@@ -385,19 +385,19 @@ names or codes, this would have worked exactly the same way:
head ( my_TB_data )
# rifampicin isoniazid gatifloxacin ethambutol pyrazinamide moxifloxacin
-# 1 S I S R I S
-# 2 S R I I R I
-# 3 S S S S R R
-# 4 S R S I I R
-# 5 S I R S R I
-# 6 S R I R R S
+# 1 I R S S R I
+# 2 S S I S S I
+# 3 R S S S I R
+# 4 S I R I S R
+# 5 R I S S S S
+# 6 R R R S R I
# kanamycin
-# 1 I
+# 1 R
# 2 S
# 3 S
-# 4 R
-# 5 I
-# 6 S
+# 4 I
+# 5 S
+# 6 I
We can now add the interpretation of MDR-TB to our data set. You can
use:
@@ -438,40 +438,40 @@ Unique: 5
1
Mono-resistant
-3144
-62.88%
-3144
-62.88%
+3179
+63.58%
+3179
+63.58%
2
Negative
-1032
-20.64%
-4176
-83.52%
+1012
+20.24%
+4191
+83.82%
3
Multi-drug-resistant
-465
-9.30%
-4641
-92.82%
+455
+9.10%
+4646
+92.92%
4
Poly-resistant
-263
-5.26%
-4904
-98.08%
+247
+4.94%
+4893
+97.86%
5
Extensively drug-resistant
-96
-1.92%
+107
+2.14%
5000
100.00%
diff --git a/articles/PCA.html b/articles/PCA.html
index 52262515..176daaa8 100644
--- a/articles/PCA.html
+++ b/articles/PCA.html
@@ -38,7 +38,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
@@ -290,7 +290,7 @@ function:
# [1] "Caryophanales" "Enterobacterales" "Lactobacillales" "Pseudomonadales"
# Importance of components:
# PC1 PC2 PC3 PC4 PC5 PC6 PC7
-# Standard deviation 2.1539 1.6807 0.6138 0.33879 0.20808 0.03140 1.232e-16
+# Standard deviation 2.1539 1.6807 0.6138 0.33879 0.20808 0.03140 9.577e-17
# Proportion of Variance 0.5799 0.3531 0.0471 0.01435 0.00541 0.00012 0.000e+00
# Cumulative Proportion 0.5799 0.9330 0.9801 0.99446 0.99988 1.00000 1.000e+00
# Groups (n=4, named as 'order'):
diff --git a/articles/SPSS.html b/articles/SPSS.html
index 3cd7089a..6e5157a4 100644
--- a/articles/SPSS.html
+++ b/articles/SPSS.html
@@ -38,7 +38,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
@@ -257,7 +257,7 @@ data using a custom made website. The webdesign knowledge needed
R has a huge community.
Many R users just ask questions on websites like StackOverflow.com , the largest
-online community for programmers. At the time of writing, 480 015
+online community for programmers. At the time of writing, 480 788
R-related questions have already been asked on this platform (that
covers questions and answers for any programming language). In my own
experience, most questions are answered within a couple of
diff --git a/articles/WHONET.html b/articles/WHONET.html
index 753be116..9330995e 100644
--- a/articles/WHONET.html
+++ b/articles/WHONET.html
@@ -38,7 +38,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/articles/datasets.html b/articles/datasets.html
index 59a6256f..8a5d9b06 100644
--- a/articles/datasets.html
+++ b/articles/datasets.html
@@ -38,7 +38,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/articles/index.html b/articles/index.html
index e5d4ecd9..a1231a30 100644
--- a/articles/index.html
+++ b/articles/index.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/articles/resistance_predict.html b/articles/resistance_predict.html
index ce8ddbba..92e726d9 100644
--- a/articles/resistance_predict.html
+++ b/articles/resistance_predict.html
@@ -38,7 +38,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/articles/welcome_to_AMR.html b/articles/welcome_to_AMR.html
index 03ef291c..021e2603 100644
--- a/articles/welcome_to_AMR.html
+++ b/articles/welcome_to_AMR.html
@@ -38,7 +38,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/authors.html b/authors.html
index 610cf2b0..b9695dae 100644
--- a/authors.html
+++ b/authors.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/extra.css b/extra.css
index 0995fd15..a84fbe85 100644
--- a/extra.css
+++ b/extra.css
@@ -62,6 +62,7 @@ pre code {
/* never wrap code on smaller screens */
word-wrap: normal !important;
white-space: pre !important;
+ font-size: 0.8em !important;
}
.ot, .dv, .fl, .cn, .at,
.op a {
diff --git a/index.html b/index.html
index b2c92695..04cdfaaf 100644
--- a/index.html
+++ b/index.html
@@ -42,7 +42,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/news/index.html b/news/index.html
index caf93d3b..945d439a 100644
--- a/news/index.html
+++ b/news/index.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
@@ -142,7 +142,7 @@
-
AMR 1.8.2.9119
+
AMR 1.8.2.9120
(this beta version will eventually become v2.0! We’re happy to reach a new major milestone soon!)
This is a new major release of the AMR package, with great new additions but also some breaking changes for current users. These are all listed below.
TL;DR
@@ -156,31 +156,32 @@
Now available in 20 languages
Many small bug fixes
-
New
+
New
-
SIR vs. RSI
+
SIR vs. RSI
For this milestone version, we replaced all mentions of RSI with SIR, to comply with what is actually being commonly used in the field of clinical microbiology when it comes to this tri-form regarding AMR.
While existing functions such as as.rsi()
, rsi_df()
and ggplot_rsi()
still work, their replacements as.sir()
, sir_df()
, ggplot_sir()
are now the current functions for AMR data analysis. A warning will be thrown once a session to remind users about this. The data set rsi_translation
is now called clinical_breakpoints
to better reflect its content.
The ‘RSI functions’ will be removed in a future version, but not before late 2023 / early 2024.
-
New antibiogram function
+
New antibiogram function
With the new antibiogram()
function, users can now generate traditional, combined, syndromic, and even weighted-incidence syndromic combination antibiograms (WISCA). With this, we follow the logic in the previously described work of Klinker et al. (2021, DOI 10.1177/20499361211011373 ) and Barbieri et al. (2021, DOI 10.1186/s13756-021-00939-2 ).
The help page for antibiogram()
extensively elaborates on use cases, and antibiogram()
also supports printing in R Markdown and Quarto, with support for 20 languages.
Furthermore, different plotting methods were implemented to allow for graphical visualisations as well.
-
Interpretation of MIC and disk diffusion values
+
Interpretation of MIC and disk diffusion values
The clinical breakpoints and intrinsic resistance of EUCAST 2022 and CLSI 2022 have been added for as.sir()
. EUCAST 2022 (v12.0) is now the new default guideline for all MIC and disks diffusion interpretations, and for eucast_rules()
to apply EUCAST Expert Rules. The default guideline (EUCAST) can now be changed with the new AMR_guideline
option, such as: options(AMR_guideline = "CLSI 2020")
.
+
With the new arguments include_PKPD
(default: TRUE
) and include_screening
(default: FALSE
), users can now specify whether breakpoints for screening and from the PK/PD table should be included when interpreting MICs and disks diffusion values. These options can be set globally, which can be read in our new manual .
Interpretation guidelines older than 10 years were removed, the oldest now included guidelines of EUCAST and CLSI are from 2013.
-
Supported languages
+
Supported languages
We added support for the following ten languages: Chinese (simplified), Czech, Finnish, Greek, Japanese, Norwegian (bokmål), Polish, Romanian, Turkish and Ukrainian. All antibiotic names are now available in these languages, and the AMR package will automatically determine a supported language based on the user’s system language.
We are very grateful for the valuable input by our colleagues from other countries. The AMR
package is now available in 20 languages in total, and according to download stats used in almost all countries in the world!
-
Microbiological taxonomy
+
Microbiological taxonomy
The microorganisms
data set no longer relies on the Catalogue of Life, but on the List of Prokaryotic names with Standing in Nomenclature (LPSN) and is supplemented with the ‘backbone taxonomy’ from the Global Biodiversity Information Facility (GBIF). The structure of this data set has changed to include separate LPSN and GBIF identifiers. Almost all previous MO codes were retained. It contains over 1,400 taxonomic names from 2022.
We previously relied on our own experience to categorise species into pathogenic groups, but we were very happy to encounter the very recent work of Bartlett et al. (2022, DOI 10.1099/mic.0.001269 ) who extensively studied medical-scientific literature to categorise all bacterial species into groups. See mo_matching_score()
on how their work was incorporated into the prevalence
column of the microorganisms
data set. Using their results, the as.mo()
and all mo_*()
functions are now much better capable of converting user input to valid taxonomic records.
The new function add_custom_microorganisms()
allows users to add custom microorganisms to the AMR
package.
@@ -204,7 +205,7 @@
The microorganisms.old
data set was removed, and all previously accepted names are now included in the microorganisms
data set. A new column status
contains "accepted"
for currently accepted names and "synonym"
for taxonomic synonyms; currently invalid names. All previously accepted names now have a microorganisms ID and - if available - an LPSN, GBIF and SNOMED CT identifier.
-
Antibiotic agents and selectors
+
Antibiotic agents and selectors
The new function add_custom_antimicrobials()
allows users to add custom antimicrobial codes and names to the AMR
package.
