mirror of
https://github.com/msberends/AMR.git
synced 2025-01-30 23:44:39 +01:00
fixes
This commit is contained in:
parent
ee38689172
commit
79c8415d3e
@ -387,9 +387,9 @@ export(set_AMR_locale)
|
|||||||
export(set_ab_names)
|
export(set_ab_names)
|
||||||
export(set_mo_source)
|
export(set_mo_source)
|
||||||
export(sir_confidence_interval)
|
export(sir_confidence_interval)
|
||||||
|
export(sir_df)
|
||||||
export(sir_interpretation_history)
|
export(sir_interpretation_history)
|
||||||
export(sir_predict)
|
export(sir_predict)
|
||||||
export(sir_sf)
|
|
||||||
export(skewness)
|
export(skewness)
|
||||||
export(streptogramins)
|
export(streptogramins)
|
||||||
export(susceptibility)
|
export(susceptibility)
|
||||||
|
@ -37,7 +37,7 @@
|
|||||||
#' @param FUN the function to call on the `mo` column to transform the microorganism codes, defaults to [mo_shortname()]
|
#' @param FUN the function to call on the `mo` column to transform the microorganism codes, defaults to [mo_shortname()]
|
||||||
#' @param translate_ab a [character] of length 1 containing column names of the [antibiotics] data set
|
#' @param translate_ab a [character] of length 1 containing column names of the [antibiotics] data set
|
||||||
#' @param ... arguments passed on to `FUN`
|
#' @param ... arguments passed on to `FUN`
|
||||||
#' @inheritParams sir_sf
|
#' @inheritParams sir_df
|
||||||
#' @inheritParams base::formatC
|
#' @inheritParams base::formatC
|
||||||
#' @details The function [format()] calculates the resistance per bug-drug combination. Use `combine_SI = TRUE` (default) to test R vs. S+I and `combine_SI = FALSE` to test R+I vs. S.
|
#' @details The function [format()] calculates the resistance per bug-drug combination. Use `combine_SI = TRUE` (default) to test R vs. S+I and `combine_SI = FALSE` to test R+I vs. S.
|
||||||
#' @export
|
#' @export
|
||||||
|
@ -41,7 +41,7 @@
|
|||||||
#'
|
#'
|
||||||
#' The function [n_sir()] is an alias of [count_all()]. They can be used to count all available isolates, i.e. where all input antibiotics have an available result (S, I or R). Their use is equal to `n_distinct()`. Their function is equal to `count_susceptible(...) + count_resistant(...)`.
|
#' The function [n_sir()] is an alias of [count_all()]. They can be used to count all available isolates, i.e. where all input antibiotics have an available result (S, I or R). Their use is equal to `n_distinct()`. Their function is equal to `count_susceptible(...) + count_resistant(...)`.
|
||||||
#'
|
#'
|
||||||
#' The function [count_df()] takes any variable from `data` that has an [`sir`] class (created with [as.sir()]) and counts the number of S's, I's and R's. It also supports grouped variables. The function [sir_sf()] works exactly like [count_df()], but adds the percentage of S, I and R.
|
#' The function [count_df()] takes any variable from `data` that has an [`sir`] class (created with [as.sir()]) and counts the number of S's, I's and R's. It also supports grouped variables. The function [sir_df()] works exactly like [count_df()], but adds the percentage of S, I and R.
|
||||||
#' @inheritSection proportion Combination Therapy
|
#' @inheritSection proportion Combination Therapy
|
||||||
#' @seealso [`proportion_*`][proportion] to calculate microbial resistance and susceptibility.
|
#' @seealso [`proportion_*`][proportion] to calculate microbial resistance and susceptibility.
|
||||||
#' @return An [integer]
|
#' @return An [integer]
|
||||||
|
@ -53,7 +53,7 @@
|
|||||||
#' @details At default, the names of antibiotics will be shown on the plots using [ab_name()]. This can be set with the `translate_ab` argument. See [count_df()].
|
#' @details At default, the names of antibiotics will be shown on the plots using [ab_name()]. This can be set with the `translate_ab` argument. See [count_df()].
