From 7b8d4eee83fcca3b7ee401e3ae8da40093018f87 Mon Sep 17 00:00:00 2001 From: github-actions <41898282+github-actions[bot]@users.noreply.github.com> Date: Mon, 17 Jun 2024 20:32:17 +0000 Subject: [PATCH] cli-147-2126 --- 404.html | 2 +- LICENSE-text.html | 2 +- articles/AMR.html | 2 +- articles/EUCAST.html | 2 +- articles/MDR.html | 2 +- articles/PCA.html | 2 +- articles/WHONET.html | 2 +- articles/datasets.html | 2 +- articles/index.html | 2 +- articles/other_pkg.html | 2 +- articles/resistance_predict.html | 2 +- articles/welcome_to_AMR.html | 2 +- authors.html | 2 +- index.html | 2 +- news/index.html | 18 ++++++++--------- pkgdown.yml | 2 +- reference/AMR-options.html | 2 +- reference/AMR.html | 2 +- reference/WHOCC.html | 2 +- reference/WHONET.html | 2 +- reference/ab_from_text.html | 2 +- reference/ab_property.html | 2 +- reference/add_custom_antimicrobials.html | 2 +- reference/add_custom_microorganisms.html | 2 +- reference/age.html | 2 +- reference/age_groups.html | 2 +- reference/antibiogram.html | 2 +- reference/antibiotic_class_selectors.html | 2 +- reference/antibiotics.html | 2 +- reference/as.ab.html | 2 +- reference/as.av.html | 2 +- reference/as.disk.html | 2 +- reference/as.mic.html | 2 +- reference/as.mo.html | 2 +- reference/as.sir.html | 24 +++++++++++------------ reference/atc_online.html | 2 +- reference/av_from_text.html | 2 +- reference/av_property.html | 2 +- reference/availability.html | 2 +- reference/bug_drug_combinations.html | 2 +- reference/clinical_breakpoints.html | 2 +- reference/count.html | 2 +- reference/custom_eucast_rules.html | 2 +- reference/dosage.html | 2 +- reference/eucast_rules.html | 2 +- reference/example_isolates.html | 2 +- reference/example_isolates_unclean.html | 2 +- reference/export_ncbi_biosample.html | 2 +- reference/first_isolate.html | 2 +- reference/g.test.html | 2 +- reference/get_episode.html | 2 +- reference/ggplot_pca.html | 2 +- reference/ggplot_sir.html | 2 +- reference/guess_ab_col.html | 2 +- reference/index.html | 2 +- reference/intrinsic_resistant.html | 2 +- reference/italicise_taxonomy.html | 2 +- reference/join.html | 2 +- reference/key_antimicrobials.html | 2 +- reference/kurtosis.html | 2 +- reference/like.html | 2 +- reference/mdro.html | 2 +- reference/mean_amr_distance.html | 2 +- reference/microorganisms.codes.html | 2 +- reference/microorganisms.groups.html | 2 +- reference/microorganisms.html | 2 +- reference/mo_matching_score.html | 2 +- reference/mo_property.html | 2 +- reference/mo_source.html | 2 +- reference/pca.html | 2 +- reference/plot.html | 2 +- reference/proportion.html | 2 +- reference/random.html | 2 +- reference/resistance_predict.html | 2 +- reference/skewness.html | 2 +- reference/translate.html | 2 +- search.json | 2 +- 77 files changed, 96 insertions(+), 96 deletions(-) diff --git a/404.html b/404.html index 6d0606f3..4a507ea7 100644 --- a/404.html +++ b/404.html @@ -37,7 +37,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/LICENSE-text.html b/LICENSE-text.html index 99402273..267fbca1 100644 --- a/LICENSE-text.html +++ b/LICENSE-text.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/articles/AMR.html b/articles/AMR.html index 20cf6961..84c7f2fc 100644 --- a/articles/AMR.html +++ b/articles/AMR.html @@ -39,7 +39,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/articles/EUCAST.html b/articles/EUCAST.html index 4fb8e36d..d01779d5 100644 --- a/articles/EUCAST.html +++ b/articles/EUCAST.html @@ -39,7 +39,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/articles/MDR.html b/articles/MDR.html index e51a9dae..26dfd0b5 100644 --- a/articles/MDR.html +++ b/articles/MDR.html @@ -39,7 +39,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/articles/PCA.html b/articles/PCA.html index f6243c09..7f5c95bb 100644 --- a/articles/PCA.html +++ b/articles/PCA.html @@ -39,7 +39,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/articles/WHONET.html b/articles/WHONET.html index 02d2607b..2d7d8b82 100644 --- a/articles/WHONET.html +++ b/articles/WHONET.html @@ -39,7 +39,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/articles/datasets.html b/articles/datasets.html index 2df4e06b..b8f7e57e 100644 --- a/articles/datasets.html +++ b/articles/datasets.html @@ -39,7 +39,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/articles/index.html b/articles/index.html index bb5714a7..0dc802c8 100644 --- a/articles/index.html +++ b/articles/index.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/articles/other_pkg.html b/articles/other_pkg.html index 6df23a32..f8d08583 100644 --- a/articles/other_pkg.html +++ b/articles/other_pkg.html @@ -39,7 +39,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/articles/resistance_predict.html b/articles/resistance_predict.html index e63446f1..d9800f95 100644 --- a/articles/resistance_predict.html +++ b/articles/resistance_predict.html @@ -39,7 +39,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/articles/welcome_to_AMR.html b/articles/welcome_to_AMR.html index 53a24588..8915f091 100644 --- a/articles/welcome_to_AMR.html +++ b/articles/welcome_to_AMR.html @@ -39,7 +39,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/authors.html b/authors.html index 492a28b3..b72ba16f 100644 --- a/authors.html +++ b/authors.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/index.html b/index.html index 2a48028f..731ee603 100644 --- a/index.html +++ b/index.html @@ -39,7 +39,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/news/index.html b/news/index.html index 3ec0880f..1d66f32b 100644 --- a/news/index.html +++ b/news/index.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 @@ -159,18 +159,18 @@ -AMR 2.1.1.9058 +AMR 2.1.1.9059 (this beta version will eventually become v3.0. We’re happy to reach a new major milestone soon, which will be all about the new One Health support! Install this beta using the instructions here.) -A New Milestone: One Health Support (= Human + Veterinary + Environmental) +A New Milestone: AMR v3.0 with One Health Support (= Human + Veterinary + Environmental) This package now supports not only tools for AMR data analysis in clinical settings, but also for veterinary and environmental microbiology. This was made possible through a collaboration with the University of Prince Edward Island, Canada. To celebrate this great improvement of the package, we also updated the package logo to reflect this change. -Breaking +Breaking Removed all functions and references that used the deprecated rsi class, which were all replaced with their sir equivalents over a year ago -New +New One Health implementation Function as.sir() now has extensive support for animal breakpoints from CLSI. Use breakpoint_type = "animal" and set the host argument to a variable that contains animal species names. The clinical_breakpoints data set contains all these breakpoints, and can be downloaded on our download page. @@ -180,15 +180,15 @@ ab_url() now supports retrieving the WHOCC url of their ATCvet pages -EUCAST 2024 and CLSI 2024 are now supported, by adding all of their over 4,000 clinical breakpoints to the clinical_breakpoints data set for usage in as.sir(). EUCAST 2024 (v14.0) is now the new default guideline for all MIC and disks diffusion interpretations. +EUCAST 2024 and CLSI 2024 are now supported, by adding all of their over 4,000 new clinical breakpoints to the clinical_breakpoints data set for usage in as.sir(). EUCAST 2024 (v14.0) is now the new default guideline for all MIC and disks diffusion interpretations. -as.sir() now brings additional factor levels: “NI” for non-interpretable and “SDD” for susceptible dose-dependent. Users can now set their own criteria (using regular expressions) as to what should be considered S, I, R, SDD, and NI. Also, to get quantitative values, as.double() or a sir object will return 1 for S, 2 for SDD/I, and 3 for R (NI will become NA). Other functions using sir classes (e.g., summary()) are updated to reflect the change to contain NI and SDD. +as.sir() now brings additional factor levels: “NI” for non-interpretable and “SDD” for susceptible dose-dependent. Users can now set their own criteria (using regular expressions) as to what should be considered S, I, R, SDD, and NI. Also, to get quantitative values, as.double() on a sir