The antibiotics
data set was greatly updated:
The following 20 antibiotics have been added (also includes the new J01RA ATC group ): azithromycin/fluconazole/secnidazole (AFC), cefepime/amikacin (CFA), cefixime/ornidazole (CEO), ceftriaxone/beta-lactamase inhibitor (CEB), ciprofloxacin/metronidazole (CIM), ciprofloxacin/ornidazole (CIO), ciprofloxacin/tinidazole (CIT), furazidin (FUR), isoniazid/sulfamethoxazole/trimethoprim/pyridoxine (IST), lascufloxacin (LSC), levofloxacin/ornidazole (LEO), nemonoxacin (NEM), norfloxacin/metronidazole (NME), norfloxacin/tinidazole (NTI), ofloxacin/ornidazole (OOR), oteseconazole (OTE), rifampicin/ethambutol/isoniazid (REI), sarecycline (SRC), tetracycline/oleandomycin (TOL), and thioacetazone (TAT)
@@ -216,14 +217,14 @@
Also, we added support for using antibiotic selectors in scoped dplyr
verbs (with or without using vars()
), such as in: ... %>% summarise_at(aminoglycosides(), resistance)
, please see resistance()
for examples.
-
Antiviral agents
+
Antiviral agents
We now added extensive support for antiviral agents! For the first time, the AMR
package has extensive support for antiviral drugs and to work with their names, codes and other data in any way.
The antivirals
data set has been extended with 18 new drugs (also from the new J05AJ ATC group ) and now also contains antiviral identifiers and LOINC codes
A new data type av
(antivirals ) has been added, which is functionally similar to ab
for antibiotics
Functions as.av()
, av_name()
, av_atc()
, av_synonyms()
, av_from_text()
have all been added as siblings to their ab_*()
equivalents
-
Other new functions
+
Other new functions
Function sir_confidence_interval()
to add confidence intervals in AMR calculation. This is now also included in sir_df()
and proportion_df()
.
Function mean_amr_distance()
to calculate the mean AMR distance. The mean AMR distance is a normalised numeric value to compare AMR test results and can help to identify similar isolates, without comparing antibiograms by hand.
Function sir_interpretation_history()
to view the history of previous runs of as.sir()
(previously as.rsi()
). This returns a ‘logbook’ with the selected guideline, reference table and specific interpretation of each row in a data set on which as.sir()
was run.
@@ -232,7 +233,7 @@
-
Changes
+
Changes
Argument combine_IR
has been removed from this package (affecting functions count_df()
, proportion_df()
, and sir_df()
and some plotting functions), since it was replaced with combine_SI
three years ago
Using units
in ab_ddd(..., units = "...")
had been deprecated for some time and is now not supported anymore. Use ab_ddd_units()
instead.
Support for data.frame
-enhancing R packages, more specifically: data.table::data.table
, janitor::tabyl
, tibble::tibble
, and tsibble::tsibble
. AMR package functions that have a data set as output (such as sir_df()
and bug_drug_combinations()
), will now return the same data type as the input.
@@ -270,9 +271,11 @@
Fix for mo_shortname()
in case of higher taxonomic ranks (order, class, phylum)
Cleaning columns with as.sir()
, as.mic()
, or as.disk()
will now show the column name in the warning for invalid results
Fix for using g.test()
with zeroes in a 2x2 table
+
+get_episode()
now returns class integer
instead of numeric
since they are always whole numbers
-
Other
+
Other
Added Peter Dutey-Magni, Dmytro Mykhailenko, Anton Mymrikov, Andrew Norgan, Jonas Salm, and Anita Williams as contributors, to thank them for their valuable input
New website to make use of the new Bootstrap 5 and pkgdown 2.0. The website now contains results for all examples and will be automatically regenerated with every change to our repository, using GitHub Actions
All R and Rmd files in this project are now styled using the styler
package
diff --git a/pkgdown.yml b/pkgdown.yml
index d671b203..b078e48d 100644
--- a/pkgdown.yml
+++ b/pkgdown.yml
@@ -11,7 +11,7 @@ articles:
datasets: datasets.html
resistance_predict: resistance_predict.html
welcome_to_AMR: welcome_to_AMR.html
-last_built: 2023-02-12T10:25Z
+last_built: 2023-02-12T14:14Z
urls:
reference: https://msberends.github.io/AMR/reference
article: https://msberends.github.io/AMR/articles
diff --git a/reference/AMR-deprecated.html b/reference/AMR-deprecated.html
index 4d222e8a..9bfad609 100644
--- a/reference/AMR-deprecated.html
+++ b/reference/AMR-deprecated.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/AMR-options.html b/reference/AMR-options.html
index 1da517b8..794b8503 100644
--- a/reference/AMR-options.html
+++ b/reference/AMR-options.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
@@ -157,6 +157,7 @@
AMR_guideline
Used for setting the default guideline for interpreting MIC values and disk diffusion diameters with as.sir()
. Can be only the guideline name (e.g., "CLSI"
) or the name with a year (e.g. "CLSI 2019"
). The default is "EUCAST 2022"
. Supported guideline are currently EUCAST (2013-2022) and CLSI (2013-2022).
AMR_ignore_pattern
A regular expression to define input that must be ignored in as.mo()
and all mo_*
functions.
AMR_include_PKPD
A logical to use in as.sir()
, to indicate that PK/PD clinical breakpoints must be applied as a last resort, defaults to TRUE
.
+AMR_include_screening
A logical to use in as.sir()
, to indicate that clinical breakpoints for screening are allowed, defaults to FALSE
.
AMR_keep_synonyms
A logical to use in as.mo()
and all mo_*
functions, to indicate if old, previously valid taxonomic names must be preserved and not be corrected to currently accepted names.
AMR_locale
A language to use for the AMR
package, can be one of these supported language names or ISO-639-1 codes: English (en), Chinese (zh), Czech (cs), Danish (da), Dutch (nl), Finnish (fi), French (fr), German (de), Greek (el), Italian (it), Japanese (ja), Norwegian (no), Polish (pl), Portuguese (pt), Romanian (ro), Russian (ru), Spanish (es), Swedish (sv), Turkish (tr) or Ukrainian (uk).
AMR_mo_source
A file location for a manual code list to be used in as.mo()
and all mo_*
functions. This is explained in set_mo_source()
.
@@ -167,7 +168,10 @@
Settings in R are not saved globally and are thus lost when R is exited. You can save your options to your own .Rprofile
file, which is a user-specific file. You can edit it using:
-In this file, you can set options such as options(AMR_locale = "pt")
for Portuguese language support of antibiotics.
+
In this file, you can set options such as:
+
+
to add Portuguese language support of antibiotics, and allow PK/PD rules when interpreting MIC values with as.sir()
.
Share Options Within Team
diff --git a/reference/AMR.html b/reference/AMR.html
index 4e99fa68..d22aa878 100644
--- a/reference/AMR.html
+++ b/reference/AMR.html
@@ -18,7 +18,7 @@ The AMR package is available in English, Chinese, Danish, Dutch, French, German,
AMR (for R)
-
1.8.2.9119
+
1.8.2.9120
diff --git a/reference/Rplot005.png b/reference/Rplot005.png
index c51e4d0a..49984b20 100644
Binary files a/reference/Rplot005.png and b/reference/Rplot005.png differ
diff --git a/reference/Rplot006.png b/reference/Rplot006.png
index 1edabe08..99b1bc71 100644
Binary files a/reference/Rplot006.png and b/reference/Rplot006.png differ
diff --git a/reference/Rplot007.png b/reference/Rplot007.png
index 429f6772..f18882ab 100644
Binary files a/reference/Rplot007.png and b/reference/Rplot007.png differ
diff --git a/reference/Rplot008.png b/reference/Rplot008.png
index cec26e02..cfc95a61 100644
Binary files a/reference/Rplot008.png and b/reference/Rplot008.png differ
diff --git a/reference/WHOCC.html b/reference/WHOCC.html
index a2b9b7e6..da7558bd 100644
--- a/reference/WHOCC.html
+++ b/reference/WHOCC.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/WHONET.html b/reference/WHONET.html
index a69155b9..ef9c8442 100644
--- a/reference/WHONET.html
+++ b/reference/WHONET.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/ab_from_text.html b/reference/ab_from_text.html
index a523bad1..77641e5c 100644
--- a/reference/ab_from_text.html
+++ b/reference/ab_from_text.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/ab_property.html b/reference/ab_property.html
index 0b967d45..8db4d5a5 100644
--- a/reference/ab_property.html
+++ b/reference/ab_property.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/add_custom_antimicrobials.html b/reference/add_custom_antimicrobials.html
index af84ab56..45a334c2 100644
--- a/reference/add_custom_antimicrobials.html
+++ b/reference/add_custom_antimicrobials.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/add_custom_microorganisms.html b/reference/add_custom_microorganisms.html
index 89f59569..b18096a7 100644
--- a/reference/add_custom_microorganisms.html
+++ b/reference/add_custom_microorganisms.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/age.html b/reference/age.html
index e5cb028b..25bcd20f 100644
--- a/reference/age.html
+++ b/reference/age.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
@@ -205,16 +205,16 @@
df
#> birth_date age age_exact age_at_y2k
-#> 1 1973-02-10 50 50.00548 26
-#> 2 1996-11-25 26 26.21644 3
-#> 3 1944-11-18 78 78.23562 55
-#> 4 1953-05-17 69 69.74247 46
-#> 5 1947-10-24 75 75.30411 52
-#> 6 1946-10-16 76 76.32603 53
-#> 7 1990-07-02 32 32.61644 9
-#> 8 1967-10-18 55 55.32055 32
-#> 9 1974-09-23 48 48.38904 25
-#> 10 1978-11-08 44 44.26301 21
+#> 1 1992-02-02 31 31.02740 7
+#> 2 1946-11-05 76 76.27123 53
+#> 3 1941-11-26 81 81.21370 58
+#> 4 1935-11-05 87 87.27123 64
+#> 5 1976-09-09 46 46.42740 23
+#> 6 1957-04-07 65 65.85205 42
+#> 7 1981-12-01 41 41.20000 18
+#> 8 1956-12-07 66 66.18356 43
+#> 9 1932-02-10 91 91.00548 67
+#> 10 1991-09-13 31 31.41644 8
On this page
diff --git a/reference/age_groups.html b/reference/age_groups.html
index 7fc8a02f..3a7832d8 100644
--- a/reference/age_groups.html
+++ b/reference/age_groups.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/antibiogram.html b/reference/antibiogram.html
index 8029349a..bcff2d0e 100644
--- a/reference/antibiogram.html
+++ b/reference/antibiogram.html
@@ -14,7 +14,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/antibiotic_class_selectors.html b/reference/antibiotic_class_selectors.html
index 723f2c15..a45cca4e 100644
--- a/reference/antibiotic_class_selectors.html
+++ b/reference/antibiotic_class_selectors.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/antibiotics.html b/reference/antibiotics.html
index cee3f19c..d8b581bf 100644
--- a/reference/antibiotics.html
+++ b/reference/antibiotics.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/as.ab.html b/reference/as.ab.html
index e93459d4..bf8538bb 100644
--- a/reference/as.ab.html
+++ b/reference/as.ab.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/as.av.html b/reference/as.av.html
index 2035f866..97bd1291 100644
--- a/reference/as.av.html
+++ b/reference/as.av.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/as.disk.html b/reference/as.disk.html
index 7cd18973..2e70560f 100644
--- a/reference/as.disk.html
+++ b/reference/as.disk.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/as.mic.html b/reference/as.mic.html
index d04cdbc1..52c72603 100644
--- a/reference/as.mic.html
+++ b/reference/as.mic.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/as.mo.html b/reference/as.mo.html
index 02b42a22..aae937a0 100644
--- a/reference/as.mo.html
+++ b/reference/as.mo.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/as.sir.html b/reference/as.sir.html
index 84f1585b..f0283c07 100644
--- a/reference/as.sir.html
+++ b/reference/as.sir.html
@@ -1,5 +1,7 @@
-Translate MIC and Disk Diffusion to SIR, or Clean Existing SIR Data — as.sir • AMR (for R) Translate MIC and Disk Diffusion to SIR, or Clean Existing SIR Data — as.sir • AMR (for R)
@@ -10,7 +12,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
@@ -144,6 +146,7 @@
Interpret minimum inhibitory concentration (MIC) values and disk diffusion diameters according to EUCAST or CLSI, or clean up existing SIR values. This transforms the input to a new class sir
, which is an ordered factor with levels S < I < R
.
