mirror of
				https://github.com/msberends/AMR.git
				synced 2025-10-31 02:08:20 +01:00 
			
		
		
		
	(v1.2.0.9030) GitHub Actions
This commit is contained in:
		
							
								
								
									
										370
									
								
								docs_/articles/resistance_predict.html
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										370
									
								
								docs_/articles/resistance_predict.html
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,370 @@ | ||||
| <!DOCTYPE html> | ||||
| <!-- Generated by pkgdown: do not edit by hand --><html lang="en"> | ||||
| <head> | ||||
| <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> | ||||
| <meta charset="utf-8"> | ||||
| <meta http-equiv="X-UA-Compatible" content="IE=edge"> | ||||
| <meta name="viewport" content="width=device-width, initial-scale=1.0"> | ||||
| <title>How to predict antimicrobial resistance • AMR (for R)</title> | ||||
| <!-- favicons --><link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png"> | ||||
| <link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png"> | ||||
| <link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png"> | ||||
| <link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png"> | ||||
| <link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png"> | ||||
| <link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png"> | ||||
| <!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link href="https://cdnjs.cloudflare.com/ajax/libs/bootswatch/3.4.0/flatly/bootstrap.min.css" rel="stylesheet" crossorigin="anonymous"> | ||||
| <script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../bootstrap-toc.css"> | ||||
| <script src="../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"> | ||||
| <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"> | ||||
| <!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"> | ||||
| <script src="../pkgdown.js"></script><link href="../extra.css" rel="stylesheet"> | ||||
| <script src="../extra.js"></script><meta property="og:title" content="How to predict antimicrobial resistance"> | ||||
| <meta property="og:description" content="AMR"> | ||||
| <meta property="og:image" content="https://msberends.gitlab.io/AMR/logo.svg"> | ||||
| <!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]> | ||||
| <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> | ||||
| <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> | ||||
| <![endif]--> | ||||
| </head> | ||||
| <body data-spy="scroll" data-target="#toc"> | ||||
|     <div class="container template-article"> | ||||
|       <header><div class="navbar navbar-default navbar-fixed-top" role="navigation"> | ||||
|   <div class="container"> | ||||
|     <div class="navbar-header"> | ||||
|       <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> | ||||
|         <span class="sr-only">Toggle navigation</span> | ||||
|         <span class="icon-bar"></span> | ||||
|         <span class="icon-bar"></span> | ||||
|         <span class="icon-bar"></span> | ||||
|       </button> | ||||
|       <span class="navbar-brand"> | ||||
|         <a class="navbar-link" href="../index.html">AMR (for R)</a> | ||||
|         <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.2.0</span> | ||||
|       </span> | ||||
|     </div> | ||||
|  | ||||
|     <div id="navbar" class="navbar-collapse collapse"> | ||||
|       <ul class="nav navbar-nav"> | ||||
| <li> | ||||
|   <a href="../index.html"> | ||||
|     <span class="fa fa-home"></span> | ||||
|       | ||||
|     Home | ||||
|   </a> | ||||
| </li> | ||||
| <li class="dropdown"> | ||||
|   <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false"> | ||||
|     <span class="fa fa-question-circle"></span> | ||||
|       | ||||
|     How to | ||||
|       | ||||
|     <span class="caret"></span> | ||||
|   </a> | ||||
|   <ul class="dropdown-menu" role="menu"> | ||||
| <li> | ||||
|       <a href="../articles/AMR.html"> | ||||