object will return 1 for S, 2 for SDD/I, and 3 for R (NI will become NA). Other functions using sir classes (e.g., summary()) are updated to reflect the change to contain NI and SDD. The function group scale_*_mic(), namely: scale_x_mic(), scale_y_mic(), scale_colour_mic() and scale_fill_mic(). They are advanced ggplot2 extensions to allow easy plotting of MIC values. They allow for manual range definition and plotting missing intermediate log2 levels. Function rescale_mic(), which allows to rescale MIC values to a manually set range. This is the powerhouse behind the scale_*_mic() functions, but it can be used by users directly to e.g. compare equality in MIC distributions by rescaling them to the same range first. Function mo_group_members() to retrieve the member microorganisms of a microorganism group. For example, mo_group_members("Strep group C") returns a vector of all microorganisms that are in that group. -Changed +Changed For SIR interpretation, it is now possible to use column names for argument ab, mo, and uti: as.sir(..., ab = "column1", mo = "column2", uti = "column3"). This greatly improves the flexibility for users. Extended the antibiotic selectors with nitrofurans() and rifamycins() @@ -221,7 +221,7 @@ Intermediate log2 levels used for MIC plotting are now more common values instead of following a strict dilution range -Other +Other Added Jordan Stull, Matthew Saab, and Javier Sanchez as contributors, to thank them for their valuable input diff --git a/pkgdown.yml b/pkgdown.yml index a8f577aa..1557a9c1 100644 --- a/pkgdown.yml +++ b/pkgdown.yml @@ -11,7 +11,7 @@ articles: resistance_predict: resistance_predict.html welcome_to_AMR: welcome_to_AMR.html WHONET: WHONET.html -last_built: 2024-06-17T20:22Z +last_built: 2024-06-17T20:29Z urls: reference: https://msberends.github.io/AMR/reference article: https://msberends.github.io/AMR/articles diff --git a/reference/AMR-options.html b/reference/AMR-options.html index a8f607cd..2bb4d54c 100644 --- a/reference/AMR-options.html +++ b/reference/AMR-options.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/AMR.html b/reference/AMR.html index 73805430..84ada488 100644 --- a/reference/AMR.html +++ b/reference/AMR.html @@ -24,7 +24,7 @@ The AMR package is available in English, Chinese, Czech, Danish, Dutch, Finnish, AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/WHOCC.html b/reference/WHOCC.html index e3f7568f..7d560442 100644 --- a/reference/WHOCC.html +++ b/reference/WHOCC.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/WHONET.html b/reference/WHONET.html index 2f050692..daaadf71 100644 --- a/reference/WHONET.html +++ b/reference/WHONET.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/ab_from_text.html b/reference/ab_from_text.html index 9195d390..90fe520d 100644 --- a/reference/ab_from_text.html +++ b/reference/ab_from_text.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/ab_property.html b/reference/ab_property.html index 37a9efbc..505224ed 100644 --- a/reference/ab_property.html +++ b/reference/ab_property.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/add_custom_antimicrobials.html b/reference/add_custom_antimicrobials.html index e8750d84..af0358d1 100644 --- a/reference/add_custom_antimicrobials.html +++ b/reference/add_custom_antimicrobials.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/add_custom_microorganisms.html b/reference/add_custom_microorganisms.html index accb7fb1..f06cd3fe 100644 --- a/reference/add_custom_microorganisms.html +++ b/reference/add_custom_microorganisms.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/age.html b/reference/age.html index ad61faaf..f2508acb 100644 --- a/reference/age.html +++ b/reference/age.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/age_groups.html b/reference/age_groups.html index 3e72f40a..c4cfd905 100644 --- a/reference/age_groups.html +++ b/reference/age_groups.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/antibiogram.html b/reference/antibiogram.html index 0905c8b8..dadfbee4 100644 --- a/reference/antibiogram.html +++ b/reference/antibiogram.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/antibiotic_class_selectors.html b/reference/antibiotic_class_selectors.html index 6ba8484f..49827fde 100644 --- a/reference/antibiotic_class_selectors.html +++ b/reference/antibiotic_class_selectors.html @@ -12,7 +12,7 @@ In short, if you have a column name that resembles an antimicrobial drug, it wil AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/antibiotics.html b/reference/antibiotics.html index 8d4a80ae..14f23e62 100644 --- a/reference/antibiotics.html +++ b/reference/antibiotics.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/as.ab.html b/reference/as.ab.html index 17f53129..9146bae5 100644 --- a/reference/as.ab.html +++ b/reference/as.ab.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/as.av.html b/reference/as.av.html index 5e2add82..f7c4214e 100644 --- a/reference/as.av.html +++ b/reference/as.av.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/as.disk.html b/reference/as.disk.html index 8ac77754..d676fcb3 100644 --- a/reference/as.disk.html +++ b/reference/as.disk.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/as.mic.html b/reference/as.mic.html index 38f9aecc..903906eb 100644 --- a/reference/as.mic.html +++ b/reference/as.mic.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/as.mo.html b/reference/as.mo.html index a736a7d0..f022fa3c 100644 --- a/reference/as.mo.html +++ b/reference/as.mo.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/as.sir.html b/reference/as.sir.html index 2b648fcf..0c4418a8 100644 --- a/reference/as.sir.html +++ b/reference/as.sir.html @@ -24,7 +24,7 @@ All breakpoints used for interpretation are available in our clinical_breakpoint AMR (for R) - 2.1.1.9058 + 2.1.1.9059 @@ -263,7 +263,7 @@ All breakpoints used for interpretation are available in our clinical_breakpoint CLSI M100: Performance Standard for Antimicrobial Susceptibility Testing, 2011-2024, Clinical and Laboratory Standards Institute (CLSI). https://clsi.org/standards/products/microbiology/documents/m100/. CLSI VET01: Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 2019-2024, Clinical and Laboratory Standards Institute (CLSI). https://clsi.org/standards/products/veterinary-medicine/documents/vet01//. EUCAST Breakpoint tables for interpretation of MICs and zone diameters, 2011-2024, European Committee on Antimicrobial Susceptibility Testing (EUCAST). https://www.eucast.org/clinical_breakpoints. -WHONET as a source for machine-reading clinical breakpoints ((read more here)https://msberends.github.io/AMR/reference/clinical_breakpoints.html#imported-from-whonet), 1989-2024, WHO Collaborating Centre for Surveillance of Antimicrobial Resistance. https://whonet.org/. +WHONET as a source for machine-reading the clinical breakpoints (read more here), 1989-2024, WHO Collaborating Centre for Surveillance of Antimicrobial Resistance. https://whonet.org/. Arguments @@ -866,16 +866,16 @@ A microorganism is categorised as "Resistant" when there is a high likelihood of #> # A tibble: 59 × 16 #> datetime index ab_given mo_given host_given ab mo #> * <dttm> <int> <chr> <chr> <chr> <ab> <mo> -#> 1 2024-06-17 20:23:28 4 AMX B_STRPT… human AMX B_STRPT_PNMN -#> 2 2024-06-17 20:23:34 4 genta Escheri… human GEN B_[ORD]_ENTRBCTR -#> 3 2024-06-17 20:23:35 4 genta Escheri… human GEN B_[ORD]_ENTRBCTR -#> 4 2024-06-17 20:23:35 4 genta Escheri… cattle GEN B_[ORD]_ENTRBCTR -#> 5 2024-06-17 20:23:35 4 genta Escheri… cattle GEN B_[ORD]_ENTRBCTR -#> 6 2024-06-17 20:23:28 3 AMX B_STRPT… human AMX B_STRPT_PNMN -#> 7 2024-06-17 20:23:34 3 tobra Escheri… human TOB B_[ORD]_ENTRBCTR -#> 8 2024-06-17 20:23:35 3 tobra Escheri… human TOB B_[ORD]_ENTRBCTR -#> 9 2024-06-17 20:23:35 3 tobra Escheri… horses TOB B_ESCHR_COLI -#> 10 2024-06-17 20:23:35 3 tobra Escheri… horses TOB B_ESCHR_COLI +#> 1 2024-06-17 20:30:05 4 AMX B_STRPT… human AMX B_STRPT_PNMN +#> 2 2024-06-17 20:30:11 4 genta Escheri… human GEN B_[ORD]_ENTRBCTR +#> 3 2024-06-17 20:30:11 4 genta Escheri… human GEN B_[ORD]_ENTRBCTR +#> 4 2024-06-17 20:30:12 4 genta Escheri… cattle GEN B_[ORD]_ENTRBCTR +#> 5 2024-06-17 20:30:12 4 genta Escheri… cattle GEN B_[ORD]_ENTRBCTR +#> 6 2024-06-17 20:30:05 3 AMX B_STRPT… human AMX B_STRPT_PNMN +#> 7 2024-06-17 20:30:11 3 tobra Escheri… human TOB B_[ORD]_ENTRBCTR +#> 8 2024-06-17 20:30:11 3 tobra Escheri… human TOB B_[ORD]_ENTRBCTR +#> 9 2024-06-17 20:30:12 3 tobra Escheri… horses TOB B_ESCHR_COLI +#> 10 2024-06-17 20:30:12 3 tobra Escheri… horses TOB B_ESCHR_COLI #> # ℹ 49 more rows #> # ℹ 9 more variables: host <chr>, method <chr>, input <dbl>, outcome <sir>, #> # notes <chr>, guideline <chr>, ref_table <chr>, uti <lgl>, diff --git a/reference/atc_online.html b/reference/atc_online.html index 6d8e768e..bb411dff 100644 --- a/reference/atc_online.html +++ b/reference/atc_online.