+
All breakpoints used for interpretation are publicly available in the clinical_breakpoints data set.
@@ -166,6 +169,7 @@
conserve_capped_values = FALSE ,
add_intrinsic_resistance = FALSE ,
reference_data = AMR :: clinical_breakpoints ,
+
include_screening = getOption ( "AMR_include_screening" , FALSE ) ,
include_PKPD = getOption ( "AMR_include_PKPD" , TRUE ) ,
...
)
@@ -179,6 +183,7 @@
uti = NULL ,
add_intrinsic_resistance = FALSE ,
reference_data = AMR :: clinical_breakpoints ,
+
include_screening = getOption ( "AMR_include_screening" , FALSE ) ,
include_PKPD = getOption ( "AMR_include_PKPD" , TRUE ) ,
...
)
@@ -193,6 +198,7 @@
conserve_capped_values = FALSE ,
add_intrinsic_resistance = FALSE ,
reference_data = AMR :: clinical_breakpoints ,
+
include_screening = getOption ( "AMR_include_screening" , FALSE ) ,
include_PKPD = getOption ( "AMR_include_PKPD" , TRUE )
)
@@ -251,6 +257,10 @@
a data.frame to be used for interpretation, which defaults to the clinical_breakpoints data set. Changing this argument allows for using own interpretation guidelines. This argument must contain a data set that is equal in structure to the clinical_breakpoints data set (same column names and column types). Please note that the guideline
argument will be ignored when reference_data
is manually set.
+
include_screening
+
a logical to indicate that clinical breakpoints for screening are allowed, defaults to FALSE
. Can also be set with the option AMR_include_screening
.
+
+
include_PKPD
a logical to indicate that PK/PD clinical breakpoints must be applied as a last resort, defaults to TRUE
. Can also be set with the option AMR_include_PKPD
.
@@ -314,7 +324,7 @@
-
Machine-Readable Interpretation Guidelines
+
Machine-Readable Clinical Breakpoints
The repository of this package contains a machine-readable version of all guidelines. This is a CSV file consisting of 18 308 rows and 11 columns. This file is machine-readable, since it contains one row for every unique combination of the test method (MIC or disk diffusion), the antimicrobial drug and the microorganism. This allows for easy implementation of these rules in laboratory information systems (LIS) . Note that it only contains interpretation guidelines for humans - interpretation guidelines from CLSI for animals were removed.
@@ -524,16 +534,16 @@ A microorganism is categorised as "Resistant" when there is a high likelihood of
#> # A tibble: 50 × 17
#> datetime index ab_input ab_guid…¹ mo_in…² mo_guideline guide…³
#> <dttm> <int> <chr> <ab> <chr> <mo> <chr>
-
#> 1 2023-02-12 10:26:44 1 TOB TOB Escher… B_[ORD]_ENTRBCTR EUCAST…
-
#> 2 2023-02-12 10:26:43 1 GEN GEN Escher… B_[ORD]_ENTRBCTR EUCAST…
-
#> 3 2023-02-12 10:26:43 1 CIP CIP Escher… B_[ORD]_ENTRBCTR EUCAST…
-
#> 4 2023-02-12 10:26:42 1 AMP AMP Escher… B_[ORD]_ENTRBCTR EUCAST…
-
#> 5 2023-02-12 10:26:36 1 CIP CIP B_ESCH… B_[ORD]_ENTRBCTR EUCAST…
-
#> 6 2023-02-12 10:26:36 2 CIP CIP B_ESCH… B_[ORD]_ENTRBCTR EUCAST…
-
#> 7 2023-02-12 10:26:36 3 CIP CIP B_ESCH… B_[ORD]_ENTRBCTR EUCAST…
-
#> 8 2023-02-12 10:26:36 4 CIP CIP B_ESCH… B_[ORD]_ENTRBCTR EUCAST…
-
#> 9 2023-02-12 10:26:36 5 CIP CIP B_ESCH… B_[ORD]_ENTRBCTR EUCAST…
-
#> 10 2023-02-12 10:26:36 6 CIP CIP B_ESCH… B_[ORD]_ENTRBCTR EUCAST…
+
#> 1 2023-02-12 14:15:05 1 TOB TOB Escher… B_[ORD]_ENTRBCTR EUCAST…
+
#> 2 2023-02-12 14:15:05 1 GEN GEN Escher… B_[ORD]_ENTRBCTR EUCAST…
+
#> 3 2023-02-12 14:15:04 1 CIP CIP Escher… B_[ORD]_ENTRBCTR EUCAST…
+
#> 4 2023-02-12 14:15:04 1 AMP AMP Escher… B_[ORD]_ENTRBCTR EUCAST…
+
#> 5 2023-02-12 14:14:59 1 CIP CIP B_ESCH… B_[ORD]_ENTRBCTR EUCAST…
+
#> 6 2023-02-12 14:14:59 2 CIP CIP B_ESCH… B_[ORD]_ENTRBCTR EUCAST…
+
#> 7 2023-02-12 14:14:59 3 CIP CIP B_ESCH… B_[ORD]_ENTRBCTR EUCAST…
+
#> 8 2023-02-12 14:14:59 4 CIP CIP B_ESCH… B_[ORD]_ENTRBCTR EUCAST…
+
#> 9 2023-02-12 14:14:59 5 CIP CIP B_ESCH… B_[ORD]_ENTRBCTR EUCAST…
+
#> 10 2023-02-12 14:14:59 6 CIP CIP B_ESCH… B_[ORD]_ENTRBCTR EUCAST…
#> # … with 40 more rows, 10 more variables: ref_table <chr>, method <chr>,
#> # input <dbl>, outcome <sir>, breakpoint_S_R <chr>, ab_considered <lgl>,
#> # mo_considered <lgl>, breakpoint_S <lgl>, breakpoint_R <lgl>,
diff --git a/reference/atc_online.html b/reference/atc_online.html
index 2870fd41..ad3b9526 100644
--- a/reference/atc_online.html
+++ b/reference/atc_online.html
@@ -10,7 +10,7 @@
AMR (for R)
-
1.8.2.9119
+
1.8.2.9120
diff --git a/reference/av_from_text.html b/reference/av_from_text.html
index de17837b..bff566cf 100644
--- a/reference/av_from_text.html
+++ b/reference/av_from_text.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/av_property.html b/reference/av_property.html
index 4277de12..d7185aaf 100644
--- a/reference/av_property.html
+++ b/reference/av_property.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/availability.html b/reference/availability.html
index 4f7fd896..f7cdd9d9 100644
--- a/reference/availability.html
+++ b/reference/availability.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/bug_drug_combinations.html b/reference/bug_drug_combinations.html
index 14b713f2..212ba22f 100644
--- a/reference/bug_drug_combinations.html
+++ b/reference/bug_drug_combinations.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/clinical_breakpoints.html b/reference/clinical_breakpoints.html
index a19d6ac2..b4499bb2 100644
--- a/reference/clinical_breakpoints.html
+++ b/reference/clinical_breakpoints.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/count.html b/reference/count.html
index 8aed88be..8e8f6a2f 100644
--- a/reference/count.html
+++ b/reference/count.html
@@ -12,7 +12,7 @@ count_resistant() should be used to count resistant isolates, count_susceptible(
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/custom_eucast_rules.html b/reference/custom_eucast_rules.html
index eac6da28..03593eb1 100644
--- a/reference/custom_eucast_rules.html
+++ b/reference/custom_eucast_rules.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/dosage.html b/reference/dosage.html
index e7986aed..2046c1a9 100644
--- a/reference/dosage.html
+++ b/reference/dosage.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/eucast_rules.html b/reference/eucast_rules.html
index cebaf0ea..c8e3edec 100644
--- a/reference/eucast_rules.html
+++ b/reference/eucast_rules.html
@@ -12,7 +12,7 @@ To improve the interpretation of the antibiogram before EUCAST rules are applied
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/example_isolates.html b/reference/example_isolates.html
index bc1015b8..fff12bce 100644
--- a/reference/example_isolates.html
+++ b/reference/example_isolates.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/example_isolates_unclean.html b/reference/example_isolates_unclean.html
index b6e2d1b7..e6fde9b6 100644
--- a/reference/example_isolates_unclean.html
+++ b/reference/example_isolates_unclean.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/first_isolate.html b/reference/first_isolate.html
index a77046d1..854256d2 100644
--- a/reference/first_isolate.html
+++ b/reference/first_isolate.html
@@ -12,7 +12,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/g.test.html b/reference/g.test.html
index 7fc26cce..f3dc2cc6 100644
--- a/reference/g.test.html
+++ b/reference/g.test.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/get_episode.html b/reference/get_episode.html
index b68abfea..3b0292d5 100644
--- a/reference/get_episode.html
+++ b/reference/get_episode.html
@@ -1,5 +1,5 @@
-Determine (New) Episodes for Patients — get_episode • AMR (for R) Determine (Clinical) Episodes — get_episode • AMR (for R)
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
@@ -137,7 +137,7 @@
@@ -171,12 +171,12 @@
Value
-
Details
-
Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days
days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days
days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.