|         <span class="fa fa-directions"></span> | ||||
|           | ||||
|         Conduct AMR analysis | ||||
|       </a> | ||||
|     </li> | ||||
|     <li> | ||||
|       <a href="../articles/resistance_predict.html"> | ||||
|         <span class="fa fa-dice"></span> | ||||
|           | ||||
|         Predict antimicrobial resistance | ||||
|       </a> | ||||
|     </li> | ||||
|     <li> | ||||
|       <a href="../articles/PCA.html"> | ||||
|         <span class="fa fa-compress"></span> | ||||
|           | ||||
|         Conduct principal component analysis for AMR | ||||
|       </a> | ||||
|     </li> | ||||
|     <li> | ||||
|       <a href="../articles/MDR.html"> | ||||
|         <span class="fa fa-skull-crossbones"></span> | ||||
|           | ||||
|         Determine multi-drug resistance (MDR) | ||||
|       </a> | ||||
|     </li> | ||||
|     <li> | ||||
|       <a href="../articles/WHONET.html"> | ||||
|         <span class="fa fa-globe-americas"></span> | ||||
|           | ||||
|         Work with WHONET data | ||||
|       </a> | ||||
|     </li> | ||||
|     <li> | ||||
|       <a href="../articles/SPSS.html"> | ||||
|         <span class="fa fa-file-upload"></span> | ||||
|           | ||||
|         Import data from SPSS/SAS/Stata | ||||
|       </a> | ||||
|     </li> | ||||
|     <li> | ||||
|       <a href="../articles/EUCAST.html"> | ||||
|         <span class="fa fa-exchange-alt"></span> | ||||
|           | ||||
|         Apply EUCAST rules | ||||
|       </a> | ||||
|     </li> | ||||
|     <li> | ||||
|       <a href="../reference/mo_property.html"> | ||||
|         <span class="fa fa-bug"></span> | ||||
|           | ||||
|         Get properties of a microorganism | ||||
|       </a> | ||||
|     </li> | ||||
|     <li> | ||||
|       <a href="../reference/ab_property.html"> | ||||
|         <span class="fa fa-capsules"></span> | ||||
|           | ||||
|         Get properties of an antibiotic | ||||
|       </a> | ||||
|     </li> | ||||
|     <li> | ||||
|       <a href="../articles/benchmarks.html"> | ||||
|         <span class="fa fa-shipping-fast"></span> | ||||
|           | ||||
|         Other: benchmarks | ||||
|       </a> | ||||
|     </li> | ||||
|   </ul> | ||||
| </li> | ||||
| <li> | ||||
|   <a href="../reference/"> | ||||
|     <span class="fa fa-book-open"></span> | ||||
|       | ||||
|     Manual | ||||
|   </a> | ||||
| </li> | ||||
| <li> | ||||
|   <a href="../authors.html"> | ||||
|     <span class="fa fa-users"></span> | ||||
|       | ||||
|     Authors | ||||
|   </a> | ||||
| </li> | ||||
| <li> | ||||
|   <a href="../news/"> | ||||
|     <span class="far fa far fa-newspaper"></span> | ||||
|       | ||||
|     Changelog | ||||
|   </a> | ||||
| </li> | ||||
|       </ul> | ||||
| <ul class="nav navbar-nav navbar-right"> | ||||
| <li> | ||||
|   <a href="https://gitlab.com/msberends/AMR"> | ||||
|     <span class="fab fa fab fa-gitlab"></span> | ||||
|       | ||||
|     Source Code | ||||
|   </a> | ||||
| </li> | ||||
| <li> | ||||
|   <a href="../LICENSE-text.html"> | ||||
|     <span class="fa fa-book"></span> | ||||
|       | ||||
|     Licence | ||||
|   </a> | ||||
| </li> | ||||
|       </ul> | ||||
| </div> | ||||
| <!--/.nav-collapse --> | ||||
|   </div> | ||||
| <!--/.container --> | ||||
| </div> | ||||
| <!--/.navbar --> | ||||
|  | ||||
|        | ||||
|  | ||||
|       </header><div class="row"> | ||||
|   <div class="col-md-9 contents"> | ||||
|     <div class="page-header toc-ignore"> | ||||
|       <h1 data-toc-skip>How to predict antimicrobial resistance</h1> | ||||
|                         <h4 class="author">Matthijs S. Berends</h4> | ||||
|              | ||||
|             <h4 class="date">28 May 2020</h4> | ||||
|        | ||||
|       <small class="dont-index">Source: <a href="https://gitlab.com/msberends/AMR/blob/master/vignettes/resistance_predict.Rmd"><code>vignettes/resistance_predict.Rmd</code></a></small> | ||||