|
||||||
#'
|
#'
|
||||||
#' ### The Functions
|
#' ### The Functions
|
||||||
#' [geom_sir()] will take any variable from the data that has an [`sir`] class (created with [as.sir()]) using [sir_sf()] and will plot bars with the percentage S, I, and R. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis.
|
#' [geom_sir()] will take any variable from the data that has an [`sir`] class (created with [as.sir()]) using [sir_df()] and will plot bars with the percentage S, I, and R. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis.
|
||||||
#'
|
#'
|
||||||
#' [facet_sir()] creates 2d plots (at default based on S/I/R) using [ggplot2::facet_wrap()].
|
#' [facet_sir()] creates 2d plots (at default based on S/I/R) using [ggplot2::facet_wrap()].
|
||||||
#'
|
#'
|
||||||
@ -340,7 +340,7 @@ geom_sir <- function(position = NULL,
|
|||||||
|
|
||||||
ggplot2::geom_col(
|
ggplot2::geom_col(
|
||||||
data = function(x) {
|
data = function(x) {
|
||||||
sir_sf(
|
sir_df(
|
||||||
data = x,
|
data = x,
|
||||||
translate_ab = translate_ab,
|
translate_ab = translate_ab,
|
||||||
language = language,
|
language = language,
|
||||||
@ -521,7 +521,7 @@ labels_sir_count <- function(position = NULL,
|
|||||||
colour = datalabels.colour,
|
colour = datalabels.colour,
|
||||||
lineheight = 0.75,
|
lineheight = 0.75,
|
||||||
data = function(x) {
|
data = function(x) {
|
||||||
transformed <- sir_sf(
|
transformed <- sir_df(
|
||||||
data = x,
|
data = x,
|
||||||
translate_ab = translate_ab,
|
translate_ab = translate_ab,
|
||||||
combine_SI = combine_SI,
|
combine_SI = combine_SI,
|
||||||
|
@ -53,7 +53,7 @@
|
|||||||
#'
|
#'
|
||||||
#' These functions are not meant to count isolates, but to calculate the proportion of resistance/susceptibility. Use the [`count()`][AMR::count()] functions to count isolates. The function [susceptibility()] is essentially equal to `count_susceptible() / count_all()`. *Low counts can influence the outcome - the `proportion` functions may camouflage this, since they only return the proportion (albeit being dependent on the `minimum` argument).*
|
#' These functions are not meant to count isolates, but to calculate the proportion of resistance/susceptibility. Use the [`count()`][AMR::count()] functions to count isolates. The function [susceptibility()] is essentially equal to `count_susceptible() / count_all()`. *Low counts can influence the outcome - the `proportion` functions may camouflage this, since they only return the proportion (albeit being dependent on the `minimum` argument).*
|
||||||
#'
|
#'
|
||||||
#' The function [proportion_df()] takes any variable from `data` that has an [`sir`] class (created with [as.sir()]) and calculates the proportions S, I, and R. It also supports grouped variables. The function [sir_sf()] works exactly like [proportion_df()], but adds the number of isolates.
|
#' The function [proportion_df()] takes any variable from `data` that has an [`sir`] class (created with [as.sir()]) and calculates the proportions S, I, and R. It also supports grouped variables. The function [sir_df()] works exactly like [proportion_df()], but adds the number of isolates.