+
The functions get_episode()
and is_new_episode()
differ in this way when setting episode_days
to 365:
person_id date get_episode()
is_new_episode()
A 2019-01-01 1 TRUE A 2019-03-01 1 FALSE A 2021-01-01 2 TRUE B 2008-01-01 1 TRUE B 2008-01-01 1 FALSE C 2020-01-01 1 TRUE
Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days
days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days
days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.
The first_isolate()
function is a wrapper around the is_new_episode()
function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.
The dplyr
package is not required for these functions to work, but these episode functions do support variable grouping and work conveniently inside dplyr
verbs such as filter()
, mutate()
and summarise()
.
@@ -192,34 +192,33 @@
df <- example_isolates [ sample ( seq_len ( 2000 ) , size = 100 ) , ]
get_episode ( df $ date , episode_days = 60 ) # indices
-
#> [1] 8 20 30 31 41 14 26 24 14 7 41 41 5 19 44 29 34 15 40 42 43 16 45 8 6
-
#> [26] 10 37 42 32 9 36 18 19 42 28 19 29 20 46 27 1 2 42 39 11 4 12 36 13 18
-
#> [51] 17 6 31 8 1 38 46 8 25 17 27 31 3 27 10 18 29 29 24 16 44 17 33 10 25
-
#> [76] 36 2 23 7 44 42 12 46 45 44 34 2 17 38 21 22 35 22 25 32 39 43 30 35 11
+
#> [1] 5 27 24 19 46 12 45 39 38 2 2 31 20 24 36 49 47 22 49 34 23 49 51 9 11
+
#> [26] 22 1 17 13 5 43 45 27 6 19 7 10 23 45 32 12 9 4 34 26 30 21 48 47 36
+
#> [51] 41 44 1 23 14 21 11 29 9 28 8 50 48 42 32 36 15 38 6 2 32 25 44 18 3
+
#> [76] 16 42 35 9 29 36 17 43 33 12 10 40 43 29 16 11 4 19 37 23 41 21 46 8 51
is_new_episode ( df $ date , episode_days = 60 ) # TRUE/FALSE
-
#> [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE
-
#> [13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
-
#> [25] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE
-
#> [37] FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE
-
#> [49] TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
-
#> [61] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
-
#> [73] TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
-
#> [85] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
+
#> [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
+
#> [13] TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE
+
#> [25] TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE
+
#> [37] TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE
+
#> [49] FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE
+
#> [61] TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE
+
#> [73] FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
+
#> [85] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
#> [97] FALSE FALSE FALSE FALSE
# filter on results from the third 60-day episode only, using base R
df [ which ( get_episode ( df $ date , 60 ) == 3 ) , ]
#> # A tibble: 1 × 46
-
#> date patient age gender ward mo PEN OXA FLC AMX
-
#> <date> <chr> <dbl> <chr> <chr> <mo> <sir> <sir> <sir> <sir>
-
#> 1 2002-10-20 F35553 51 M ICU B_STPHY_AURS S NA S NA
-
#> # … with 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>,
-
#> # FEP <sir>, CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>,
-
#> # GEN <sir>, TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>,
-
#> # NIT <sir>, FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>,
-
#> # TEC <sir>, TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>,
-
#> # AZM <sir>, IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>,
-
#> # MUP <sir>, RIF <sir>
+
#> date patient age gender ward mo PEN OXA FLC AMX AMC
+
#> <date> <chr> <dbl> <chr> <chr> <mo> <sir> <sir> <sir> <sir> <sir>
+
#> 1 2002-06-18 012595 30 M ICU B_CRYNB I NA NA NA NA
+
#> # … with 35 more variables: AMP <sir>, TZP <sir>, CZO <sir>, FEP <sir>,
+
#> # CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>, GEN <sir>,
+
#> # TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>, NIT <sir>,
+
#> # FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>, TEC <sir>,
+
#> # TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>, AZM <sir>,
+
#> # IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>, MUP <sir>, RIF <sir>
# the functions also work for less than a day, e.g. to include one per hour:
get_episode ( c ( Sys.time ( ) ,
@@ -234,17 +233,29 @@
df %>%
mutate ( condition = sample (
x = c ( "A" , "B" , "C" ) ,
-
size = 200 ,
+
size = 100 ,
replace = TRUE
) ) %>%
-
group_by ( condition ) %>%
+
group_by ( patient , condition ) %>%
mutate ( new_episode = is_new_episode ( date , 365 ) ) %>%
-
select ( patient , date , condition , new_episode )
+
select ( patient , date , condition , new_episode ) %>%
+
arrange ( patient , condition , date )
}
-
#> Error in mutate(., condition = sample(x = c("A", "B", "C"), size = 200, replace = TRUE)): ℹ In argument: `condition = sample(x = c("A", "B", "C"), size = 200,
-
#> replace = TRUE)`.
-
#> Caused by error:
-
#> ! `condition` must be size 100 or 1, not 200.