|       <div class="hidden name"><code>resistance_predict.Rmd</code></div> | ||||
|  | ||||
|     </div> | ||||
|  | ||||
|      | ||||
|      | ||||
| <div id="needed-r-packages" class="section level2"> | ||||
| <h2 class="hasAnchor"> | ||||
| <a href="#needed-r-packages" class="anchor"></a>Needed R packages</h2> | ||||
| <p>As with many uses in R, we need some additional packages for AMR analysis. Our package works closely together with the <a href="https://www.tidyverse.org">tidyverse packages</a> <a href="https://dplyr.tidyverse.org/"><code>dplyr</code></a> and <a href="https://ggplot2.tidyverse.org"><code>ggplot2</code></a> by Dr Hadley Wickham. The tidyverse tremendously improves the way we conduct data science - it allows for a very natural way of writing syntaxes and creating beautiful plots in R.</p> | ||||
| <p>Our <code>AMR</code> package depends on these packages and even extends their use and functions.</p> | ||||
| <div class="sourceCode" id="cb1"><html><body><pre class="r"><span class="fu"><a href="https://rdrr.io/r/base/library.html">library</a></span>(<span class="no">dplyr</span>) | ||||
| <span class="fu"><a href="https://rdrr.io/r/base/library.html">library</a></span>(<span class="no">ggplot2</span>) | ||||
| <span class="fu"><a href="https://rdrr.io/r/base/library.html">library</a></span>(<span class="no">AMR</span>) | ||||
|  | ||||
| <span class="co"># (if not yet installed, install with:)</span> | ||||
| <span class="co"># install.packages(c("tidyverse", "AMR"))</span></pre></body></html></div> | ||||
| </div> | ||||
| <div id="prediction-analysis" class="section level2"> | ||||
| <h2 class="hasAnchor"> | ||||
| <a href="#prediction-analysis" class="anchor"></a>Prediction analysis</h2> | ||||
| <p>Our package contains a function <code><a href="../reference/resistance_predict.html">resistance_predict()</a></code>, which takes the same input as functions for <a href="./AMR.html">other AMR analysis</a>. Based on a date column, it calculates cases per year and uses a regression model to predict antimicrobial resistance.</p> | ||||
| <p>It is basically as easy as:</p> | ||||
| <div class="sourceCode" id="cb2"><html><body><pre class="r"># resistance prediction of piperacillin/tazobactam (TZP): | ||||
| resistance_predict(tbl = example_isolates, col_date = "date", col_ab = "TZP", model = "binomial") | ||||
|  | ||||
| # or: | ||||
| example_isolates %>%  | ||||
|   resistance_predict(col_ab = "TZP", | ||||
|                      model  "binomial") | ||||
|  | ||||
| # to bind it to object 'predict_TZP' for example: | ||||
| predict_TZP <- example_isolates %>%  | ||||
|   resistance_predict(col_ab = "TZP", | ||||
|                      model = "binomial")</pre></body></html></div> | ||||
| <p>The function will look for a date column itself if <code>col_date</code> is not set.</p> | ||||
| <p>When running any of these commands, a summary of the regression model will be printed unless using <code><a href="../reference/resistance_predict.html">resistance_predict(..., info = FALSE)</a></code>.</p> | ||||
| <pre><code># NOTE: Using column `date` as input for `col_date`.</code></pre> | ||||
| <p>This text is only a printed summary - the actual result (output) of the function is a <code>data.frame</code> containing for each year: the number of observations, the actual observed resistance, the estimated resistance and the standard error below and above the estimation:</p> | ||||
| <div class="sourceCode" id="cb4"><html><body><pre class="r"><span class="no">predict_TZP</span> | ||||
| <span class="co">#    year      value    se_min    se_max observations   observed  estimated</span> | ||||
| <span class="co"># 1  2002 0.20000000        NA        NA           15 0.20000000 0.05616378</span> | ||||
| <span class="co"># 2  2003 0.06250000        NA        NA           32 0.06250000 0.06163839</span> | ||||