|
||||||
#' @section Combination Therapy:
|
#' @section Combination Therapy:
|
||||||
#' When using more than one variable for `...` (= combination therapy), use `only_all_tested` to only count isolates that are tested for all antibiotics/variables that you test them for. See this example for two antibiotics, Drug A and Drug B, about how [susceptibility()] works to calculate the %SI:
|
#' When using more than one variable for `...` (= combination therapy), use `only_all_tested` to only count isolates that are tested for all antibiotics/variables that you test them for. See this example for two antibiotics, Drug A and Drug B, about how [susceptibility()] works to calculate the %SI:
|
||||||
#'
|
#'
|
||||||
@ -206,11 +206,11 @@
|
|||||||
#' proportion_df(translate = FALSE)
|
#' proportion_df(translate = FALSE)
|
||||||
#'
|
#'
|
||||||
#' # It also supports grouping variables
|
#' # It also supports grouping variables
|
||||||
#' # (use sir_sf to also include the count)
|
#' # (use sir_df to also include the count)
|
||||||
#' example_isolates %>%
|
#' example_isolates %>%
|
||||||
#' select(ward, AMX, CIP) %>%
|
#' select(ward, AMX, CIP) %>%
|
||||||
#' group_by(ward) %>%
|
#' group_by(ward) %>%
|
||||||
#' sir_sf(translate = FALSE)
|
#' sir_df(translate = FALSE)
|
||||||
#' }
|
#' }
|
||||||
#' }
|
#' }
|
||||||
resistance <- function(...,
|
resistance <- function(...,
|
||||||
|
@ -372,5 +372,5 @@ sir_calc_df <- function(type, # "proportion", "count" or "both"
|
|||||||
|
|
||||||
rownames(out) <- NULL
|
rownames(out) <- NULL
|
||||||
out <- as_original_data_class(out, class(data.bak)) # will remove tibble groups
|
out <- as_original_data_class(out, class(data.bak)) # will remove tibble groups
|
||||||
structure(out, class = c("sir_sf", class(out)))
|
structure(out, class = c("sir_df", "rsi_df", class(out)))
|
||||||
}
|
}
|
||||||
|
@ -29,7 +29,7 @@
|
|||||||
|
|
||||||
#' @rdname proportion
|
#' @rdname proportion
|
||||||
#' @export
|
#' @export
|
||||||
sir_sf <- function(data,
|
sir_df <- function(data,
|
||||||
translate_ab = "name",
|
translate_ab = "name",
|
||||||
language = get_AMR_locale(),
|
language = get_AMR_locale(),
|
||||||
minimum = 30,
|
minimum = 30,
|
||||||
|
BIN
R/sysdata.rda
BIN
R/sysdata.rda
Binary file not shown.
4
R/zzz.R
4
R/zzz.R
@ -98,14 +98,14 @@ if (utf8_supported && !is_latex) {
|
|||||||
s3_register("pillar::pillar_shaft", "av")
|
s3_register("pillar::pillar_shaft", "av")
|
||||||
s3_register("pillar::pillar_shaft", "mo")
|
s3_register("pillar::pillar_shaft", "mo")
|
||||||
s3_register("pillar::pillar_shaft", "sir")
|
s3_register("pillar::pillar_shaft", "sir")
|
||||||
s3_register("pillar::pillar_shaft", "rsi") # TODO deprecate in a later version
|
s3_register("pillar::pillar_shaft", "rsi") # remove in a later version
|
||||||
s3_register("pillar::pillar_shaft", "mic")
|
s3_register("pillar::pillar_shaft", "mic")
|
||||||
s3_register("pillar::pillar_shaft", "disk")
|
s3_register("pillar::pillar_shaft", "disk")
|
||||||
s3_register("pillar::type_sum", "ab")
|
s3_register("pillar::type_sum", "ab")
|
||||||
s3_register("pillar::type_sum", "av")
|
s3_register("pillar::type_sum", "av")
|
||||||
s3_register("pillar::type_sum", "mo")
|
s3_register("pillar::type_sum", "mo")
|
||||||
s3_register("pillar::type_sum", "sir")
|
s3_register("pillar::type_sum", "sir")
|
||||||
s3_register("pillar::type_sum", "rsi")
|
s3_register("pillar::type_sum", "rsi") # remove in a later version
|
||||||
s3_register("pillar::type_sum", "mic")
|
s3_register("pillar::type_sum", "mic")
|
||||||
s3_register("pillar::type_sum", "disk")
|
s3_register("pillar::type_sum", "disk")
|
||||||
# Support for frequency tables from the cleaner package
|
# Support for frequency tables from the cleaner package
|
||||||
|
@ -103,10 +103,10 @@ if (AMR:::pkg_is_available("dplyr", min_version = "1.0.0")) {
|
|||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
# grouping in sir_calc_df() (= backbone of sir_sf())
|
# grouping in sir_calc_df() (= backbone of sir_df())
|
||||||
expect_true("ward" %in% (example_isolates %>%
|
expect_true("ward" %in% (example_isolates %>%
|
||||||
group_by(ward) %>%
|
group_by(ward) %>%
|
||||||
select(ward, AMX, CIP, gender) %>%
|
select(ward, AMX, CIP, gender) %>%
|
||||||
sir_sf() %>%
|
sir_df() %>%
|
||||||
colnames()))
|
colnames()))
|
||||||
}
|
}
|
||||||
|
@ -67,7 +67,7 @@ The function \code{\link[=count_resistant]{count_resistant()}} is equal to the f
|
|||||||
|
|
||||||
The function \code{\link[=n_sir]{n_sir()}} is an alias of \code{\link[=count_all]{count_all()}}. They can be used to count all available isolates, i.e. where all input antibiotics have an available result (S, I or R). Their use is equal to \code{n_distinct()}. Their function is equal to \code{count_susceptible(...) + count_resistant(...)}.
