1
0
mirror of https://github.com/msberends/AMR.git synced 2024-12-25 17:26:12 +01:00

extend vctrs support

This commit is contained in:
dr. M.S. (Matthijs) Berends 2022-10-31 11:19:06 +01:00
parent 9444ed6d1d
commit 796b972f8a
6 changed files with 145 additions and 29 deletions

View File

@ -1,6 +1,6 @@
Package: AMR
Version: 1.8.2.9039
Date: 2022-10-30
Version: 1.8.2.9040
Date: 2022-10-31
Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by

21
NEWS.md
View File

@ -1,4 +1,4 @@
# AMR 1.8.2.9039
# AMR 1.8.2.9040
This version will eventually become v2.0! We're happy to reach a new major milestone soon!
@ -15,32 +15,35 @@ This version will eventually become v2.0! We're happy to reach a new major miles
### New
* EUCAST 2022 and CLSI 2022 guidelines have been added for `as.rsi()`. EUCAST 2022 is now the new default guideline for all MIC and disks diffusion interpretations.
* Support for the following languages: Chinese, Greek, Japanese, Polish, Turkish and Ukrainian. We are very grateful for the valuable input by our colleagues from other countries. The `AMR` package is now available in 16 languages. The automatic language determination will give a note at start-up on systems in supported languages.
* All new algorithm for `as.mo()` (and thus all `mo_*()` functions) while still following our original set-up as described in our paper (DOI 10.18637/jss.v104.i03).
* A new argument `keep_synonyms` allows to *not* correct for updated taxonomy, in favour of the now deleted argument `allow_uncertain`
* It has increased tremendously in speed and returns generally more consequent results
* Sequential coercion is now extremely fast as results are stored to the package environment, although coercion of unknown values must be run once per session. Previous results can be reset/removed with the new `mo_reset_session()` function.
* Support for microorganism codes of the ASIan Antimicrobial Resistance Surveillance Network (ASIARS-Net)
* New functions!
* Function `rsi_confidence_interval()` to add confidence intervals in AMR calculation. This is also included in `rsi_df()` and `proportion_df()`
* Function `mean_amr_distance()` to calculate the mean AMR distance. The mean AMR distance is a normalised numeric value to compare AMR test results and can help to identify similar isolates, without comparing antibiograms by hand.
* Function `rsi_interpretation_history()` to view the history of previous runs of `as.rsi()`. This returns a 'logbook' with the selected guideline, reference table and specific interpretation of each row in a data set on which `as.rsi()` was run.
* Function `mo_current()` to get the currently valid taxonomic name of a microorganism
* Function `add_custom_antimicrobials()` to add custom antimicrobial codes and names to the `AMR` package
* Support for `data.frame`-enhancing R packages, more specifically: `data.table::data.table`, `janitor::tabyl`, `tibble::tibble`, and `tsibble::tsibble`. AMR package functions that have a data set as output (such as `rsi_df()` and `bug_drug_combinations()`), will now return the same data type as the input.
* All data sets in this package are now exported as `tibble`, instead of base R `data.frame`s. Older R versions are still supported.
* Support for the following languages: Chinese, Greek, Japanese, Polish, Turkish and Ukrainian. We are very grateful for the valuable input by our colleagues from other countries. The `AMR` package is now available in 16 languages. The automatic language determination will give a note at start-up on systems in supported languages.
* Our data sets are now also continually exported to Apache Feather and Apache Parquet formats. You can find more info [in this article on our website](https://msberends.github.io/AMR/articles/datasets.html).
* Support for using antibiotic selectors in scoped `dplyr` verbs (with or without `vars()`), such as in: `... %>% summarise_at(aminoglycosides(), resistance)`, see `resistance()`
* Support for antimicrobial interpretation of anaerobic bacteria, by adding a 'placeholder' code `B_ANAER` to the `microorganisms` data set and add the breakpoints of anaerobics to the `rsi_interpretation` data set, which is used by `as.rsi()` when interpreting MIC and disk diffusion values
* New and updated entries for the `antibiotics` data set