| <span class="co"># 3  2004 0.08536585        NA        NA           82 0.08536585 0.06760841</span> | ||||
| <span class="co"># 4  2005 0.05000000        NA        NA           60 0.05000000 0.07411100</span> | ||||
| <span class="co"># 5  2006 0.05084746        NA        NA           59 0.05084746 0.08118454</span> | ||||
| <span class="co"># 6  2007 0.12121212        NA        NA           66 0.12121212 0.08886843</span> | ||||
| <span class="co"># 7  2008 0.04166667        NA        NA           72 0.04166667 0.09720264</span> | ||||
| <span class="co"># 8  2009 0.01639344        NA        NA           61 0.01639344 0.10622731</span> | ||||
| <span class="co"># 9  2010 0.05660377        NA        NA           53 0.05660377 0.11598223</span> | ||||
| <span class="co"># 10 2011 0.18279570        NA        NA           93 0.18279570 0.12650615</span> | ||||
| <span class="co"># 11 2012 0.30769231        NA        NA           65 0.30769231 0.13783610</span> | ||||
| <span class="co"># 12 2013 0.06896552        NA        NA           58 0.06896552 0.15000651</span> | ||||
| <span class="co"># 13 2014 0.10000000        NA        NA           60 0.10000000 0.16304829</span> | ||||
| <span class="co"># 14 2015 0.23636364        NA        NA           55 0.23636364 0.17698785</span> | ||||
| <span class="co"># 15 2016 0.22619048        NA        NA           84 0.22619048 0.19184597</span> | ||||
| <span class="co"># 16 2017 0.16279070        NA        NA           86 0.16279070 0.20763675</span> | ||||
| <span class="co"># 17 2018 0.22436641 0.1938710 0.2548618           NA         NA 0.22436641</span> | ||||
| <span class="co"># 18 2019 0.24203228 0.2062911 0.2777735           NA         NA 0.24203228</span> | ||||
| <span class="co"># 19 2020 0.26062172 0.2191758 0.3020676           NA         NA 0.26062172</span> | ||||
| <span class="co"># 20 2021 0.28011130 0.2325557 0.3276669           NA         NA 0.28011130</span> | ||||
| <span class="co"># 21 2022 0.30046606 0.2464567 0.3544755           NA         NA 0.30046606</span> | ||||
| <span class="co"># 22 2023 0.32163907 0.2609011 0.3823771           NA         NA 0.32163907</span> | ||||
| <span class="co"># 23 2024 0.34357130 0.2759081 0.4112345           NA         NA 0.34357130</span> | ||||
| <span class="co"># 24 2025 0.36619175 0.2914934 0.4408901           NA         NA 0.36619175</span> | ||||
| <span class="co"># 25 2026 0.38941799 0.3076686 0.4711674           NA         NA 0.38941799</span> | ||||
| <span class="co"># 26 2027 0.41315710 0.3244399 0.5018743           NA         NA 0.41315710</span> | ||||
| <span class="co"># 27 2028 0.43730688 0.3418075 0.5328063           NA         NA 0.43730688</span> | ||||
| <span class="co"># 28 2029 0.46175755 0.3597639 0.5637512           NA         NA 0.46175755</span> | ||||
| <span class="co"># 29 2030 0.48639359 0.3782932 0.5944939           NA         NA 0.48639359</span></pre></body></html></div> | ||||
| <p>The function <code>plot</code> is available in base R, and can be extended by other packages to depend the output based on the type of input. We extended its function to cope with resistance predictions:</p> | ||||
| <div class="sourceCode" id="cb5"><html><body><pre class="r"><span class="fu"><a href="https://rdrr.io/r/base/plot.html">plot</a></span>(<span class="no">predict_TZP</span>)</pre></body></html></div> | ||||
| <p><img src="resistance_predict_files/figure-html/unnamed-chunk-4-1.png" width="720"></p> | ||||
| <p>This is the fastest way to plot the result. It automatically adds the right axes, error bars, titles, number of available observations and type of model.</p> | ||||
| <p>We also support the <code>ggplot2</code> package with our custom function <code><a href="../reference/resistance_predict.html">ggplot_rsi_predict()</a></code> to create more appealing plots:</p> | ||||