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/av_from_text.html b/reference/av_from_text.html index ccdf9c66..b114edfc 100644 --- a/reference/av_from_text.html +++ b/reference/av_from_text.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/av_property.html b/reference/av_property.html index 66bdc595..b84a7cbc 100644 --- a/reference/av_property.html +++ b/reference/av_property.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/availability.html b/reference/availability.html index 049e437c..09e0fe15 100644 --- a/reference/availability.html +++ b/reference/availability.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/bug_drug_combinations.html b/reference/bug_drug_combinations.html index b9b248ae..6dc00174 100644 --- a/reference/bug_drug_combinations.html +++ b/reference/bug_drug_combinations.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/clinical_breakpoints.html b/reference/clinical_breakpoints.html index eb24331b..ea18879e 100644 --- a/reference/clinical_breakpoints.html +++ b/reference/clinical_breakpoints.html @@ -16,7 +16,7 @@ Use as.sir() to transform MICs or disks measurements to SIR values.">AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/count.html b/reference/count.html index 7c2399e2..f55fd937 100644 --- a/reference/count.html +++ b/reference/count.html @@ -12,7 +12,7 @@ count_resistant() should be used to count resistant isolates, count_susceptible( AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/custom_eucast_rules.html b/reference/custom_eucast_rules.html index 3d56d0c7..1db92e78 100644 --- a/reference/custom_eucast_rules.html +++ b/reference/custom_eucast_rules.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/dosage.html b/reference/dosage.html index 37e984b5..85d22c41 100644 --- a/reference/dosage.html +++ b/reference/dosage.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/eucast_rules.html b/reference/eucast_rules.html index e3b0b8e9..6248c4ad 100644 --- a/reference/eucast_rules.html +++ b/reference/eucast_rules.html @@ -12,7 +12,7 @@ To improve the interpretation of the antibiogram before EUCAST rules are applied AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/example_isolates.html b/reference/example_isolates.html index c6b0322b..0f33834c 100644 --- a/reference/example_isolates.html +++ b/reference/example_isolates.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/example_isolates_unclean.html b/reference/example_isolates_unclean.html index 65d4c593..a6df7532 100644 --- a/reference/example_isolates_unclean.html +++ b/reference/example_isolates_unclean.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/export_ncbi_biosample.html b/reference/export_ncbi_biosample.html index 804dacfa..ff84bd00 100644 --- a/reference/export_ncbi_biosample.html +++ b/reference/export_ncbi_biosample.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/first_isolate.html b/reference/first_isolate.html index e89a52bd..67c2fb40 100644 --- a/reference/first_isolate.html +++ b/reference/first_isolate.html @@ -12,7 +12,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/g.test.html b/reference/g.test.html index c02bf725..6a5ef36e 100644 --- a/reference/g.test.html +++ b/reference/g.test.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/get_episode.html b/reference/get_episode.html index 3e3025cc..bfc4e2e8 100644 --- a/reference/get_episode.html +++ b/reference/get_episode.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/ggplot_pca.html b/reference/ggplot_pca.html index d7f57847..f3f23008 100644 --- a/reference/ggplot_pca.html +++ b/reference/ggplot_pca.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/ggplot_sir.html b/reference/ggplot_sir.html index b546b4a0..dd675ba2 100644 --- a/reference/ggplot_sir.html +++ b/reference/ggplot_sir.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/guess_ab_col.html b/reference/guess_ab_col.html index 6a6a1268..8b57551d 100644 --- a/reference/guess_ab_col.html +++ b/reference/guess_ab_col.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/index.html b/reference/index.html index 89ce3d86..5aac08ea 100644 --- a/reference/index.html +++ b/reference/index.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/intrinsic_resistant.html b/reference/intrinsic_resistant.html index 4bf0fa62..4ba56aa6 100644 --- a/reference/intrinsic_resistant.html +++ b/reference/intrinsic_resistant.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/italicise_taxonomy.html b/reference/italicise_taxonomy.html index 1ea745a5..c5ac4079 100644 --- a/reference/italicise_taxonomy.html +++ b/reference/italicise_taxonomy.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/join.html b/reference/join.html index 259a35ee..9b2b5c20 100644 --- a/reference/join.html +++ b/reference/join.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/key_antimicrobials.html b/reference/key_antimicrobials.html index f8e9e1b4..cfc778cb 100644 --- a/reference/key_antimicrobials.html +++ b/reference/key_antimicrobials.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/kurtosis.html b/reference/kurtosis.html index 56a6ff31..2d01a7b7 100644 --- a/reference/kurtosis.html +++ b/reference/kurtosis.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/like.html b/reference/like.html index a3c39d89..db41d631 100644 --- a/reference/like.html +++ b/reference/like.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/mdro.html b/reference/mdro.html index 9f6aba90..f8fa323b 100644 --- a/reference/mdro.html +++ b/reference/mdro.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/mean_amr_distance.html b/reference/mean_amr_distance.html index 05941f89..2cdd62a0 100644 --- a/reference/mean_amr_distance.html +++ b/reference/mean_amr_distance.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/microorganisms.codes.html b/reference/microorganisms.codes.html index bd620c0f..12f8a52a 100644 --- a/reference/microorganisms.codes.html +++ b/reference/microorganisms.codes.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/microorganisms.groups.html b/reference/microorganisms.groups.html index 725e25fc..9a335430 100644 --- a/reference/microorganisms.groups.html +++ b/reference/microorganisms.groups.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/microorganisms.html b/reference/microorganisms.html index d85d5ae1..572ea963 100644 --- a/reference/microorganisms.html +++ b/reference/microorganisms.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/mo_matching_score.html b/reference/mo_matching_score.html index 0d0c29d4..ceb8aec3 100644 --- a/reference/mo_matching_score.html +++ b/reference/mo_matching_score.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/mo_property.html b/reference/mo_property.html index 8708dcfc..28f28e09 100644 --- a/reference/mo_property.html +++ b/reference/mo_property.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/mo_source.html b/reference/mo_source.html index 86040fed..3ac6ee85 100644 --- a/reference/mo_source.html +++ b/reference/mo_source.html @@ -12,7 +12,7 @@ This is the fastest way to have your organisation (or analysis) specific codes p AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/pca.html b/reference/pca.html index d33c7d6d..bd42b694 100644 --- a/reference/pca.html +++ b/reference/pca.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/plot.html b/reference/plot.html index 21f919bd..4408b383 100644 --- a/reference/plot.html +++ b/reference/plot.html @@ -12,7 +12,7 @@ Especially the scale_*_mic() functions are relevant wrappers to plot MIC values AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/proportion.html b/reference/proportion.html index 789449c5..8f13518a 100644 --- a/reference/proportion.html +++ b/reference/proportion.html @@ -12,7 +12,7 @@ resistance() should be used to calculate resistance, susceptibility() should be AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/random.html b/reference/random.html index 9e62e9d1..720bc59b 100644 --- a/reference/random.html +++ b/reference/random.