* The following 20 antibiotics have been added (also includes the [new J01RA ATC group](https://www.whocc.no/atc_ddd_index/?code=J01RA&showdescription=no)): azithromycin/fluconazole/secnidazole (AFC), cefepime/amikacin (CFA), cefixime/ornidazole (CEO), ceftriaxone/beta-lactamase inhibitor (CEB), ciprofloxacin/metronidazole (CIM), ciprofloxacin/ornidazole (CIO), ciprofloxacin/tinidazole (CIT), furazidin (FUR), isoniazid/sulfamethoxazole/trimethoprim/pyridoxine (IST), lascufloxacin (LSC), levofloxacin/ornidazole (LEO), nemonoxacin (NEM), norfloxacin/metronidazole (NME), norfloxacin/tinidazole (NTI), ofloxacin/ornidazole (OOR), oteseconazole (OTE), rifampicin/ethambutol/isoniazid (REI), sarecycline (SRC), tetracycline/oleandomycin (TOL), and thioacetazone (TAT)
* Added some missing ATC codes
* Updated DDDs and PubChem Compound IDs
* Updated some antibiotic name spelling, now used by WHOCC (such as cephalexin -> cefalexin, and phenethicillin -> pheneticillin)
* Antibiotic code "CEI" for ceftolozane/tazobactam has been replaced with "CZT" to comply with EARS-Net and WHONET 2022. The old code will still work in all cases when using `as.ab()` or any of the `ab_*()` functions.
* Support for antimicrobial interpretation of anaerobic bacteria, by adding a 'placeholder' code `B_ANAER` to the `microorganisms` data set and add the breakpoints of anaerobics to the `rsi_interpretation` data set, which is used by `as.rsi()` when interpreting MIC and disk diffusion values
* Support for `data.frame`-enhancing R packages, more specifically: `data.table::data.table`, `janitor::tabyl`, `tibble::tibble`, and `tsibble::tsibble`. AMR package functions that have a data set as output (such as `rsi_df()` and `bug_drug_combinations()`), will now return the same data type as the input.
* All data sets in this package are now exported as `tibble`, instead of base R `data.frame`s. Older R versions are still supported.
* Our data sets are now also continually exported to Apache Feather and Apache Parquet formats. You can find more info [in this article on our website](https://msberends.github.io/AMR/articles/datasets.html).
* Support for using antibiotic selectors in scoped `dplyr` verbs (with or without `vars()`), such as in: `... %>% summarise_at(aminoglycosides(), resistance)`, see `resistance()`
### Changed
* Fix for using `as.rsi()` on certain EUCAST breakpoints for MIC values
* Fix for using `as.rsi()` on `NA` values (e.g. `as.rsi(as.disk(NA), ...)`)
* Fix for using `as.rsi()` on drug-drug combinations with multiple breakpoints for different body sites
* Fix for using `as.rsi()` on bug-drug combinations with multiple breakpoints for different body sites
* Removed `as.integer()` for MIC values, since MIC are not integer values and running `table()` on MIC values consequently failed for not being able to retrieve the level position (as that's how normally `as.integer()` on `factor`s work)
* `droplevels()` on MIC will now return a common `factor` at default and will lose the `mic` class. Use `droplevels(..., as.mic = TRUE)` to keep the `mic` class.
* Small fix for using `ab_from_text()`
@ -48,7 +51,7 @@ This version will eventually become v2.0! We're happy to reach a new major miles
* Using any `random_*()` function (such as `random_mic()`) is now possible by directly calling the package without loading it first: `AMR::random_mic(10)`
* Added *Toxoplasma gondii* (`P_TXPL_GOND`) to the `microorganisms` data set, together with its genus, family, and order
* Changed value in column `prevalence` of the `microorganisms` data set from 3 to 2 for these genera: *Acholeplasma*, *Alistipes*, *Alloprevotella*, *Bergeyella*, *Borrelia*, *Brachyspira*, *Butyricimonas*, *Cetobacterium*, *Chlamydia*, *Chlamydophila*, *Deinococcus*, *Dysgonomonas*, *Elizabethkingia*, *Empedobacter*, *Haloarcula*, *Halobacterium*, *Halococcus*, *Myroides*, *Odoribacter*, *Ornithobacterium*, *Parabacteroides*, *Pedobacter*, *Phocaeicola*, *Porphyromonas*, *Riemerella*, *Sphingobacterium*, *Streptobacillus*, *Tenacibaculum*, *Terrimonas*, *Victivallis*, *Wautersiella*, *Weeksella*
* Fix for using the form `df[carbapenems() == "R", ]` when using the latest `vctrs` package
* Extended support for the `vctrs` package, used internally by the tidyverse. This allows to change values of class `mic`, `disk`, `rsi`, `mo` and `ab` in tibbles, and to use antibiotic selectors for selecting/filtering, e.g. `df[carbapenems() == "R", ]`
* Fix for using `info = FALSE` in `mdro()`
* For all interpretation guidelines using `as.rsi()` on amoxicillin, the rules for ampicillin will be used if amoxicillin rules are not available
* Fix for using `ab_atc()` on non-existing ATC codes