| <div class="sourceCode" id="cb6"><html><body><pre class="r"><span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span>(<span class="no">predict_TZP</span>)</pre></body></html></div> | ||||
| <p><img src="resistance_predict_files/figure-html/unnamed-chunk-5-1.png" width="720"></p> | ||||
| <div class="sourceCode" id="cb7"><html><body><pre class="r"> | ||||
| <span class="co"># choose for error bars instead of a ribbon</span> | ||||
| <span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span>(<span class="no">predict_TZP</span>, <span class="kw">ribbon</span> <span class="kw">=</span> <span class="fl">FALSE</span>)</pre></body></html></div> | ||||
| <p><img src="resistance_predict_files/figure-html/unnamed-chunk-5-2.png" width="720"></p> | ||||
| <div id="choosing-the-right-model" class="section level3"> | ||||
| <h3 class="hasAnchor"> | ||||
| <a href="#choosing-the-right-model" class="anchor"></a>Choosing the right model</h3> | ||||
| <p>Resistance is not easily predicted; if we look at vancomycin resistance in Gram-positive bacteria, the spread (i.e. standard error) is enormous:</p> | ||||
| <div class="sourceCode" id="cb8"><html><body><pre class="r"><span class="no">example_isolates</span> <span class="kw">%>%</span> | ||||
|   <span class="fu"><a href="https://dplyr.tidyverse.org/reference/filter.html">filter</a></span>(<span class="fu"><a href="../reference/mo_property.html">mo_gramstain</a></span>(<span class="no">mo</span>, <span class="kw">language</span> <span class="kw">=</span> <span class="kw">NULL</span>) <span class="kw">==</span> <span class="st">"Gram-positive"</span>) <span class="kw">%>%</span> | ||||
|   <span class="fu"><a href="../reference/resistance_predict.html">resistance_predict</a></span>(<span class="kw">col_ab</span> <span class="kw">=</span> <span class="st">"VAN"</span>, <span class="kw">year_min</span> <span class="kw">=</span> <span class="fl">2010</span>, <span class="kw">info</span> <span class="kw">=</span> <span class="fl">FALSE</span>, <span class="kw">model</span> <span class="kw">=</span> <span class="st">"binomial"</span>) <span class="kw">%>%</span> | ||||
|   <span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span>() | ||||
| <span class="co"># NOTE: Using column `date` as input for `col_date`.</span></pre></body></html></div> | ||||
| <p><img src="resistance_predict_files/figure-html/unnamed-chunk-6-1.png" width="720"></p> | ||||
| <p>Vancomycin resistance could be 100% in ten years, but might also stay around 0%.</p> | ||||
| <p>You can define the model with the <code>model</code> parameter. The model chosen above is a generalised linear regression model using a binomial distribution, assuming that a period of zero resistance was followed by a period of increasing resistance leading slowly to more and more resistance.</p> | ||||
| <p>Valid values are:</p> | ||||
| <table class="table"> | ||||
| <colgroup> | ||||
| <col width="32%"> | ||||
| <col width="25%"> | ||||
| <col width="42%"> | ||||
| </colgroup> | ||||
| <thead><tr class="header"> | ||||
| <th>Input values</th> | ||||
| <th>Function used by R</th> | ||||
| <th>Type of model</th> | ||||
| </tr></thead> | ||||
| <tbody> | ||||
| <tr class="odd"> | ||||
| <td> | ||||
| <code>"binomial"</code> or <code>"binom"</code> or <code>"logit"</code> | ||||
| </td> | ||||
| <td><code><a href="https://rdrr.io/r/stats/glm.html">glm(..., family = binomial)</a></code></td> | ||||
| <td>Generalised linear model with binomial distribution</td> | ||||
| </tr> | ||||
| <tr class="even"> | ||||
| <td> | ||||
| <code>"loglin"</code> or <code>"poisson"</code> | ||||
| </td> | ||||
| <td><code><a href="https://rdrr.io/r/stats/glm.html">glm(..., family = poisson)</a></code></td> | ||||
| <td>Generalised linear model with poisson distribution</td> | ||||
| </tr> | ||||
| <tr class="odd"> | ||||
| <td> | ||||
| <code>"lin"</code> or <code>"linear"</code> | ||||
| </td> | ||||