+
#> # A tibble: 100 × 4
+
#> # Groups: patient, condition [97]
+
#> patient date condition new_episode
+
#> <chr> <date> <chr> <lgl>
+
#> 1 005088 2007-08-22 B TRUE
+
#> 2 012595 2002-06-18 C TRUE
+
#> 3 023456 2009-11-02 C TRUE
+
#> 4 071099 2005-01-11 C TRUE
+
#> 5 077552 2002-05-14 B TRUE
+
#> 6 080086 2010-08-08 B TRUE
+
#> 7 0E2483 2007-08-10 A TRUE
+
#> 8 0E2483 2007-11-10 A FALSE
+
#> 9 0E2483 2007-04-06 C TRUE
+
#> 10 114570 2003-04-22 B TRUE
+
#> # … with 90 more rows
if ( require ( "dplyr" ) ) {
df %>%
@@ -257,19 +268,19 @@
arrange ( patient , ward , date )
}
#> # A tibble: 100 × 5
-
#> # Groups: ward, patient [94]
+
#> # Groups: ward, patient [95]
#> ward date patient new_index new_logical
-
#> <chr> <date> <chr> <dbl> <lgl>
-
#> 1 ICU 2004-05-04 022060 1 TRUE
-
#> 2 Clinical 2006-07-21 059414 1 TRUE
-
#> 3 Clinical 2002-05-14 077552 1 TRUE
-
#> 4 Clinical 2003-10-01 0DBB93 1 TRUE
-
#> 5 ICU 2009-05-08 0DBB93 1 TRUE
-
#> 6 ICU 2007-06-21 0E2483 1 TRUE
-
#> 7 Clinical 2012-09-03 107DD1 1 TRUE
-
#> 8 Clinical 2010-11-01 119392 1 TRUE
-
#> 9 Clinical 2007-08-10 122506 1 TRUE
-
#> 10 Clinical 2009-08-14 146F70 1 TRUE
+
#> <chr> <date> <chr> <int> <lgl>
+
#> 1 Clinical 2007-08-22 005088 1 TRUE
+
#> 2 ICU 2002-06-18 012595 1 TRUE
+
#> 3 Clinical 2009-11-02 023456 1 TRUE
+
#> 4 Clinical 2005-01-11 071099 1 TRUE
+
#> 5 Clinical 2002-05-14 077552 1 TRUE
+
#> 6 Clinical 2010-08-08 080086 1 TRUE
+
#> 7 Clinical 2007-04-06 0E2483 2 TRUE
+
#> 8 Clinical 2007-11-10 0E2483 1 TRUE
+
#> 9 ICU 2007-08-10 0E2483 1 TRUE
+
#> 10 ICU 2003-04-22 114570 1 TRUE
#> # … with 90 more rows
if ( require ( "dplyr" ) ) {
@@ -285,9 +296,9 @@
#> # A tibble: 3 × 5
#> ward n_patients n_episodes_365 n_episodes_60 n_episodes_30
#> <chr> <int> <int> <int> <int>
-
#> 1 Clinical 65 13 38 50
-
#> 2 ICU 25 10 18 25
-
#> 3 Outpatient 4 3 4 4
+
#> 1 Clinical 58 14 41 49
+
#> 2 ICU 31 11 25 27
+
#> 3 Outpatient 6 5 6 6
# grouping on patients and microorganisms leads to the same
# results as first_isolate() when using 'episode-based':
@@ -317,19 +328,19 @@
select ( group_vars ( . ) , flag_episode )
}
#> # A tibble: 100 × 4
-
#> # Groups: patient, mo, ward [95]
-
#> patient mo ward flag_episode
-
#> <chr> <mo> <chr> <lgl>
-
#> 1 955371 B_STPHY_AURS ICU TRUE
-
#> 2 0E2483 B_ESCHR_COLI ICU TRUE
-
#> 3 119392 B_STPHY_CONS Clinical TRUE
-
#> 4 A26106 B_ESCHR_COLI Clinical TRUE
-
#> 5 557266 B_STPHY_HMLY Clinical TRUE
-
#> 6 5DF436 B_STPHY_AURS ICU TRUE
-
#> 7 501361 B_ESCHR_COLI Clinical TRUE
-
#> 8 195736 B_STPHY_AURS Outpatient TRUE
-
#> 9 904485 B_STRPT_ANGN ICU TRUE
-
#> 10 842593 B_STPHY_CONS ICU TRUE
+
#> # Groups: patient, mo, ward [97]
+
#> patient mo ward flag_episode
+
#> <chr> <mo> <chr> <lgl>
+
#> 1 762305 B_BCTRD_FRGL Clinical TRUE
+
#> 2 889500 B_STPHY_CONS Clinical TRUE
+
#> 3 777449 B_STPHY_CONS ICU TRUE
+
#> 4 59C7F2 B_STRPT_PNMN Clinical TRUE
+
#> 5 432724 B_STPHY_CONS ICU TRUE
+
#> 6 690605 B_STRPT_DYSG ICU TRUE
+
#> 7 E04500 B_STPHY_HMNS Clinical TRUE
+
#> 8 255339 B_ESCHR_COLI Clinical TRUE
+
#> 9 905108 B_STRPT_PNMN Clinical TRUE
+
#> 10 130252 B_ENTRC_FCLS ICU TRUE
#> # … with 90 more rows
# }
diff --git a/reference/ggplot_pca.html b/reference/ggplot_pca.html
index 12cec481..aec010a4 100644
--- a/reference/ggplot_pca.html
+++ b/reference/ggplot_pca.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/ggplot_sir.html b/reference/ggplot_sir.html
index 58097725..3d40005b 100644
--- a/reference/ggplot_sir.html
+++ b/reference/ggplot_sir.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/guess_ab_col.html b/reference/guess_ab_col.html
index 9fcc3067..c5dc7695 100644
--- a/reference/guess_ab_col.html
+++ b/reference/guess_ab_col.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/index.html b/reference/index.html
index 1cd7782f..85de1973 100644
--- a/reference/index.html
+++ b/reference/index.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
@@ -273,7 +273,7 @@
get_episode()
is_new_episode()
- Determine (New) Episodes for Patients
+ Determine (Clinical) Episodes
first_isolate()
filter_first_isolate()
diff --git a/reference/intrinsic_resistant.html b/reference/intrinsic_resistant.html
index 268ef273..1556b6c9 100644
--- a/reference/intrinsic_resistant.html
+++ b/reference/intrinsic_resistant.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/italicise_taxonomy.html b/reference/italicise_taxonomy.html
index 0b6874d4..0e0391d0 100644
--- a/reference/italicise_taxonomy.html
+++ b/reference/italicise_taxonomy.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/join.html b/reference/join.html
index 1cbbe15f..dc116c26 100644
--- a/reference/join.html
+++ b/reference/join.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/key_antimicrobials.html b/reference/key_antimicrobials.html
index 50bae890..5f529050 100644
--- a/reference/key_antimicrobials.html
+++ b/reference/key_antimicrobials.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/kurtosis.html b/reference/kurtosis.html
index 8c32db68..55484883 100644
--- a/reference/kurtosis.html
+++ b/reference/kurtosis.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
@@ -182,9 +182,9 @@
Examples
kurtosis ( rnorm ( 10000 ) )
-#> [1] 2.983574
+#> [1] 2.984473
kurtosis ( rnorm ( 10000 ) , excess = TRUE )
-#> [1] 0.07041612
+#> [1] -0.0007148714
On this page
diff --git a/reference/like.html b/reference/like.html
index 7bd8129e..61fe3c91 100644
--- a/reference/like.html
+++ b/reference/like.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/mdro.html b/reference/mdro.html
index 1d59f450..b338ec55 100644
--- a/reference/mdro.html
+++ b/reference/mdro.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/mean_amr_distance.html b/reference/mean_amr_distance.html
index f2028a5f..1496a3a4 100644
--- a/reference/mean_amr_distance.html
+++ b/reference/mean_amr_distance.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
@@ -201,31 +201,30 @@
sir <- random_sir ( 10 )
sir
#> Class 'sir'
-#> [1] I R R R R I S R S R
+#> [1] S R I S S I S R S I
mean_amr_distance ( sir )
-#> [1] -1.1618950 0.7745967 0.7745967 0.7745967 0.7745967 -1.1618950
-#> [7] -1.1618950 0.7745967 -1.1618950 0.7745967
+#> [1] -0.4743416 1.8973666 -0.4743416 -0.4743416 -0.4743416 -0.4743416
+#> [7] -0.4743416 1.8973666 -0.4743416 -0.4743416
mic <- random_mic ( 10 )
mic
#> Class 'mic'
-#> [1] 16 0.01 32 128 4 0.5 <=0.005 <=0.005 0.125
-#> [10] 0.125
+#> [1] >=256 32 8 0.005 0.002 16 16 4 0.125 1
mean_amr_distance ( mic )
-#> [1] 0.94388242 -1.02867586 1.12920607 1.49985337 0.57323512 0.01726417
-#> [7] -1.21399951 -1.21399951 -0.35338313 -0.35338313
+#> [1] 1.3250871 0.7850408 0.4250100 -1.4910484 -1.7290159 0.6050254
+#> [7] 0.6050254 0.2449945 -0.6550826 -0.1150363
# equal to the Z-score of their log2:
( log2 ( mic ) - mean ( log2 ( mic ) ) ) / sd ( log2 ( mic ) )
-#> [1] 0.94388242 -1.02867586 1.12920607 1.49985337 0.57323512 0.01726417
-#> [7] -1.21399951 -1.21399951 -0.35338313 -0.35338313
+#> [1] 1.3250871 0.7850408 0.4250100 -1.4910484 -1.7290159 0.6050254
+#> [7] 0.6050254 0.2449945 -0.6550826 -0.1150363
disk <- random_disk ( 10 )
disk
#> Class 'disk'
-#> [1] 24 40 44 31 40 34 22 41 49 40
+#> [1] 50 49 21 41 42 7 13 6 10 29
mean_amr_distance ( disk )
-#> [1] -1.4460560 0.4048957 0.8676336 -0.6362647 0.4048957 -0.2892112
-#> [7] -1.6774250 0.5205802 1.4460560 0.4048957
+#> [1] 1.3154103 1.2587116 -0.3288526 0.8051218 0.8618206 -1.1226347
+#> [7] -0.7824423 -1.1793334 -0.9525385 0.1247372
y <- data.frame (
id = LETTERS [ 1 : 10 ] ,
@@ -235,22 +234,22 @@
tobr = random_mic ( 10 , ab = "tobr" , mo = "Escherichia coli" )
)
y
-#> id amox cipr gent tobr
-#> 1 A R 21 2 1
-#> 2 B R 20 2 4
-#> 3 C S 22 1 16
-#> 4 D S 28 2 16
-#> 5 E I 22 1 0.25
-#> 6 F R 18 2 4
-#> 7 G R 23 2 8
-#> 8 H S 25 1 1
-#> 9 I I 21 2 4
-#> 10 J I 18 2 8
+#> id amox cipr gent tobr
+#> 1 A R 22 0.25 8
+#> 2 B I 26 2 2
+#> 3 C I 27 4 16
+#> 4 D R 30 0.25 1
+#> 5 E S 17 2 8
+#> 6 F I 30 2 4
+#> 7 G S 19 0.5 16
+#> 8 H I 23 0.25 <=0.5
+#> 9 I R 27 1 <=0.5
+#> 10 J I 31 4 2
mean_amr_distance ( y )
#> ℹ Calculating mean AMR distance based on columns "amox", "cipr", "gent" and
#> "tobr"
-#> [1] 0.14721958 0.32396692 -0.25487609 0.75483654 -1.03119985 0.15991243
-#> [7] 0.69943595 -0.52634353 -0.07812875 -0.19482320
+#> [1] 0.07399410 -0.03958601 0.56084503 0.09513514 -0.24454184 0.30038844
+#> [7] -0.31486005 -0.91854813 0.11340013 0.37377319
y $ amr_distance <- mean_amr_distance ( y , where ( is.mic ) )
#> Error in .subset(x, j): invalid subscript type 'list'
y [ order ( y $ amr_distance ) , ]
@@ -266,17 +265,17 @@
}
#> ℹ Calculating mean AMR distance based on columns "amox", "cipr", "gent" and
#> "tobr"
-#> id amox cipr gent tobr amr_distance check_id_C
-#> 1 C S 22 1 16 -0.25487609 0.0000000
-#> 2 J I 18 2 8 -0.19482320 0.0600529
-#> 3 I I 21 2 4 -0.07812875 0.1767473
-#> 4 H S 25 1 1 -0.52634353 0.2714674
-#> 5 A R 21 2 1 0.14721958 0.4020957
-#> 6 F R 18 2 4 0.15991243 0.4147885
-#> 7 B R 20 2 4 0.32396692 0.5788430
-#> 8 E I 22 1 0.25 -1.03119985 0.7763238
-#> 9 G R 23 2 8 0.69943595 0.9543120
-#> 10 D S 28 2 16 0.75483654 1.0097126