View File

@ -64,7 +64,10 @@ vec_ptype2.ab.character <- function(x, y, ...) {
y
}
vec_cast.character.ab <- function(x, to, ...) {
unclass(x)
as.character(x)
}
vec_cast.ab.character <- function(x, to, ...) {
return_after_integrity_check(x, "antimicrobial code", as.character(AMR_env$AB_lookup$ab))
}
# S3: mo
@ -75,7 +78,10 @@ vec_ptype2.mo.character <- function(x, y, ...) {
y
}
vec_cast.character.mo <- function(x, to, ...) {
unclass(x)
as.character(x)
}
vec_cast.mo.character <- function(x, to, ...) {
return_after_integrity_check(x, "microorganism code", as.character(AMR::microorganisms$mo))
}
# S3: disk
@ -88,15 +94,49 @@ vec_ptype2.disk.integer <- function(x, y, ...) {
vec_cast.integer.disk <- function(x, to, ...) {
unclass(x)
}
vec_cast.disk.integer <- function(x, to, ...) {
as.disk(x)
}
vec_cast.double.disk <- function(x, to, ...) {
unclass(x)
}
vec_cast.disk.double <- function(x, to, ...) {
as.disk(x)
}
vec_cast.character.disk <- function(x, to, ...) {
unclass(x)
}
vec_cast.disk.character <- function(x, to, ...) {
as.disk(x)
}
# S3: mic
vec_cast.character.mic <- function(x, to, ...) {
as.character(x)
}
vec_cast.double.mic <- function(x, to, ...) {
# this calls as.double.mic()
as.double(x)
}
vec_cast.mic.double <- function(x, to, ...) {
as.mic(x)
}
vec_cast.mic.character <- function(x, to, ...) {
as.mic(x)
}
vec_math.mic <- function(.fn, x, ...) {
.fn(as.double(x), ...)
}
# S3: rsi
vec_ptype2.character.rsi <- function(x, y, ...) {
x
}
vec_ptype2.rsi.character <- function(x, y, ...) {
y
}
vec_cast.character.rsi <- function(x, to, ...) {
as.character(x)
}
vec_cast.rsi.character <- function(x, to, ...) {
as.rsi(x)
}