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/resistance_predict.html b/reference/resistance_predict.html index 6efd610f..3f289590 100644 --- a/reference/resistance_predict.html +++ b/reference/resistance_predict.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/skewness.html b/reference/skewness.html index 989f8548..edb7f737 100644 --- a/reference/skewness.html +++ b/reference/skewness.html @@ -12,7 +12,7 @@ When negative ('left-skewed'): the left tail is longer; the mass of the distribu AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/reference/translate.html b/reference/translate.html index 1be61cf1..a8636bd6 100644 --- a/reference/translate.html +++ b/reference/translate.html @@ -10,7 +10,7 @@ AMR (for R) - 2.1.1.9058 + 2.1.1.9059 diff --git a/search.json b/search.json index 24688430..eaa26e2a 100644 --- a/search.json +++ b/search.json @@ -1 +1 @@ -[{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"How to conduct AMR data analysis","text":"Conducting AMR data analysis unfortunately requires -depth knowledge different scientific fields, makes hard right. least, requires: Good questions (always start !) reliable data thorough understanding (clinical) epidemiology, understand clinical epidemiological relevance possible bias results thorough understanding (clinical) microbiology/infectious diseases, understand microorganisms causal infections implications pharmaceutical treatment, well understanding intrinsic acquired microbial resistance Experience data analysis microbiological tests results, understand determination limitations MIC values interpretations SIR values Availability biological taxonomy microorganisms probably normalisation factors pharmaceuticals, defined daily doses (DDD) Available (inter-)national guidelines, profound methods apply course, instantly provide knowledge experience. AMR package, aimed providing (1) tools simplify antimicrobial resistance data cleaning, transformation analysis, (2) methods easily incorporate international guidelines (3) scientifically reliable reference data, including requirements mentioned . AMR package enables standardised reproducible AMR data analysis, application evidence-based rules, determination first isolates, translation various codes microorganisms antimicrobial agents, determination (multi-drug) resistant microorganisms, calculation antimicrobial resistance, prevalence future trends.","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"preparation","dir":"Articles","previous_headings":"","what":"Preparation","title":"How to conduct AMR data analysis","text":"tutorial, create fake demonstration data work . can skip Cleaning data already data ready. start analysis, try make structure data generally look like :","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"needed-r-packages","dir":"Articles","previous_headings":"Preparation","what":"Needed R packages","title":"How to conduct AMR data analysis","text":"many uses R, need additional packages AMR data analysis. package works closely together tidyverse packages dplyr ggplot2 RStudio. tidyverse tremendously improves way conduct data science - allows natural way writing syntaxes creating beautiful plots R. also use cleaner package, can used cleaning data creating frequency tables. AMR package contains data set example_isolates_unclean, might look data users extracted laboratory systems: AMR data analysis, like microorganism column contain valid, --date taxonomy, antibiotic columns cleaned SIR values well.","code":"library(dplyr) library(ggplot2) library(AMR) # (if not yet installed, install with:) # install.packages(c(\"dplyr\", \"ggplot2\", \"AMR\")) example_isolates_unclean #> # A tibble: 3,000 × 8 #> patient_id hospital date bacteria AMX AMC CIP GEN #> #> 1 J3 A 2012-11-21 E. coli R I S S #> 2 R7 A 2018-04-03 K. pneumoniae R I S S #> 3 P3 A 2014-09-19 E. coli R S S S #> 4 P10 A 2015-12-10 E. coli S I S S #> 5 B7 A 2015-03-02 E. coli S S S S #> 6 W3 A 2018-03-31 S. aureus R S R S #> 7 J8 A 2016-06-14 E. coli R S S S #> 8 M3 A 2015-10-25 E. coli R S S S #> 9 J3 A 2019-06-19 E. coli S S S S #> 10 G6 A 2015-04-27 S. aureus S S S S #> # ℹ 2,990 more rows # we will use 'our_data' as the data set name for this tutorial our_data <- example_isolates_unclean"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"taxonomy-of-microorganisms","dir":"Articles","previous_headings":"Preparation","what":"Taxonomy of microorganisms","title":"How to conduct AMR data analysis","text":".mo(), users can transform arbitrary microorganism names codes current taxonomy. AMR package contains --date taxonomic data. specific, currently included data retrieved 11 Dec 2022. codes AMR packages come .mo() short, still human readable. importantly, .mo() supports kinds input: first character codes denote taxonomic kingdom, Bacteria (B), Fungi (F), Protozoa (P). AMR package also contain functions directly retrieve taxonomic properties, name, genus, species, family, order, even Gram-stain. start mo_ use .mo() internally, still arbitrary user input can used: Now can thus clean data: Apparently, uncertainty translation taxonomic codes. Let’s check : ’s good.","code":"as.mo(\"Klebsiella pneumoniae\") #> Class 'mo' #> [1] B_KLBSL_PNMN as.mo(\"K. pneumoniae\") #> Class 'mo' #> [1] B_KLBSL_PNMN as.mo(\"KLEPNE\") #> Class 'mo' #> [1] B_KLBSL_PNMN as.mo(\"KLPN\") #> Class 'mo' #> [1] B_KLBSL_PNMN mo_family(\"K. pneumoniae\") #> [1] \"Enterobacteriaceae\" mo_genus(\"K. pneumoniae\") #> [1] \"Klebsiella\" mo_species(\"K. pneumoniae\") #> [1] \"pneumoniae\" mo_gramstain(\"Klebsiella pneumoniae\") #> [1] \"Gram-negative\" mo_ref(\"K. pneumoniae\") #> [1] \"Trevisan, 1887\" mo_snomed(\"K. pneumoniae\") #> [[1]] #> [1] \"1098101000112102\" \"446870005\" \"1098201000112108\" \"409801009\" #> [5] \"56415008\" \"714315002\" \"713926009\" our_data$bacteria <- as.mo(our_data$bacteria, info = TRUE) #> ℹ Microorganism translation was uncertain for four microorganisms. Run #> mo_uncertainties() to review these uncertainties, or use #> add_custom_microorganisms() to add custom entries. mo_uncertainties() #> Matching scores are based on the resemblance between the input and the full #> taxonomic name, and the pathogenicity in humans. See ?mo_matching_score. #> #> -------------------------------------------------------------------------------- #> \"E. coli\" -> Escherichia coli (B_ESCHR_COLI, 0.688) #> Also matched: Enterobacter cowanii (0.600), Eubacterium combesii #> (0.600), Eggerthia catenaformis (0.591), Eubacterium callanderi #> (0.591), Enterocloster citroniae (0.587), Eubacterium cylindroides #> (0.583), Enterococcus casseliflavus (0.577), Enterobacter cloacae #> cloacae (0.571), Enterobacter cloacae complex (0.571), and Ehrlichia #> canis (0.567) #> -------------------------------------------------------------------------------- #> \"K. pneumoniae\" -> Klebsiella pneumoniae (B_KLBSL_PNMN, 0.786) #> Also matched: Klebsiella pneumoniae ozaenae (0.707), Klebsiella #> pneumoniae pneumoniae (0.688), Klebsiella pneumoniae rhinoscleromatis #> (0.658), Klebsiella pasteurii (0.500), Klebsiella planticola (0.500), #> Kingella potus (0.400), Kosakonia pseudosacchari (0.361), Kaistella #> palustris (0.333), Kocuria palustris (0.333), and Kocuria pelophila #> (0.333) #> -------------------------------------------------------------------------------- #> \"S. aureus\" -> Staphylococcus aureus (B_STPHY_AURS, 0.690) #> Also matched: Staphylococcus aureus aureus (0.643), Staphylococcus #> argenteus (0.625), Staphylococcus aureus anaerobius (0.625), Salmonella #> Aurelianis (0.595), Salmonella Aarhus (0.588), Salmonella Amounderness #> (0.587), Selenomonas artemidis (0.571), Salmonella choleraesuis #> arizonae (0.562), Streptococcus anginosus anginosus (0.561), and #> Salmonella Abaetetuba (0.548) #> -------------------------------------------------------------------------------- #> \"S. pneumoniae\" -> Streptococcus pneumoniae (B_STRPT_PNMN, 0.750) #> Also matched: Streptococcus pseudopneumoniae (0.700), Serratia #> proteamaculans quinovora (0.545), Streptococcus pseudoporcinus (0.536), #> Staphylococcus pseudintermedius (0.532), Serratia proteamaculans #> proteamaculans (0.526), Salmonella Portanigra (0.524), Sphingomonas #> paucimobilis (0.520), Streptococcus pluranimalium (0.519), #> Streptococcus constellatus pharyngis (0.514), and Salmonella Pakistan #> (0.500) #> #> Only the first 10 other matches of each record are shown. Run #> print(mo_uncertainties(), n = ...) to view more entries, or save #> mo_uncertainties() to an object."