+#> id amox cipr gent tobr amr_distance check_id_C
+#> 1 C I 27 4 16 0.56084503 0.0000000
+#> 2 J I 31 4 2 0.37377319 0.1870718
+#> 3 F I 30 2 4 0.30038844 0.2604566
+#> 4 I R 27 1 <=0.5 0.11340013 0.4474449
+#> 5 D R 30 0.25 1 0.09513514 0.4657099
+#> 6 A R 22 0.25 8 0.07399410 0.4868509
+#> 7 B I 26 2 2 -0.03958601 0.6004310
+#> 8 E S 17 2 8 -0.24454184 0.8053869
+#> 9 G S 19 0.5 16 -0.31486005 0.8757051
+#> 10 H I 23 0.25 <=0.5 -0.91854813 1.4793932
if ( require ( "dplyr" ) ) {
# support for groups
example_isolates %>%
diff --git a/reference/microorganisms.codes.html b/reference/microorganisms.codes.html
index d68ab1e0..20329691 100644
--- a/reference/microorganisms.codes.html
+++ b/reference/microorganisms.codes.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/microorganisms.html b/reference/microorganisms.html
index d244f9ae..f8ae5362 100644
--- a/reference/microorganisms.html
+++ b/reference/microorganisms.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/mo_matching_score.html b/reference/mo_matching_score.html
index 19c0b318..b058439a 100644
--- a/reference/mo_matching_score.html
+++ b/reference/mo_matching_score.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/mo_property.html b/reference/mo_property.html
index 53849896..2a08e56a 100644
--- a/reference/mo_property.html
+++ b/reference/mo_property.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/mo_source.html b/reference/mo_source.html
index e034b926..7b7f58d0 100644
--- a/reference/mo_source.html
+++ b/reference/mo_source.html
@@ -12,7 +12,7 @@ This is the fastest way to have your organisation (or analysis) specific codes p
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/pca.html b/reference/pca.html
index faa69e1a..7a7dc679 100644
--- a/reference/pca.html
+++ b/reference/pca.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/plot-1.png b/reference/plot-1.png
index 25e56f23..b67b2dd9 100644
Binary files a/reference/plot-1.png and b/reference/plot-1.png differ
diff --git a/reference/plot-2.png b/reference/plot-2.png
index 3c989034..e46e8b9d 100644
Binary files a/reference/plot-2.png and b/reference/plot-2.png differ
diff --git a/reference/plot-4.png b/reference/plot-4.png
index fa816fbd..3af8d216 100644
Binary files a/reference/plot-4.png and b/reference/plot-4.png differ
diff --git a/reference/plot-5.png b/reference/plot-5.png
index 5b66b0af..1c90d9ab 100644
Binary files a/reference/plot-5.png and b/reference/plot-5.png differ
diff --git a/reference/plot-6.png b/reference/plot-6.png
index 987bc415..47a9cc2d 100644
Binary files a/reference/plot-6.png and b/reference/plot-6.png differ
diff --git a/reference/plot-7.png b/reference/plot-7.png
index 3fd03fae..a2f45835 100644
Binary files a/reference/plot-7.png and b/reference/plot-7.png differ
diff --git a/reference/plot-8.png b/reference/plot-8.png
index b6686f3b..693a3896 100644
Binary files a/reference/plot-8.png and b/reference/plot-8.png differ
diff --git a/reference/plot.html b/reference/plot.html
index 7e3ac924..32f51627 100644
--- a/reference/plot.html
+++ b/reference/plot.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/proportion.html b/reference/proportion.html
index af05542f..fbf50427 100644
--- a/reference/proportion.html
+++ b/reference/proportion.html
@@ -12,7 +12,7 @@ resistance() should be used to calculate resistance, susceptibility() should be
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/random.html b/reference/random.html
index db54c3e2..af823d8d 100644
--- a/reference/random.html
+++ b/reference/random.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
@@ -193,42 +193,43 @@
Examples
random_mic ( 25 )
#> Class 'mic'
-#> [1] 2 4 64 0.5 2 0.025 0.25 8 0.0625 0.001
-#> [11] 0.5 32 1 0.25 0.25 0.125 0.025 >=128 32 0.0625
-#> [21] 0.125 32 16 8 >=128
+#> [1] 1 0.025 0.25 >=128 0.005 0.125 0.01 32 0.01 8 0.002 32
+#> [13] 4 4 0.01 4 0.01 16 0.025 0.5 0.002 0.25 0.001 64
+#> [25] 4
random_disk ( 25 )
#> Class 'disk'
-#> [1] 9 12 29 26 27 48 37 36 32 47 34 44 20 36 38 12 50 48 16 34 50 34 42 44 29
+#> [1] 45 43 50 33 10 21 20 26 34 15 43 40 36 46 30 50 46 31 50 44 28 42 19 10 45
random_sir ( 25 )
#> Class 'sir'
-#> [1] R R R I S I R I S I R I S I I S I S S R R S I R R
+#> [1] R S R I I S S R I R S R I R S S S S R S S I S R I
# \donttest{
# make the random generation more realistic by setting a bug and/or drug:
random_mic ( 25 , "Klebsiella pneumoniae" ) # range 0.0625-64
#> Class 'mic'
-#> [1] 0.5 256 32 0.5 0.125 4 0.25 0.002 0.01 0.005
-#> [11] 1 0.005 16 32 0.0625 0.0625 0.125 1 4 128
-#> [21] 8 128 4 2 4
+#> [1] 0.25 16 0.5 64 0.25 >=128 4 1 >=128
+#> [10] 1 32 0.005 0.002 2 0.5 64 32 0.0625
+#> [19] <=0.001 >=128 0.002 0.005 4 64 0.25
random_mic ( 25 , "Klebsiella pneumoniae" , "meropenem" ) # range 0.0625-16
#> Class 'mic'
-#> [1] 16 16 8 4 32 32 4 2 16 32 8 4 4 2 4 16 2 4 8
-#> [20] 4 4 32 <=1 16 <=1
+#> [1] 32 32 1 0.5 1 1 1 4 32 0.5 8 64 1 64 64 4 1 4 2
+#> [20] 2 2 4 32 1 16
random_mic ( 25 , "Streptococcus pneumoniae" , "meropenem" ) # range 0.0625-4
#> Class 'mic'
-#> [1] 1 4 0.25 0.0625 4 0.125 0.125 1 0.25 0.125
-#> [11] 0.125 1 0.0625 0.125 8 4 0.5 2 0.5 0.125
-#> [21] 4 0.25 0.5 0.5 4
+#> [1] 0.25 0.125 0.25 0.125 0.5 0.5 0.25 1
+#> [9] 2 0.25 0.5 <=0.0625 0.25 0.125 <=0.0625 0.125
+#> [17] 0.125 0.125 4 0.25 0.5 0.125 1 0.5
+#> [25] 0.25
random_disk ( 25 , "Klebsiella pneumoniae" ) # range 8-50
#> Class 'disk'
-#> [1] 10 48 23 44 36 40 20 21 39 13 43 50 24 24 41 18 22 37 40 22 45 29 13 44 13
+#> [1] 38 38 25 42 21 30 49 29 14 31 23 20 45 21 19 50 32 16 41 43 23 9 27 22 28
random_disk ( 25 , "Klebsiella pneumoniae" , "ampicillin" ) # range 11-17
#> Class 'disk'
-#> [1] 15 15 12 16 13 15 12 13 16 17 14 14 14 12 15 13 14 12 17 13 13 16 11 11 17
+#> [1] 12 16 17 11 12 17 17 15 15 16 17 15 14 16 15 16 17 13 15 14 13 12 13 15 12
random_disk ( 25 , "Streptococcus pneumoniae" , "ampicillin" ) # range 12-27
#> Class 'disk'
-#> [1] 16 27 21 20 16 17 19 26 25 25 18 21 18 16 24 27 24 23 24 16 15 22 24 24 15
+#> [1] 17 25 24 20 19 17 16 23 24 23 23 25 26 25 26 19 17 23 17 25 19 19 23 20 25
# }
diff --git a/reference/resistance_predict.html b/reference/resistance_predict.html
index 4cae92a9..085c6fc9 100644
--- a/reference/resistance_predict.html
+++ b/reference/resistance_predict.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/reference/skewness.html b/reference/skewness.html
index beec66f4..54f550cd 100644
--- a/reference/skewness.html
+++ b/reference/skewness.html
@@ -12,7 +12,7 @@ When negative ('left-skewed'): the left tail is longer; the mass of the distribu
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
@@ -181,7 +181,7 @@ When negative ('left-skewed'): the left tail is longer; the mass of the distribu
Examples
skewness ( runif ( 1000 ) )
-#> [1] 6.162061e-05
+#> [1] 0.03042828
On this page
diff --git a/reference/translate.html b/reference/translate.html
index 45ea2e4b..d9963721 100644
--- a/reference/translate.html
+++ b/reference/translate.html
@@ -10,7 +10,7 @@
AMR (for R)
- 1.8.2.9119
+ 1.8.2.9120
diff --git a/search.json b/search.json
index 1bffde01..1ccf4a27 100644
--- a/search.json
+++ b/search.json
@@ -1 +1 @@
-[{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"How to conduct AMR data analysis","text":"Conducting AMR data analysis unfortunately requires -depth knowledge different scientific fields, makes hard right. least, requires: Good questions (always start !) thorough understanding (clinical) epidemiology, understand clinical epidemiological relevance possible bias results thorough understanding (clinical) microbiology/infectious diseases, understand microorganisms causal infections implications pharmaceutical treatment, well understanding intrinsic acquired microbial resistance Experience data analysis microbiological tests results, understand determination limitations MIC values interpretations SIR values Availability biological taxonomy microorganisms probably normalisation factors pharmaceuticals, defined daily doses (DDD) Available (inter-)national guidelines, profound methods apply course, instantly provide knowledge experience. AMR package, aimed providing (1) tools simplify antimicrobial resistance data cleaning, transformation analysis, (2) methods easily incorporate international guidelines (3) scientifically reliable reference data, including requirements mentioned . AMR package enables standardised reproducible AMR data analysis, application evidence-based rules, determination first isolates, translation various codes microorganisms antimicrobial agents, determination (multi-drug) resistant microorganisms, calculation antimicrobial resistance, prevalence future trends.","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"preparation","dir":"Articles","previous_headings":"","what":"Preparation","title":"How to conduct AMR data analysis","text":"tutorial, create fake demonstration data work . can skip Cleaning data already data ready. start analysis, try make structure data generally look like :","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"needed-r-packages","dir":"Articles","previous_headings":"Preparation","what":"Needed