| <td><code><a href="https://rdrr.io/r/stats/lm.html">lm()</a></code></td> | ||||
| <td>Linear model</td> | ||||
| </tr> | ||||
| </tbody> | ||||
| </table> | ||||
| <p>For the vancomycin resistance in Gram-positive bacteria, a linear model might be more appropriate since no binomial distribution is to be expected based on the observed years:</p> | ||||
| <div class="sourceCode" id="cb9"><html><body><pre class="r"><span class="no">example_isolates</span> <span class="kw">%>%</span> | ||||
|   <span class="fu"><a href="https://dplyr.tidyverse.org/reference/filter.html">filter</a></span>(<span class="fu"><a href="../reference/mo_property.html">mo_gramstain</a></span>(<span class="no">mo</span>, <span class="kw">language</span> <span class="kw">=</span> <span class="kw">NULL</span>) <span class="kw">==</span> <span class="st">"Gram-positive"</span>) <span class="kw">%>%</span> | ||||
|   <span class="fu"><a href="../reference/resistance_predict.html">resistance_predict</a></span>(<span class="kw">col_ab</span> <span class="kw">=</span> <span class="st">"VAN"</span>, <span class="kw">year_min</span> <span class="kw">=</span> <span class="fl">2010</span>, <span class="kw">info</span> <span class="kw">=</span> <span class="fl">FALSE</span>, <span class="kw">model</span> <span class="kw">=</span> <span class="st">"linear"</span>) <span class="kw">%>%</span> | ||||
|   <span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span>() | ||||
| <span class="co"># NOTE: Using column `date` as input for `col_date`.</span></pre></body></html></div> | ||||
| <p><img src="resistance_predict_files/figure-html/unnamed-chunk-7-1.png" width="720"></p> | ||||
| <p>This seems more likely, doesn’t it?</p> | ||||
| <p>The model itself is also available from the object, as an <code>attribute</code>:</p> | ||||
| <div class="sourceCode" id="cb10"><html><body><pre class="r"><span class="no">model</span> <span class="kw"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/attributes.html">attributes</a></span>(<span class="no">predict_TZP</span>)$<span class="no">model</span> | ||||
|  | ||||
| <span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span>(<span class="no">model</span>)$<span class="no">family</span> | ||||
| <span class="co"># </span> | ||||
| <span class="co"># Family: binomial </span> | ||||
| <span class="co"># Link function: logit</span> | ||||
|  | ||||
| <span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span>(<span class="no">model</span>)$<span class="no">coefficients</span> | ||||
| <span class="co">#                  Estimate  Std. Error   z value     Pr(>|z|)</span> | ||||
| <span class="co"># (Intercept) -200.67944891 46.17315349 -4.346237 1.384932e-05</span> | ||||
| <span class="co"># year           0.09883005  0.02295317  4.305725 1.664395e-05</span></pre></body></html></div> | ||||
| </div> | ||||
| </div> | ||||
|   </div> | ||||
|  | ||||
|   <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> | ||||
|  | ||||
|         <nav id="toc" data-toggle="toc"><h2 data-toc-skip>Contents</h2> | ||||
|     </nav> | ||||
| </div> | ||||
|  | ||||
| </div> | ||||
|  | ||||
|  | ||||
|  | ||||
|       <footer><div class="copyright"> | ||||
|   <p>Developed by <a href="https://www.rug.nl/staff/m.s.berends/">Matthijs S. Berends</a>, <a href="https://www.rug.nl/staff/c.f.luz/">Christian F. Luz</a>, <a href="https://www.rug.nl/staff/a.w.friedrich/">Alexander W. Friedrich</a>, <a href="https://www.rug.nl/staff/b.sinha/">Bhanu N. M. Sinha</a>, <a href="https://www.rug.nl/staff/c.j.albers/">Casper J. Albers</a>, <a href="https://www.rug.nl/staff/c.glasner/">Corinna Glasner</a>.</p> | ||||
| </div> | ||||
|  | ||||
| <div class="pkgdown"> | ||||
|   <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.5.1.</p> | ||||
| </div> | ||||
|  | ||||
|       </footer> | ||||
| </div> | ||||
|  | ||||
|    | ||||
|  | ||||
|  | ||||
|   </body> | ||||
| </html> | ||||
		Reference in New Issue
	
	Block a user