|
The function \code{\link[=n_sir]{n_sir()}} is an alias of \code{\link[=count_all]{count_all()}}. They can be used to count all available isolates, i.e. where all input antibiotics have an available result (S, I or R). Their use is equal to \code{n_distinct()}. Their function is equal to \code{count_susceptible(...) + count_resistant(...)}.
|
||||||
|
|
||||||
The function \code{\link[=count_df]{count_df()}} takes any variable from \code{data} that has an \code{\link{sir}} class (created with \code{\link[=as.sir]{as.sir()}}) and counts the number of S's, I's and R's. It also supports grouped variables. The function \code{\link[=sir_sf]{sir_sf()}} works exactly like \code{\link[=count_df]{count_df()}}, but adds the percentage of S, I and R.
|
The function \code{\link[=count_df]{count_df()}} takes any variable from \code{data} that has an \code{\link{sir}} class (created with \code{\link[=as.sir]{as.sir()}}) and counts the number of S's, I's and R's. It also supports grouped variables. The function \code{\link[=sir_df]{sir_df()}} works exactly like \code{\link[=count_df]{count_df()}}, but adds the percentage of S, I and R.
|
||||||
}
|
}
|
||||||
\section{Interpretation of SIR}{
|
\section{Interpretation of SIR}{
|
||||||
|
|
||||||
|
@ -120,7 +120,7 @@ Use these functions to create bar plots for AMR data analysis. All functions rel
|
|||||||
At default, the names of antibiotics will be shown on the plots using \code{\link[=ab_name]{ab_name()}}. This can be set with the \code{translate_ab} argument. See \code{\link[=count_df]{count_df()}}.
|
At default, the names of antibiotics will be shown on the plots using \code{\link[=ab_name]{ab_name()}}. This can be set with the \code{translate_ab} argument. See \code{\link[=count_df]{count_df()}}.
|
||||||
\subsection{The Functions}{
|
\subsection{The Functions}{
|
||||||
|
|
||||||
\code{\link[=geom_sir]{geom_sir()}} will take any variable from the data that has an \code{\link{sir}} class (created with \code{\link[=as.sir]{as.sir()}}) using \code{\link[=sir_sf]{sir_sf()}} and will plot bars with the percentage S, I, and R. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis.
|
\code{\link[=geom_sir]{geom_sir()}} will take any variable from the data that has an \code{\link{sir}} class (created with \code{\link[=as.sir]{as.sir()}}) using \code{\link[=sir_df]{sir_df()}} and will plot bars with the percentage S, I, and R. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis.
|
||||||
|
|
||||||
\code{\link[=facet_sir]{facet_sir()}} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}}.
|
\code{\link[=facet_sir]{facet_sir()}} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2:facet_wrap]{ggplot2::facet_wrap()}}.