38
R/zzz.R
View File

@ -116,24 +116,44 @@ if (utf8_supported && !is_latex) {
s3_register("ggplot2::fortify", "mic")
s3_register("ggplot2::fortify", "disk")
# Support vctrs package for use in e.g. dplyr verbs
s3_register("vctrs::vec_ptype2", "ab.character")
s3_register("vctrs::vec_ptype2", "character.ab")
s3_register("vctrs::vec_cast", "character.ab")
s3_register("vctrs::vec_ptype2", "mo.character")
s3_register("vctrs::vec_ptype2", "character.mo")
s3_register("vctrs::vec_cast", "character.mo")
s3_register("vctrs::vec_ptype2", "ab_selector.character")
# S3: ab_selector
s3_register("vctrs::vec_ptype2", "character.ab_selector")
s3_register("vctrs::vec_ptype2", "ab_selector.character")
s3_register("vctrs::vec_cast", "character.ab_selector")
s3_register("vctrs::vec_ptype2", "ab_selector_any_all.logical")
# S3: ab_selector_any_all
s3_register("vctrs::vec_ptype2", "logical.ab_selector_any_all")
s3_register("vctrs::vec_ptype2", "ab_selector_any_all.logical")
s3_register("vctrs::vec_cast", "logical.ab_selector_any_all")
s3_register("vctrs::vec_ptype2", "disk.integer")
# S3: ab
s3_register("vctrs::vec_ptype2", "character.ab")
s3_register("vctrs::vec_ptype2", "ab.character")
s3_register("vctrs::vec_cast", "character.ab")
s3_register("vctrs::vec_cast", "ab.character")
# S3: mo
s3_register("vctrs::vec_ptype2", "character.mo")
s3_register("vctrs::vec_ptype2", "mo.character")
s3_register("vctrs::vec_cast", "character.mo")
s3_register("vctrs::vec_cast", "mo.character")
# S3: disk
s3_register("vctrs::vec_ptype2", "integer.disk")
s3_register("vctrs::vec_ptype2", "disk.integer")
s3_register("vctrs::vec_cast", "integer.disk")
s3_register("vctrs::vec_cast", "disk.integer")
s3_register("vctrs::vec_cast", "double.disk")
s3_register("vctrs::vec_cast", "disk.double")
s3_register("vctrs::vec_cast", "character.disk")
s3_register("vctrs::vec_cast", "disk.character")
# S3: mic
s3_register("vctrs::vec_cast", "character.mic")
s3_register("vctrs::vec_cast", "double.mic")
s3_register("vctrs::vec_cast", "mic.character")
s3_register("vctrs::vec_cast", "mic.double")
s3_register("vctrs::vec_math", "mic")
# S3: rsi
s3_register("vctrs::vec_ptype2", "character.rsi")
s3_register("vctrs::vec_ptype2", "rsi.character")
s3_register("vctrs::vec_cast", "character.rsi")
s3_register("vctrs::vec_cast", "rsi.character")
# if mo source exists, fire it up (see mo_source())
if (tryCatch(file.exists(getOption("AMR_mo_source", "~/mo_source.rds")), error = function(e) FALSE)) {

Binary file not shown.

53
inst/tinytest/test-vctrs.R Executable file
View File

@ -0,0 +1,53 @@
# ==================================================================== #
# TITLE #
# AMR: An R Package for Working with Antimicrobial Resistance Data #
# #
# SOURCE #
# https://github.com/msberends/AMR #
# #
# CITE AS #
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
# Data. Journal of Statistical Software, 104(3), 1-31. #
# doi:10.18637/jss.v104.i03 #
# #
# Developed at the University of Groningen, the Netherlands, in #
# collaboration with non-profit organisations Certe Medical #
# Diagnostics & Advice, and University Medical Center Groningen. #
# #
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
# #
# Visit our website for the full manual and a complete tutorial about #
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
# ==================================================================== #
# extra tests for {vctrs} pkg support
if (pkg_is_available("dplyr", also_load = FALSE)) {
test <- dplyr::tibble(ab = as.ab("CIP"),
mo = as.mo("Escherichia coli"),
mic = as.mic(2),
disk = as.disk(20),
rsi = as.rsi("S"))
check1 <- lapply(test, class)
test[1, "ab"] <- "GEN"
test[1, "mo"] <- "B_KLBSL_PNMN"
test[1, "mic"] <- ">=32"
test[1, "mic"] <- 32
test[1, "disk"] <- "35"
test[1, "disk"] <- 25
test[1, "disk"] <- 26L
test[1, "rsi"] <- "R"
check2 <- lapply(test, class)
expect_identical(check1, check2)
test <- dplyr::tibble(cipro = as.rsi("S"),
variable = "test")
expect_equal(nrow(test[quinolones() == "S", ]), 1)
expect_equal(nrow(test[quinolones() == "R", ]), 0)
}