01BA02), Rifaximin (A07AA11) and Isoconazole (D01AC05)
* Added 163 trade names to the `antibiotics` data set, it now contains 298 different trade names in total, e.g.:
```r

View File

@ -122,8 +122,8 @@
#' Data set with human pathogenic microorganisms
#'
#' A data set containing 2,664 (potential) human pathogenic microorganisms. MO codes can be looked up using \code{\link{guess_mo}}.
#' @format A \code{\link{tibble}} with 2,664 observations and 16 variables:
#' A data set containing 2,669 (potential) human pathogenic microorganisms. MO codes can be looked up using \code{\link{guess_mo}}.
#' @format A \code{\link{tibble}} with 2,669 observations and 16 variables:
#' \describe{
#' \item{\code{mo}}{ID of microorganism}
#' \item{\code{bactsys}}{Bactsyscode of microorganism}
@ -158,7 +158,7 @@
#' Translation table for UMCG with ~1,100 microorganisms
#'
#' A data set containing all bacteria codes of UMCG MMB. These codes can be joined to data with an ID from \code{\link{microorganisms}$mo} (using \code{\link{left_join_microorganisms}}). GLIMS codes can also be translated to valid \code{MO}s with \code{\link{guess_mo}}.
#' @format A \code{\link{tibble}} with 1,090 observations and 2 variables:
#' @format A \code{\link{tibble}} with 1,095 observations and 2 variables:
#' \describe{
#' \item{\code{umcg}}{Code of microorganism according to UMCG MMB}
#' \item{\code{mo}}{Code of microorganism in \code{\link{microorganisms}}}

View File

@ -44,7 +44,7 @@ This `AMR` package basically does four important things:
1. It **cleanses existing data**, by transforming it to reproducible and profound *classes*, making the most efficient use of R. These functions all use artificial intelligence to guess results that you would expect:
* Use `as.mo` to get an ID of a microorganism. The IDs are quite obvious - the ID of *E. coli* is "ESCCOL" and the ID of *S. aureus* is "STAAUR". The function takes almost any text as input that looks like the name or code of a microorganism like "E. coli", "esco" and "esccol". Even `as.mo("MRSA")` will return the ID of *S. aureus*. Moreover, it can group all coagulase negative and positive *Staphylococci*, and can transform *Streptococci* into Lancefield groups. To find bacteria based on your input, this package contains a freely available database of ~2,650 different (potential) human pathogenic microorganisms.
* Use `as.mo` to get an ID of a microorganism. The IDs are quite obvious - the ID of *E. coli* is "ESCCOL" and the ID of *S. aureus* is "STAAUR". The function takes almost any text as input that looks like the name or code of a microorganism like "E. coli", "esco" and "esccol". Even `as.mo("MRSA")` will return the ID of *S. aureus*. Moreover, it can group all coagulase negative and positive *Staphylococci*, and can transform *Streptococci* into Lancefield groups. To find bacteria based on your input, this package contains a freely available database of almost 3,000 different (potential) human pathogenic microorganisms.
* Use `as.rsi` to transform values to valid antimicrobial results. It produces just S, I or R based on your input and warns about invalid values. Even values like "<=0.002; S" (combined MIC/RSI) will result in "S".
* Use `as.mic` to cleanse your MIC values. It produces a so-called factor (called *ordinal* in SPSS) with valid MIC values as levels. A value like "<=0.002; S" (combined MIC/RSI) will result in "<=0.002".
* Use `as.atc` to get the ATC code of an antibiotic as defined by the WHO. This package contains a database with most LIS codes, official names, DDDs and even trade names of antibiotics. For example, the values "Furabid", "Furadantin", "nitro" all return the ATC code of Nitrofurantoine.

Binary file not shown.

Binary file not shown.

View File

@ -4,7 +4,7 @@
\name{microorganisms}
\alias{microorganisms}
\title{Data set with human pathogenic microorganisms}
\format{A \code{\link{tibble}} with 2,664 observations and 16 variables:
\format{A \code{\link{tibble}} with 2,669 observations and 16 variables:
\describe{
\item{\code{mo}}{ID of microorganism}
\item{\code{bactsys}}{Bactsyscode of microorganism}
@ -27,7 +27,7 @@
microorganisms
}
\description{
A data set containing 2,664 (potential) human pathogenic microorganisms. MO codes can be looked up using \code{\link{guess_mo}}.
A data set containing 2,669 (potential) human pathogenic microorganisms. MO codes can be looked up using \code{\link{guess_mo}}.
}
\seealso{
\code{\link{guess_mo}} \code{\link{antibiotics}} \code{\link{microorganisms.umcg}}

View File

@ -4,7 +4,7 @@
\name{microorganisms.umcg}
\alias{microorganisms.umcg}
\title{Translation table for UMCG with ~1,100 microorganisms}
\format{A \code{\link{tibble}} with 1,090 observations and 2 variables:
\format{A \code{\link{tibble}} with 1,095 observations and 2 variables:
\describe{
\item{\code{umcg}}{Code of microorganism according to UMCG MMB}
\item{\code{mo}}{Code of microorganism in \code{\link{microorganisms}}}

View File

@ -23,7 +23,7 @@ This `AMR` package basically does four important things:
1. It **cleanses existing data**, by transforming it to reproducible and profound *classes*, making the most efficient use of R. These functions all use artificial intelligence to guess results that you would expect:
* Use `as.mo` to get an ID of a microorganism. The IDs are quite obvious - the ID of *E. coli* is "ESCCOL" and the ID of *S. aureus* is "STAAUR". The function takes almost any text as input that looks like the name or code of a microorganism like "E. coli", "esco" and "esccol". Even `as.mo("MRSA")` will return the ID of *S. aureus*. Moreover, it can group all coagulase negative and positive *Staphylococci*, and can transform *Streptococci* into Lancefield groups. To find bacteria based on your input, this package contains a freely available database of ~2,650 different (potential) human pathogenic microorganisms.
* Use `as.mo` to get an ID of a microorganism. The IDs are quite obvious - the ID of *E. coli* is "ESCCOL" and the ID of *S. aureus* is "STAAUR". The function takes almost any text as input that looks like the name or code of a microorganism like "E. coli", "esco" and "esccol". Even `as.mo("MRSA")` will return the ID of *S. aureus*. Moreover, it can group all coagulase negative and positive *Staphylococci*, and can transform *Streptococci* into Lancefield groups. To find bacteria based on your input, this package contains a freely available database of almost 3,000 different (potential) human pathogenic microorganisms.
* Use `as.rsi` to transform values to valid antimicrobial results. It produces just S, I or R based on your input and warns about invalid values. Even values like "<=0.002; S" (combined MIC/RSI) will result in "S".
* Use `as.mic` to cleanse your MIC values. It produces a so-called factor (called *ordinal* in SPSS) with valid MIC values as levels. A value like "<=0.002; S" (combined MIC/RSI) will result in "<=0.002".
* Use `as.atc` to get the ATC code of an antibiotic as defined by the WHO. This package contains a database with most LIS codes, official names, DDDs and even trade names of antibiotics. For example, the values "Furabid", "Furadantin", "nitro" all return the ATC code of Nitrofurantoine.