|
||||||
|
|
||||||
|
@ -12,7 +12,7 @@
|
|||||||
\alias{proportion_SI}
|
\alias{proportion_SI}
|
||||||
\alias{proportion_S}
|
\alias{proportion_S}
|
||||||
\alias{proportion_df}
|
\alias{proportion_df}
|
||||||
\alias{sir_sf}
|
\alias{sir_df}
|
||||||
\title{Calculate Microbial Resistance}
|
\title{Calculate Microbial Resistance}
|
||||||
\source{
|
\source{
|
||||||
\strong{M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 5th Edition}, 2022, \emph{Clinical and Laboratory Standards Institute (CLSI)}. \url{https://clsi.org/standards/products/microbiology/documents/m39/}.
|
\strong{M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 5th Edition}, 2022, \emph{Clinical and Laboratory Standards Institute (CLSI)}. \url{https://clsi.org/standards/products/microbiology/documents/m39/}.
|
||||||
@ -52,7 +52,7 @@ proportion_df(
|
|||||||
confidence_level = 0.95
|
confidence_level = 0.95
|
||||||
)
|
)
|
||||||
|
|
||||||
sir_sf(
|
sir_df(
|
||||||
data,
|
data,
|
||||||
translate_ab = "name",
|
translate_ab = "name",
|
||||||
language = get_AMR_locale(),
|
language = get_AMR_locale(),
|
||||||
@ -102,7 +102,7 @@ Use \code{\link[=sir_confidence_interval]{sir_confidence_interval()}} to calcula
|
|||||||
|
|
||||||
These functions are not meant to count isolates, but to calculate the proportion of resistance/susceptibility. Use the \code{\link[=count]{count()}} functions to count isolates. The function \code{\link[=susceptibility]{susceptibility()}} is essentially equal to \code{count_susceptible() / count_all()}. \emph{Low counts can influence the outcome - the \code{proportion} functions may camouflage this, since they only return the proportion (albeit being dependent on the \code{minimum} argument).}
|
These functions are not meant to count isolates, but to calculate the proportion of resistance/susceptibility. Use the \code{\link[=count]{count()}} functions to count isolates. The function \code{\link[=susceptibility]{susceptibility()}} is essentially equal to \code{count_susceptible() / count_all()}. \emph{Low counts can influence the outcome - the \code{proportion} functions may camouflage this, since they only return the proportion (albeit being dependent on the \code{minimum} argument).}
|
||||||
|
|
||||||
The function \code{\link[=proportion_df]{proportion_df()}} takes any variable from \code{data} that has an \code{\link{sir}} class (created with \code{\link[=as.sir]{as.sir()}}) and calculates the proportions S, I, and R. It also supports grouped variables. The function \code{\link[=sir_sf]{sir_sf()}} works exactly like \code{\link[=proportion_df]{proportion_df()}}, but adds the number of isolates.
|
The function \code{\link[=proportion_df]{proportion_df()}} takes any variable from \code{data} that has an \code{\link{sir}} class (created with \code{\link[=as.sir]{as.sir()}}) and calculates the proportions S, I, and R. It also supports grouped variables. The function \code{\link[=sir_df]{sir_df()}} works exactly like \code{\link[=proportion_df]{proportion_df()}}, but adds the number of isolates.
|
||||||
}
|
}
|
||||||
\section{Combination Therapy}{
|
\section{Combination Therapy}{
|
||||||
|
|
||||||
@ -270,11 +270,11 @@ if (require("dplyr")) {
|
|||||||
proportion_df(translate = FALSE)
|
proportion_df(translate = FALSE)
|
||||||
|
|
||||||
# It also supports grouping variables
|
# It also supports grouping variables
|
||||||
# (use sir_sf to also include the count)
|
# (use sir_df to also include the count)
|
||||||
example_isolates \%>\%
|
example_isolates \%>\%
|
||||||
select(ward, AMX, CIP) \%>\%
|
select(ward, AMX, CIP) \%>\%
|
||||||
group_by(ward) \%>\%
|
group_by(ward) \%>\%
|
||||||
sir_sf(translate = FALSE)
|
sir_df(translate = FALSE)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user