},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"antibiotic-results","dir":"Articles","previous_headings":"Preparation","what":"Antibiotic results","title":"How to conduct AMR data analysis","text":"column antibiotic test results must also cleaned. AMR package comes three new data types work test results: mic minimal inhibitory concentrations (MIC), disk disk diffusion diameters, sir SIR data interpreted already. package can also determine SIR values based MIC disk diffusion values, read .sir() page. now, just clean SIR columns data using dplyr: basically cleaning, time start data inclusion.","code":"# method 1, be explicit about the columns: our_data <- our_data %>% mutate_at(vars(AMX:GEN), as.sir) # method 2, let the AMR package determine the eligible columns our_data <- our_data %>% mutate_if(is_sir_eligible, as.sir) # result: our_data #> # A tibble: 3,000 × 8 #> patient_id hospital date bacteria AMX AMC CIP GEN #> #> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S #> 2 R7 A 2018-04-03 B_KLBSL_PNMN R I S S #> 3 P3 A 2014-09-19 B_ESCHR_COLI R S S S #> 4 P10 A 2015-12-10 B_ESCHR_COLI S I S S #> 5 B7 A 2015-03-02 B_ESCHR_COLI S S S S #> 6 W3 A 2018-03-31 B_STPHY_AURS R S R S #> 7 J8 A 2016-06-14 B_ESCHR_COLI R S S S #> 8 M3 A 2015-10-25 B_ESCHR_COLI R S S S #> 9 J3 A 2019-06-19 B_ESCHR_COLI S S S S #> 10 G6 A 2015-04-27 B_STPHY_AURS S S S S #> # ℹ 2,990 more rows"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"first-isolates","dir":"Articles","previous_headings":"Preparation","what":"First isolates","title":"How to conduct AMR data analysis","text":"need know isolates can actually use analysis without repetition bias. conduct analysis antimicrobial resistance, must include first isolate every patient per episode (Hindler et al., Clin Infect Dis. 2007). , easily get overestimate underestimate resistance antibiotic. Imagine patient admitted MRSA found 5 different blood cultures following weeks (yes, countries like Netherlands blood drawing policies). resistance percentage oxacillin isolates overestimated, included MRSA . clearly selection bias. Clinical Laboratory Standards Institute (CLSI) appoints follows: (…) preparing cumulative antibiogram guide clinical decisions empirical antimicrobial therapy initial infections, first isolate given species per patient, per analysis period (eg, one year) included, irrespective body site, antimicrobial susceptibility profile, phenotypical characteristics (eg, biotype). first isolate easily identified, cumulative antimicrobial susceptibility test data prepared using first isolate generally comparable cumulative antimicrobial susceptibility test data calculated methods, providing duplicate isolates excluded. M39-A4 Analysis Presentation Cumulative Antimicrobial Susceptibility Test Data, 4th Edition. CLSI, 2014. Chapter 6.4 AMR package includes methodology first_isolate() function able apply four different methods defined Hindler et al. 2007: phenotype-based, episode-based, patient-based, isolate-based. right method depends goals analysis, default phenotype-based method case method properly correct duplicate isolates. Read methods first_isolate() page. outcome function can easily added data: 90% suitable resistance analysis! can now filter filter() function, also dplyr package: future use, two syntaxes can shortened: end 2 712 isolates analysis. Now data looks like: Time analysis.","code":"our_data <- our_data %>% mutate(first = first_isolate(info = TRUE)) #> ℹ Determining first isolates using an episode length of 365 days #> ℹ Using column 'bacteria' as input for col_mo. #> ℹ Using column 'date' as input for col_date. #> ℹ Using column 'patient_id' as input for col_patient_id. #> ℹ Basing inclusion on all antimicrobial results, using a points threshold #> of 2 #> => Found 2,712 'phenotype-based' first isolates (90.4% of total where a #> microbial ID was available) our_data_1st <- our_data %>% filter(first == TRUE) our_data_1st <- our_data %>% filter_first_isolate() our_data_1st #> # A tibble: 2,712 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S TRUE #> 2 R7 A 2018-04-03 B_KLBSL_PNMN R I S S TRUE #> 3 P10 A 2015-12-10 B_ESCHR_COLI S I S S TRUE #> 4 B7 A 2015-03-02 B_ESCHR_COLI S S S S TRUE #> 5 W3 A 2018-03-31 B_STPHY_AURS R S R S TRUE #> 6 M3 A 2015-10-25 B_ESCHR_COLI R S S S TRUE #> 7 J3 A 2019-06-19 B_ESCHR_COLI S S S S TRUE #> 8 G6 A 2015-04-27 B_STPHY_AURS S S S S TRUE #> 9 P4 A 2011-06-21 B_ESCHR_COLI S S S S TRUE #> 10 Z1 A 2014-09-05 B_ESCHR_COLI S S S S TRUE #> # ℹ 2,702 more rows"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"analysing-the-data","dir":"Articles","previous_headings":"","what":"Analysing the data","title":"How to conduct AMR data analysis","text":"base R summary() function gives good first impression, comes support new mo sir classes now data set:","code":"summary(our_data_1st) #> patient_id hospital date #> Length:2712 Length:2712 Min. :2011-01-01 #> Class :character Class :character 1st Qu.:2013-05-03 #> Mode :character Mode :character Median :2015-06-16 #> Mean :2015-06-21 #> 3rd Qu.:2017-08-24 #> Max. :2019-12-27 #> bacteria AMX AMC #> Class :mo Class:sir Class:sir #> :0 %S :41.0% (n=1112) %S :52.0% (n=1409) #> Unique:4 %SDD : 0.0% (n=0) %SDD : 0.0% (n=0) #> #1 :B_ESCHR_COLI %I :16.1% (n=437) %I :12.0% (n=325) #> #2 :B_STPHY_AURS %R :42.9% (n=1163) %R :36.1% (n=978) #> #3 :B_STRPT_PNMN %NI : 0.0% (n=0) %NI : 0.0% (n=0) #> CIP GEN first #> Class:sir Class:sir Mode:logical #> %S :51.5% (n=1396) %S :59.6% (n=1616) TRUE:2712 #> %SDD : 0.0% (n=0) %SDD : 0.0% (n=0) #> %I : 6.6% (n=178) %I : 3.1% (n=85) #> %R :42.0% (n=1138) %R :37.3% (n=1011) #> %NI : 0.0% (n=0) %NI : 0.0% (n=0) glimpse(our_data_1st) #> Rows: 2,712 #> Columns: 9 #> $ patient_id \"J3\", \"R7\", \"P10\", \"B7\", \"W3\", \"M3\", \"J3\", \"G6\", \"P4\", \"Z1\"… #> $ hospital \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\",… #> $ date 2012-11-21, 2018-04-03, 2015-12-10, 2015-03-02, 2018-03-31… #> $ bacteria \"B_ESCHR_COLI\", \"B_KLBSL_PNMN\", \"B_ESCHR_COLI\", \"B_ESCHR_COL… #> $ AMX R, R, S, S, R, R, S, S, S, S, R, S, S, S, R, R, R, R, S, R,… #> $ AMC I, I, I, S, S, S, S, S, S, S, S, S, I, S, S, S, S, R, S, S,… #> $ CIP S, S, S, S, R, S, S, S, S, S, S, S, S, S, S, S, S, S, S, S,… #> $ GEN S, S, S, S, S, S, S, S, S, S, R, S, S, S, S, S, S, S, S, S,… #> $ first TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,… # number of unique values per column: sapply(our_data_1st, n_distinct) #> patient_id hospital date bacteria AMX AMC CIP #> 260 3 1852 4 3 3 3 #> GEN first #> 3 1"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"availability-of-species","dir":"Articles","previous_headings":"Analysing the data","what":"Availability of species","title":"How to conduct AMR data analysis","text":"just get idea species distributed, create frequency table count() based name microorganisms:","code":"our_data %>% count(mo_name(bacteria), sort = TRUE) #> # A tibble: 4 × 2 #> `mo_name(bacteria)` n #> #> 1 Escherichia coli 1518 #> 2 Staphylococcus aureus 730 #> 3 Streptococcus pneumoniae 426 #> 4 Klebsiella pneumoniae 326 our_data_1st %>% count(mo_name(bacteria), sort = TRUE) #> # A tibble: 4 × 2 #> `mo_name(bacteria)` n #> #> 1 Escherichia coli 1319 #> 2 Staphylococcus aureus 676 #> 3 Streptococcus pneumoniae 400 #> 4 Klebsiella pneumoniae 317"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"select-and-filter-with-antibiotic-selectors","dir":"Articles","previous_headings":"Analysing the data","what":"Select and filter with antibiotic selectors","title":"How to conduct AMR data analysis","text":"Using -called antibiotic class selectors, can select filter columns based antibiotic class antibiotic results :","code":"our_data_1st %>% select(date, aminoglycosides()) #> ℹ For aminoglycosides() using column 'GEN' (gentamicin) #> # A tibble: 2,712 × 2 #> date GEN #> #> 1 2012-11-21 S #> 2 2018-04-03 S #> 3 2015-12-10 S #> 4 2015-03-02 S #> 5 2018-03-31 S #> 6 2015-10-25 S #> 7 2019-06-19 S #> 8 2015-04-27 S #> 9 2011-06-21 S #> 10 2014-09-05 S #> # ℹ 2,702 more rows our_data_1st %>% select(bacteria, betalactams()) #> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC' #> (amoxicillin/clavulanic acid) #> # A tibble: 2,712 × 3 #> bacteria AMX AMC #> #> 1 B_ESCHR_COLI R I #> 2 B_KLBSL_PNMN R I #> 3 B_ESCHR_COLI S I #> 4 B_ESCHR_COLI S S #> 5 B_STPHY_AURS R S #> 6 B_ESCHR_COLI R S #> 7 B_ESCHR_COLI S S #> 8 B_STPHY_AURS S S #> 9 B_ESCHR_COLI S S #> 10 B_ESCHR_COLI S S #> # ℹ 2,702 more rows our_data_1st %>% select(bacteria, where(is.sir)) #> # A tibble: 2,712 × 5 #> bacteria AMX AMC CIP GEN #> #> 1 B_ESCHR_COLI R I S S #> 2 B_KLBSL_PNMN R I S S #> 3 B_ESCHR_COLI S I S S #> 4 B_ESCHR_COLI S S S S #> 5 B_STPHY_AURS R S R S #> 6 B_ESCHR_COLI R S S S #> 7 B_ESCHR_COLI S S S S #> 8 B_STPHY_AURS S S S S #> 9 B_ESCHR_COLI S S S S #> 10 B_ESCHR_COLI S S S S #> # ℹ 2,702 more rows # filtering using AB selectors is also possible: our_data_1st %>% filter(any(aminoglycosides() == \"R\")) #> ℹ For aminoglycosides() using column 'GEN' (gentamicin) #> # A tibble: 1,011 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 J5 A 2017-12-25 B_STRPT_PNMN R S S R TRUE #> 2 X1 A 2017-07-04 B_STPHY_AURS R S S R TRUE #> 3 B3 A 2016-07-24 B_ESCHR_COLI S S S R TRUE #> 4 V7 A 2012-04-03 B_ESCHR_COLI S S S R TRUE #> 5 C9 A 2017-03-23 B_ESCHR_COLI S S S R TRUE #> 6 R1 A 2018-06-10 B_STPHY_AURS S S S R TRUE #> 7 S2 A 2013-07-19 B_STRPT_PNMN S S S R TRUE #> 8 P5 A 2019-03-09 B_STPHY_AURS S S S R TRUE #> 9 Q8 A 2019-08-10 B_STPHY_AURS S S S R TRUE #> 10 K5 A 2013-03-15 B_STRPT_PNMN S S S R TRUE #> # ℹ 1,001 more rows our_data_1st %>% filter(all(betalactams() == \"R\")) #> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC' #> (amoxicillin/clavulanic acid) #> # A tibble: 483 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE #> 2 R10 A 2013-12-20 B_STPHY_AURS R R S S TRUE #> 3 R7 A 2015-10-25 B_STPHY_AURS R R S S TRUE #> 4 R8 A 2019-10-25 B_STPHY_AURS R R S S TRUE #> 5 B6 A 2016-11-20 B_ESCHR_COLI R R R R TRUE #> 6 I7 A 2015-08-19 B_ESCHR_COLI R R S S TRUE #> 7 N3 A 2014-12-29 B_STRPT_PNMN R R R S TRUE #> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE #> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE #> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE #> # ℹ 473 more rows # even works in base R (since R 3.0): our_data_1st[all(betalactams() == \"R\"), ] #> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC' #> (amoxicillin/clavulanic acid) #> # A tibble: 483 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE #> 2 R10 A 2013-12-20 B_STPHY_AURS R R S S TRUE #> 3 R7 A 2015-10-25 B_STPHY_AURS R R S S TRUE #> 4 R8 A 2019-10-25 B_STPHY_AURS R R S S TRUE #> 5 B6 A 2016-11-20 B_ESCHR_COLI R R R R TRUE #> 6 I7 A 2015-08-19 B_ESCHR_COLI R R S S TRUE #> 7 N3 A 2014-12-29 B_STRPT_PNMN R R R S TRUE #> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE #> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE #> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE #> # ℹ 473 more rows"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"generate-antibiograms","dir":"Articles","previous_headings":"Analysing the data","what":"Generate antibiograms","title":"How to conduct AMR data analysis","text":"Since AMR v2.0 (March 2023), easy create different types antibiograms, support 20 different languages. four antibiogram types, proposed Klinker et al. (2021, DOI 10.1177/20499361211011373), supported new antibiogram() function: Traditional Antibiogram (TA) e.g, susceptibility Pseudomonas aeruginosa piperacillin/tazobactam (TZP) Combination Antibiogram (CA) e.g, sdditional susceptibility Pseudomonas aeruginosa TZP + tobramycin versus TZP alone Syndromic Antibiogram (SA) e.g, susceptibility Pseudomonas aeruginosa TZP among respiratory specimens (obtained among ICU patients ) Weighted-Incidence Syndromic Combination Antibiogram (WISCA) e.g, susceptibility Pseudomonas aeruginosa TZP among respiratory specimens (obtained among ICU patients ) male patients age >=65 years heart failure section, show use antibiogram() function create antibiogram types. starters, included example_isolates data set looks like:","code":"example_isolates #> # A tibble: 2,000 × 46 #> date patient age gender ward mo PEN OXA FLC AMX #> #> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA #> # ℹ 1,990 more rows #> # ℹ 36 more variables: AMC , AMP , TZP , CZO , FEP , #> # CXM , FOX , CTX , CAZ , CRO , GEN , #> # TOB , AMK , KAN , TMP , SXT , NIT , #> # FOS , LNZ , CIP , MFX , VAN , TEC , #> # TCY , TGC , DOX , ERY , CLI , AZM , #> # IPM , MEM , MTR , CHL , COL , MUP , …"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"traditional-antibiogram","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Traditional Antibiogram","title":"How to conduct AMR data analysis","text":"create traditional antibiogram, simply state antibiotics used. antibiotics argument antibiogram() function supports (combination) previously mentioned antibiotic class selectors: Notice antibiogram() function automatically prints right format using Quarto R Markdown (page), even applies italics taxonomic names (using italicise_taxonomy() internally). also uses language OS either English, Chinese, Czech, Danish, Dutch, Finnish, French, German, Greek, Italian, Japanese, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish, Swedish, Turkish, Ukrainian. next example, force language Spanish using language argument:","code":"antibiogram(example_isolates, antibiotics = c(aminoglycosides(), carbapenems())) #> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin) #> ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem) antibiogram(example_isolates, mo_transform = \"gramstain\", antibiotics = aminoglycosides(), ab_transform = \"name\", language = \"es\") #> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"combined-antibiogram","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Combined Antibiogram","title":"How to conduct AMR data analysis","text":"create combined antibiogram, use antibiotic codes names plus + character like :","code":"antibiogram(example_isolates, antibiotics = c(\"TZP\", \"TZP+TOB\", \"TZP+GEN\"))"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"syndromic-antibiogram","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Syndromic Antibiogram","title":"How to conduct AMR data analysis","text":"create syndromic antibiogram, syndromic_group argument must used. can column data, e.g. ifelse() calculations based certain columns:","code":"antibiogram(example_isolates, antibiotics = c(aminoglycosides(), carbapenems()), syndromic_group = \"ward\") #> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin) #> ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"weighted-incidence-syndromic-combination-antibiogram-wisca","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Weighted-Incidence Syndromic Combination Antibiogram (WISCA)","title":"How to conduct AMR data analysis","text":"create WISCA, must state combination therapy antibiotics argument (similar Combination Antibiogram), define syndromic group syndromic_group argument (similar Syndromic Antibiogram) cases predefined based clinical demographic characteristics (e.g., endocarditis 75+ females). next example simplification without clinical characteristics, just gives idea WISCA can created:","code":"wisca <- antibiogram(example_isolates, antibiotics = c(\"AMC\", \"AMC+CIP\", \"TZP\", \"TZP+TOB\"), mo_transform = \"gramstain\", minimum = 10, # this should be >= 30, but now just as example syndromic_group = ifelse(example_isolates$age >= 65 & example_isolates$gender == \"M\", \"WISCA Group 1\", \"WISCA Group 2\")) wisca"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"plotting-antibiograms","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Plotting antibiograms","title":"How to conduct AMR data analysis","text":"Antibiograms can plotted using autoplot() ggplot2 packages, since AMR package provides extension function: calculate antimicrobial resistance sensible way, also correcting results, use resistance() susceptibility() functions.","code":"autoplot(wisca)"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"resistance-percentages","dir":"Articles","previous_headings":"Analysing the data","what":"Resistance percentages","title":"How to conduct AMR data analysis","text":"functions resistance() susceptibility() can used calculate antimicrobial resistance susceptibility. specific analyses, functions proportion_S(), proportion_SI(), proportion_I(), proportion_IR() proportion_R() can used determine proportion specific antimicrobial outcome. functions contain minimum argument, denoting minimum required number test results returning value. functions otherwise return NA. default minimum = 30, following CLSI M39-A4 guideline applying microbial epidemiology. per EUCAST guideline 2019, calculate resistance proportion R (proportion_R(), equal resistance()) susceptibility proportion S (proportion_SI(), equal susceptibility()). functions can used : can used conjunction group_by() summarise(), dplyr package: Author: Dr. Matthijs Berends, 26th Feb 2023","code":"our_data_1st %>% resistance(AMX) #> [1] 0.4288348 our_data_1st %>% group_by(hospital) %>% summarise(amoxicillin = resistance(AMX)) #> # A tibble: 3 × 2 #> hospital amoxicillin #> #> 1 A 0.342 #> 2 B 0.564 #> 3 C 0.372"},{"path":"https://msberends.github.io/AMR/articles/EUCAST.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"How to apply EUCAST rules","text":"EUCAST rules? European Committee Antimicrobial Susceptibility Testing (EUCAST) states website: EUCAST expert rules tabulated collection expert knowledge intrinsic resistances, exceptional resistance phenotypes interpretive rules may applied antimicrobial susceptibility testing order reduce errors make appropriate recommendations reporting particular resistances. Europe, lot medical microbiological laboratories already apply rules (Brown et al., 2015). package features latest insights intrinsic resistance unusual phenotypes (v3.1, 2016). Moreover, eucast_rules() function use purpose can also apply additional rules, like forcing ampicillin = R isolates amoxicillin/clavulanic acid = R.","code":""},{"path":"https://msberends.github.io/AMR/articles/EUCAST.html","id":"examples","dir":"Articles","previous_headings":"","what":"Examples","title":"How to apply EUCAST rules","text":"rules can used discard impossible bug-drug combinations data. example, Klebsiella produces beta-lactamase prevents ampicillin (amoxicillin) working . words, practically every strain Klebsiella resistant ampicillin. Sometimes, laboratory data can still contain strains ampicillin susceptible ampicillin. antibiogram available identification available, antibiogram re-interpreted based identification (namely, Klebsiella). EUCAST expert rules solve , can applied using eucast_rules(): convenient function mo_is_intrinsic_resistant() uses guideline, allows check one specific microorganisms antibiotics: EUCAST rules can used correction, can also used filling known resistance susceptibility based results antimicrobials drugs. process called interpretive reading, basically form imputation, part eucast_rules() function well:","code":"oops <- data.frame( mo = c( \"Klebsiella\", \"Escherichia\" ), ampicillin = \"S\" ) oops #> mo ampicillin #> 1 Klebsiella S #> 2 Escherichia S eucast_rules(oops, info = FALSE) #> mo ampicillin #> 1 Klebsiella R #> 2 Escherichia S mo_is_intrinsic_resistant( c(\"Klebsiella\", \"Escherichia\"), \"ampicillin\" ) #> [1] TRUE FALSE mo_is_intrinsic_resistant( \"Klebsiella\", c(\"ampicillin\", \"kanamycin\") ) #> [1] TRUE FALSE data <- data.frame( mo = c( \"Staphylococcus aureus\", \"Enterococcus faecalis\", \"Escherichia coli\", \"Klebsiella pneumoniae\", \"Pseudomonas aeruginosa\" ), VAN = \"-\", # Vancomycin AMX = \"-\", # Amoxicillin COL = \"-\", # Colistin CAZ = \"-\", # Ceftazidime CXM = \"-\", # Cefuroxime PEN = \"S\", # Benzylenicillin FOX = \"S\", # Cefoxitin stringsAsFactors = FALSE ) data eucast_rules(data)"},{"path":"https://msberends.github.io/AMR/articles/MDR.html","id":"type-of-input","dir":"Articles","previous_headings":"","what":"Type of input","title":"How to determine multi-drug resistance (MDR)","text":"mdro() function takes data set input, regular data.frame. tries automatically determine right columns info isolates, name species columns results antimicrobial agents. See help page info set right settings data command ?mdro. WHONET data (data), settings automatically set correctly.","code":""},{"path":"https://msberends.github.io/AMR/articles/MDR.html","id":"guidelines","dir":"Articles","previous_headings":"","what":"Guidelines","title":"How to determine multi-drug resistance (MDR)","text":"mdro() function support multiple guidelines. can select guideline guideline parameter. Currently supported guidelines (case-insensitive): guideline = \"CMI2012\" (default) Magiorakos AP, Srinivasan et al. “Multidrug-resistant, extensively drug-resistant pandrug-resistant bacteria: international expert proposal interim standard definitions acquired resistance.” Clinical Microbiology Infection (2012) (link) guideline = \"EUCAST3.2\" (simply guideline = \"EUCAST\") European international guideline - EUCAST Expert Rules Version 3.2 “Intrinsic Resistance Unusual Phenotypes” (link) guideline = \"EUCAST3.1\" European international guideline - EUCAST Expert Rules Version 3.1 “Intrinsic Resistance Exceptional Phenotypes Tables” (link) guideline = \"TB\" international guideline multi-drug resistant tuberculosis - World Health Organization “Companion handbook guidelines programmatic management drug-resistant tuberculosis” (link) guideline = \"MRGN\" German national guideline - Mueller et al. (2015) Antimicrobial Resistance Infection Control 4:7. DOI: 10.1186/s13756-015-0047-6 guideline = \"BRMO\" Dutch national guideline - Rijksinstituut voor Volksgezondheid en Milieu “WIP-richtlijn BRMO (Bijzonder Resistente Micro-Organismen) (ZKH)” (link) Please suggest (country-specific) guidelines letting us know: https://github.com/msberends/AMR/issues/new.","code":""},{"path":"https://msberends.github.io/AMR/articles/MDR.html","id":"custom-guidelines","dir":"Articles","previous_headings":"Guidelines","what":"Custom Guidelines","title":"How to determine multi-drug resistance (MDR)","text":"can also use custom guideline. Custom guidelines can set custom_mdro_guideline() function. great importance custom rules determine MDROs hospital, e.g., rules dependent ward, state contact isolation variables data. familiar case_when() dplyr package, recognise input method set rules. Rules must set using R considers ‘formula notation’: row/isolate matches first rule, value first ~ (case ‘Elderly Type ’) set MDRO value. Otherwise, second rule tried . maximum number rules unlimited. can print rules set console overview. Colours help reading console supports colours. outcome function can used guideline argument mdro() function: rules set (custom object case) exported shared file location using saveRDS() collaborate multiple users. custom rules set imported using readRDS().","code":"custom <- custom_mdro_guideline( CIP == \"R\" & age > 60 ~ \"Elderly Type A\", ERY == \"R\" & age > 60 ~ \"Elderly Type B\" ) custom #> A set of custom MDRO rules: #> 1. If CIP is \"R\" and age is higher than 60 then: Elderly Type A #> 2. If ERY is \"R\" and age is higher than 60 then: Elderly Type B #> 3. Otherwise: Negative #> #> Unmatched rows will return NA. #> Results will be of class 'factor', with ordered levels: Negative < Elderly Type A < Elderly Type B x <- mdro(example_isolates, guideline = custom) table(x) #> x #> Negative Elderly Type A Elderly Type B #> 1070 198 732"},{"path":"https://msberends.github.io/AMR/articles/MDR.html","id":"examples","dir":"Articles","previous_headings":"","what":"Examples","title":"How to determine multi-drug resistance (MDR)","text":"mdro() function always returns ordered factor predefined guidelines. example, output default guideline Magiorakos et al. returns factor levels ‘Negative’, ‘MDR’, ‘XDR’ ‘PDR’ order. next example uses example_isolates data set. data set included package contains full antibiograms 2,000 microbial isolates. reflects reality can used practise AMR data analysis. test MDR/XDR/PDR guideline data set, get: Frequency table Class: factor > ordered (numeric) Length: 2,000 Levels: 4: Negative < Multi-drug-resistant (MDR) < Extensively drug-resistant … Available: 1,729 (86.45%, NA: 271 = 13.55%) Unique: 2 another example, create data set determine multi-drug resistant TB: column names automatically verified valid drug names codes, worked exactly way: data set now looks like : can now add interpretation MDR-TB data set. can use: shortcut mdr_tb(): Create frequency table results: Frequency table Class: factor > ordered (numeric) Length: 5,000 Levels: 5: Negative < Mono-resistant < Poly-resistant < Multi-drug-resistant <… Available: 5,000 (100%, NA: 0 = 0%) Unique: 5","code":"library(dplyr) # to support pipes: %>% library(cleaner) # to create frequency tables example_isolates %>% mdro() %>% freq() # show frequency table of the result #> Warning: in mdro(): NA introduced for isolates where the available percentage of #> antimicrobial classes was below 50% (set with pct_required_classes) # random_sir() is a helper function to generate # a random vector with values S, I and R my_TB_data <- data.frame( rifampicin = random_sir(5000), isoniazid = random_sir(5000), gatifloxacin = random_sir(5000), ethambutol = random_sir(5000), pyrazinamide = random_sir(5000), moxifloxacin = random_sir(5000), kanamycin = random_sir(5000) ) my_TB_data <- data.frame( RIF = random_sir(5000), INH = random_sir(5000), GAT = random_sir(5000), ETH = random_sir(5000), PZA = random_sir(5000), MFX = random_sir(5000), KAN = random_sir(5000) ) head(my_TB_data) #> rifampicin isoniazid gatifloxacin ethambutol pyrazinamide moxifloxacin #> 1 I R S S S S #> 2 S S I R R S #> 3 R I I I R I #> 4 I S S S S S #> 5 I I I S I S #> 6 R S R S I I #> kanamycin #> 1 R #> 2 I #> 3 S #> 4 I #> 5 I #> 6 I mdro(my_TB_data, guideline = \"TB\") my_TB_data$mdr <- mdr_tb(my_TB_data) #> ℹ No column found as input for col_mo, assuming all rows contain #> Mycobacterium tuberculosis. freq(my_TB_data$mdr)"},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/PCA.html","id":"transforming","dir":"Articles","previous_headings":"","what":"Transforming","title":"How to conduct principal component analysis (PCA) for AMR","text":"PCA, need transform AMR data first. example_isolates data set package looks like: Now transform data set resistance percentages per taxonomic order genus:","code":"library(AMR) library(dplyr) glimpse(example_isolates) #> Rows: 2,000 #> Columns: 46 #> $ date 2002-01-02, 2002-01-03, 2002-01-07, 2002-01-07, 2002-01-13, 2… #> $ patient \"A77334\", \"A77334\", \"067927\", \"067927\", \"067927\", \"067927\", \"4… #> $ age 65, 65, 45, 45, 45, 45, 78, 78, 45, 79, 67, 67, 71, 71, 75, 50… #> $ gender \"F\", \"F\", \"F\", \"F\", \"F\", \"F\", \"M\", \"M\", \"F\", \"F\", \"M\", \"M\", \"M… #> $ ward \"Clinical\", \"Clinical\", \"ICU\", \"ICU\", \"ICU\", \"ICU\", \"Clinical\"… #> $ mo \"B_ESCHR_COLI\", \"B_ESCHR_COLI\", \"B_STPHY_EPDR\", \"B_STPHY_EPDR\",… #> $ PEN R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, S,… #> $ OXA NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ FLC NA, NA, R, R, R, R, S, S, R, S, S, S, NA, NA, NA, NA, NA, R, R… #> $ AMX NA, NA, NA, NA, NA, NA, R, R, NA, NA, NA, NA, NA, NA, R, NA, N… #> $ AMC I, I, NA, NA, NA, NA, S, S, NA, NA, S, S, I, I, R, I, I, NA, N… #> $ AMP NA, NA, NA, NA, NA, NA, R, R, NA, NA, NA, NA, NA, NA, R, NA, N… #> $ TZP NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ CZO NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, NA,… #> $ FEP NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ CXM I, I, R, R, R, R, S, S, R, S, S, S, S, S, NA, S, S, R, R, S, S… #> $ FOX NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, NA,… #> $ CTX NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, S, S… #> $ CAZ NA, NA, R, R, R, R, R, R, R, R, R, R, NA, NA, NA, S, S, R, R, … #> $ CRO NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, S, S… #> $ GEN NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ TOB NA, NA, NA, NA, NA, NA, S, S, NA, NA, NA, NA, S, S, NA, NA, NA… #> $ AMK NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ KAN NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ TMP R, R, S, S, R, R, R, R, S, S, NA, NA, S, S, S, S, S, R, R, R, … #> $ SXT R, R, S, S, NA, NA, NA, NA, S, S, NA, NA, S, S, S, S, S, NA, N… #> $ NIT NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R,… #> $ FOS NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ LNZ R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R, R, R, N… #> $ CIP NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, NA, NA, NA, NA, S, S… #> $ MFX NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ VAN R, R, S, S, S, S, S, S, S, S, NA, NA, R, R, R, R, R, S, S, S, … #> $ TEC R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R, R, R, N… #> $ TCY R, R, S, S, S, S, S, S, S, I, S, S, NA, NA, I, R, R, S, I, R, … #> $ TGC NA, NA, S, S, S, S, S, S, S, NA, S, S, NA, NA, NA, R, R, S, NA… #> $ DOX NA, NA, S, S, S, S, S, S, S, NA, S, S, NA, NA, NA, R, R, S, NA… #> $ ERY R, R, R, R, R, R, S, S, R, S, S, S, R, R, R, R, R, R, R, R, S,… #> $ CLI R, R, NA, NA, NA, R, NA, NA, NA, NA, NA, NA, R, R, R, R, R, NA… #> $ AZM R, R, R, R, R, R, S, S, R, S, S, S, R, R, R, R, R, R, R, R, S,… #> $ IPM NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, S, S… #> $ MEM NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ MTR NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ CHL NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ COL NA, NA, R, R, R, R, R, R, R, R, R, R, NA, NA, NA, R, R, R, R, … #> $ MUP NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ RIF R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R, R, R, N… resistance_data <- example_isolates %>% group_by( order = mo_order(mo), # group on anything, like order genus = mo_genus(mo) ) %>% # and genus as we do here summarise_if(is.sir, resistance) %>% # then get resistance of all drugs select( order, genus, AMC, CXM, CTX, CAZ, GEN, TOB, TMP, SXT ) # and select only relevant columns head(resistance_data) #> # A tibble: 6 × 10 #> # Groups: order [5] #> order genus AMC CXM CTX CAZ GEN TOB TMP SXT #>
(this beta version will eventually become v3.0. We’re happy to reach a new major milestone soon, which will be all about the new One Health support! Install this beta using the instructions here.)
This package now supports not only tools for AMR data analysis in clinical settings, but also for veterinary and environmental microbiology. This was made possible through a collaboration with the University of Prince Edward Island, Canada. To celebrate this great improvement of the package, we also updated the package logo to reflect this change.
rsi
sir
as.sir()
breakpoint_type = "animal"
host
clinical_breakpoints
ab_url()
as.double()
NA
summary()
scale_*_mic()
scale_x_mic()
scale_y_mic()
scale_colour_mic()
scale_fill_mic()
rescale_mic()
mo_group_members()
mo_group_members("Strep group C")
ab
mo
uti
as.sir(..., ab = "column1", mo = "column2", uti = "column3")
nitrofurans()
rifamycins()
CLSI M100: Performance Standard for Antimicrobial Susceptibility Testing, 2011-2024, Clinical and Laboratory Standards Institute (CLSI). https://clsi.org/standards/products/microbiology/documents/m100/.
CLSI VET01: Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 2019-2024, Clinical and Laboratory Standards Institute (CLSI). https://clsi.org/standards/products/veterinary-medicine/documents/vet01//.
EUCAST Breakpoint tables for interpretation of MICs and zone diameters, 2011-2024, European Committee on Antimicrobial Susceptibility Testing (EUCAST). https://www.eucast.org/clinical_breakpoints.
WHONET as a source for machine-reading clinical breakpoints ((read more here)https://msberends.github.io/AMR/reference/clinical_breakpoints.html#imported-from-whonet), 1989-2024, WHO Collaborating Centre for Surveillance of Antimicrobial Resistance. https://whonet.org/.
WHONET as a source for machine-reading the clinical breakpoints (read more here), 1989-2024, WHO Collaborating Centre for Surveillance of Antimicrobial Resistance. https://whonet.org/.