R packages","title":"How to conduct AMR data analysis","text":"many uses R, need additional packages AMR data analysis. package works closely together tidyverse packages dplyr ggplot2 RStudio. tidyverse tremendously improves way conduct data science - allows natural way writing syntaxes creating beautiful plots R. also use cleaner package, can used cleaning data creating frequency tables.","code":"library(dplyr) library(ggplot2) library(AMR) library(cleaner) # (if not yet installed, install with:) # install.packages(c(\"dplyr\", \"ggplot2\", \"AMR\", \"cleaner\"))"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"creation-of-data","dir":"Articles","previous_headings":"","what":"Creation of data","title":"How to conduct AMR data analysis","text":"create fake example data use analysis. AMR data analysis, need least: patient ID, name code microorganism, date antimicrobial results (antibiogram). also include specimen type (e.g. filter blood urine), ward type (e.g. filter ICUs). additional columns (like hospital name, patients gender even [well-defined] clinical properties) can comparative analysis, tutorial demonstrate .","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"patients","dir":"Articles","previous_headings":"Creation of data","what":"Patients","title":"How to conduct AMR data analysis","text":"start patients, need unique list patients. LETTERS object available R - ’s vector 26 characters: Z. patients object just created now vector length 260, values (patient IDs) varying A1 Z10. Now also set gender patients, putting ID gender table: first 135 patient IDs now male, 125 female.","code":"patients <- unlist(lapply(LETTERS, paste0, 1:10)) patients_table <- data.frame( patient_id = patients, gender = c( rep(\"M\", 135), rep(\"F\", 125) ) )"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"dates","dir":"Articles","previous_headings":"Creation of data","what":"Dates","title":"How to conduct AMR data analysis","text":"Let’s pretend data consists blood cultures isolates 1 January 2010 1 January 2018. dates object now contains days date range.","code":"dates <- seq(as.Date(\"2010-01-01\"), as.Date(\"2018-01-01\"), by = \"day\")"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"microorganisms","dir":"Articles","previous_headings":"Creation of data > Dates","what":"Microorganisms","title":"How to conduct AMR data analysis","text":"tutorial, uses four different microorganisms: Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, Klebsiella pneumoniae:","code":"bacteria <- c( \"Escherichia coli\", \"Staphylococcus aureus\", \"Streptococcus pneumoniae\", \"Klebsiella pneumoniae\" )"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"put-everything-together","dir":"Articles","previous_headings":"Creation of data","what":"Put everything together","title":"How to conduct AMR data analysis","text":"Using sample() function, can randomly select items objects defined earlier. let fake data reflect reality bit, also approximately define probabilities bacteria antibiotic results, using random_sir() function. Using left_join() function dplyr package, can ‘map’ gender patient ID using patients_table object created earlier: resulting data set contains 20 000 blood culture isolates. head() function can preview first 6 rows data set: Now, let’s start cleaning analysis!","code":"sample_size <- 20000 data <- data.frame( date = sample(dates, size = sample_size, replace = TRUE), patient_id = sample(patients, size = sample_size, replace = TRUE), hospital = sample( c( \"Hospital A\", \"Hospital B\", \"Hospital C\", \"Hospital D\" ), size = sample_size, replace = TRUE, prob = c(0.30, 0.35, 0.15, 0.20) ), bacteria = sample(bacteria, size = sample_size, replace = TRUE, prob = c(0.50, 0.25, 0.15, 0.10) ), AMX = random_sir(sample_size, prob_sir = c(0.35, 0.60, 0.05)), AMC = random_sir(sample_size, prob_sir = c(0.15, 0.75, 0.10)), CIP = random_sir(sample_size, prob_sir = c(0.20, 0.80, 0.00)), GEN = random_sir(sample_size, prob_sir = c(0.08, 0.92, 0.00)) ) data <- data %>% left_join(patients_table) head(data)"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"cleaning-the-data","dir":"Articles","previous_headings":"","what":"Cleaning the data","title":"How to conduct AMR data analysis","text":"also created package dedicated data cleaning checking, called cleaner package. freq() function can used create frequency tables. example, gender variable: Frequency table Class: character Length: 20,000 Available: 20,000 (100%, NA: 0 = 0%) Unique: 2 Shortest: 1 Longest: 1 , can draw least two conclusions immediately. data scientists perspective, data looks clean: values M F. researchers perspective: slightly men. Nothing didn’t already know. data already quite clean, still need transform variables. bacteria column now consists text, want add variables based microbial IDs later . , transform column valid IDs. mutate() function dplyr package makes really easy: also want transform antibiotics, real life data don’t know really clean. .sir() function ensures reliability reproducibility kind variables. is_sir_eligible() can check columns probably columns SIR test results. Using mutate() across(), can apply transformation formal class: Finally, apply EUCAST rules antimicrobial results. Europe, medical microbiological laboratories already apply rules. package features latest insights intrinsic resistance exceptional phenotypes. Moreover, eucast_rules() function can also apply additional rules, like forcing ampicillin = R amoxicillin/clavulanic acid = R. amoxicillin (column AMX) amoxicillin/clavulanic acid (column AMC) data generated randomly, rows undoubtedly contain AMX = S AMC = R, technically impossible. eucast_rules() fixes :","code":"data %>% freq(gender) data <- data %>% mutate(bacteria = as.mo(bacteria)) is_sir_eligible(data) # [1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE colnames(data)[is_sir_eligible(data)] # [1] \"AMX\" \"AMC\" \"CIP\" \"GEN\" data <- data %>% mutate(across(where(is_sir_eligible), as.sir)) data <- eucast_rules(data, col_mo = \"bacteria\", rules = \"all\")"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"adding-new-variables","dir":"Articles","previous_headings":"","what":"Adding new variables","title":"How to conduct AMR data analysis","text":"Now microbial ID, can add taxonomic properties:","code":"data <- data %>% mutate( gramstain = mo_gramstain(bacteria), genus = mo_genus(bacteria), species = mo_species(bacteria) )"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"first-isolates","dir":"Articles","previous_headings":"Adding new variables","what":"First isolates","title":"How to conduct AMR data analysis","text":"also need know isolates can actually use analysis. conduct analysis antimicrobial resistance, must include first isolate every patient per episode (Hindler et al., Clin Infect Dis. 2007). , easily get overestimate underestimate resistance antibiotic. Imagine patient admitted MRSA found 5 different blood cultures following weeks (yes, countries like Netherlands blood drawing policies). resistance percentage oxacillin isolates overestimated, included MRSA . clearly selection bias. Clinical Laboratory Standards Institute (CLSI) appoints follows: (…) preparing cumulative antibiogram guide clinical decisions empirical antimicrobial therapy initial infections, first isolate given species per patient, per analysis period (eg, one year) included, irrespective body site, antimicrobial susceptibility profile, phenotypical characteristics (eg, biotype). first isolate easily identified, cumulative antimicrobial susceptibility test data prepared using first isolate generally comparable cumulative antimicrobial susceptibility test data calculated methods, providing duplicate isolates excluded. M39-A4 Analysis Presentation Cumulative Antimicrobial Susceptibility Test Data, 4th Edition. CLSI, 2014. Chapter 6.4 AMR package includes methodology first_isolate() function able apply four different methods defined Hindler et al. 2007: phenotype-based, episode-based, patient-based, isolate-based. right method depends goals analysis, default phenotype-based method case method properly correct duplicate isolates. method also takes account antimicrobial susceptibility test results using all_microbials(). Read methods first_isolate() page. outcome function can easily added data: 61.2% suitable resistance analysis! can now filter filter() function, also dplyr package: future use, two syntaxes can shortened: end 12 241 isolates analysis. Now data looks like: Time analysis!","code":"data <- data %>% mutate(first = first_isolate(info = TRUE)) # Determining first isolates using an episode length of 365 days # ℹ Using column 'bacteria' as input for col_mo. # ℹ Using column 'date' as input for col_date. # ℹ Using column 'patient_id' as input for col_patient_id. # Basing inclusion on all antimicrobial results, using a points threshold of # 2 # Including isolates from ICU. # => Found 12,241 'phenotype-based' first isolates (61.2% of total where a # microbial ID was available) data_1st <- data %>% filter(first == TRUE) data_1st <- data %>% filter_first_isolate() head(data_1st)"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"analysing-the-data","dir":"Articles","previous_headings":"","what":"Analysing the data","title":"How to conduct AMR data analysis","text":"might want start getting idea data distributed. ’s important start, also decides continue analysis. Although package contains convenient function make frequency tables, exploratory data analysis (EDA) primary scope package. Use package like DataExplorer , read free online book Exploratory Data Analysis R Roger D. Peng.","code":""},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"dispersion-of-species","dir":"Articles","previous_headings":"Analysing the data","what":"Dispersion of species","title":"How to conduct AMR data analysis","text":"just get idea species distributed, create frequency table freq() function. created genus species column earlier based microbial ID. paste(), can concatenate together. freq() function can used like base R language intended: can used like dplyr way, easier readable: Frequency table Class: character Length: 12,241 Available: 12,241 (100%, NA: 0 = 0%) Unique: 4 Shortest: 16 Longest: 24","code":"freq(paste(data_1st$genus, data_1st$species)) data_1st %>% freq(genus, species)"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"overview-of-different-bugdrug-combinations","dir":"Articles","previous_headings":"Analysing the data","what":"Overview of different bug/drug combinations","title":"How to conduct AMR data analysis","text":"Using tidyverse selections, can also select filter columns based antibiotic class : want get quick glance number isolates different bug/drug combinations, can use bug_drug_combinations() function: give crude numbers data. calculate antimicrobial resistance sensible way, also correcting results, use resistance() susceptibility() functions.","code":"data_1st %>% filter(any(aminoglycosides() == \"R\")) # ℹ For aminoglycosides() using column 'GEN' (gentamicin) data_1st %>% bug_drug_combinations() %>% head() # show first 6 rows data_1st %>% select(bacteria, aminoglycosides()) %>% bug_drug_combinations() # ℹ For aminoglycosides() using column 'GEN' (gentamicin)"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"resistance-percentages","dir":"Articles","previous_headings":"Analysing the data","what":"Resistance percentages","title":"How to conduct AMR data analysis","text":"functions resistance() susceptibility() can used calculate antimicrobial resistance susceptibility. specific analyses, functions proportion_S(), proportion_SI(), proportion_I(), proportion_IR() proportion_R() can used determine proportion specific antimicrobial outcome. functions contain minimum argument, denoting minimum required number test results returning value. functions otherwise return NA. default minimum = 30, following CLSI M39-A4 guideline applying microbial epidemiology. per EUCAST guideline 2019, calculate resistance proportion R (proportion_R(), equal resistance()) susceptibility proportion S (proportion_SI(), equal susceptibility()). functions can used : can used conjunction group_by() summarise(), dplyr package: course convenient know number isolates responsible percentages. purpose n_sir() can used, works exactly like n_distinct() dplyr package. counts isolates available every group (.e. values S, R): functions can also used get proportion multiple antibiotics, calculate empiric susceptibility combination therapies easily: curious resistance within certain antibiotic classes, use antibiotic class selector penicillins(), automatically include columns AMX AMC data: make transition next part, let’s see differences previously calculated combination therapies plotted:","code":"data_1st %>% resistance(AMX) # [1] 0.5836941 data_1st %>% group_by(hospital) %>% summarise(amoxicillin = resistance(AMX)) data_1st %>% group_by(hospital) %>% summarise( amoxicillin = resistance(AMX), available = n_sir(AMX) ) data_1st %>% group_by(genus) %>% summarise( amoxiclav = susceptibility(AMC), gentamicin = susceptibility(GEN), amoxiclav_genta = susceptibility(AMC, GEN) ) data_1st %>% # group by hospital group_by(hospital) %>% # / -> select all penicillins in the data for calculation # | / -> use resistance() for all peni's per hospital # | | / -> print as percentages summarise(across(penicillins(), resistance, as_percent = TRUE)) %>% # format the antibiotic column names, using so-called snake case, # so 'Amoxicillin/clavulanic acid' becomes 'amoxicillin_clavulanic_acid' rename_with(set_ab_names, penicillins()) data_1st %>% group_by(genus) %>% summarise( \"1. Amoxi/clav\" = susceptibility(AMC), \"2. Gentamicin\" = susceptibility(GEN), \"3. Amoxi/clav + genta\" = susceptibility(AMC, GEN) ) %>% # pivot_longer() from the tidyr package \"lengthens\" data: tidyr::pivot_longer(-genus, names_to = \"antibiotic\") %>% ggplot(aes( x = genus, y = value, fill = antibiotic )) + geom_col(position = \"dodge2\")"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"plots","dir":"Articles","previous_headings":"Analysing the data","what":"Plots","title":"How to conduct AMR data analysis","text":"show results plots, R users nowadays use ggplot2 package. package lets create plots layers. can read website. quick example look like syntaxes: AMR package contains functions extend ggplot2 package, example geom_sir(). automatically transforms data count_df() proportion_df() show results stacked bars. simplest shortest example: Omit translate_ab = FALSE antibiotic codes (AMX, AMC, CIP, GEN) translated official names (amoxicillin, amoxicillin/clavulanic acid, ciprofloxacin, gentamicin). group e.g. genus column add additional functions package, can create : simplify , also created ggplot_sir() function, combines almost functions:","code":"ggplot( data = a_data_set, mapping = aes( x = year, y = value ) ) + geom_col() + labs( title = \"A title\", subtitle = \"A subtitle\", x = \"My X axis\", y = \"My Y axis\" ) # or as short as: ggplot(a_data_set) + geom_bar(aes(year)) ggplot(data_1st) + geom_sir(translate_ab = FALSE) # group the data on `genus` ggplot(data_1st %>% group_by(genus)) + # create bars with genus on x axis # it looks for variables with class `sir`, # of which we have 4 (earlier created with `as.sir`) geom_sir(x = \"genus\") + # split plots on antibiotic facet_sir(facet = \"antibiotic\") + # set colours to the SIR interpretations (colour-blind friendly) scale_sir_colours() + # show percentages on y axis scale_y_percent(breaks = 0:4 * 25) + # turn 90 degrees, to make it bars instead of columns coord_flip() + # add labels labs( title = \"Resistance per genus and antibiotic\", subtitle = \"(this is fake data)\" ) + # and print genus in italic to follow our convention # (is now y axis because we turned the plot) theme(axis.text.y = element_text(face = \"italic\")) data_1st %>% group_by(genus) %>% ggplot_sir( x = \"genus\", facet = \"antibiotic\", breaks = 0:4 * 25, datalabels = FALSE ) + coord_flip()"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"plotting-mic-and-disk-diffusion-values","dir":"Articles","previous_headings":"Analysing the data > Plots","what":"Plotting MIC and disk diffusion values","title":"How to conduct AMR data analysis","text":"AMR package also extends plot() ggplot2::autoplot() functions plotting minimum inhibitory concentrations (MIC, created .mic()) disk diffusion diameters (created .disk()). random_mic() random_disk() functions, can generate sampled values new data types (S3 classes) : also specific, generating MICs likely found E. coli ciprofloxacin: plot() autoplot() function, can define microorganism antimicrobial agent way. add interpretation values according chosen guidelines (defaults latest EUCAST guideline). Default colours colour-blind friendly, maintaining convention e.g. ‘susceptible’ green ‘resistant’ red: disk diffusion values, much difference plotting: using ggplot2 package, now choosing latest implemented CLSI guideline (notice EUCAST-specific term “Susceptible, incr. exp.” changed “Intermediate”):","code":"mic_values <- random_mic(size = 100) mic_values # Class 'mic' # [1] 0.01 >=256 <=0.001 8 0.005 0.005 0.01 1 4 # [10] >=256 0.0625 4 16 0.01 32 0.01 >=256 32 # [19] 4 0.0625 0.005 64 128 8 <=0.001 0.25 0.005 # [28] 0.0625 <=0.001 0.125 0.0625 0.025 0.01 2 32 4 # [37] 4 128 0.002 <=0.001 0.025 >=256 0.125 0.5 2 # [46] 0.025 0.005 >=256 16 0.5 2 0.25 0.25 0.25 # [55] 64 8 <=0.001 8 4 0.0625 <=0.001 0.0625 1 # [64] 0.0625 0.01 1 0.002 16 <=0.001 0.125 0.005 0.0625 # [73] 16 0.125 128 0.005 16 64 8 16 <=0.001 # [82] 16 4 2 0.002 64 8 64 0.5 0.025 # [91] 1 0.025 1 32 0.002 16 0.125 0.125 16 # [100] 0.01 # base R: plot(mic_values) # ggplot2: autoplot(mic_values) mic_values <- random_mic(size = 100, mo = \"E. coli\", ab = \"cipro\") # base R: plot(mic_values, mo = \"E. coli\", ab = \"cipro\") # ggplot2: autoplot(mic_values, mo = \"E. coli\", ab = \"cipro\") disk_values <- random_disk(size = 100, mo = \"E. coli\", ab = \"cipro\") disk_values # Class 'disk' # [1] 20 19 27 26 31 31 29 20 28 29 17 25 20 20 26 30 21 26 28 26 29 28 25 17 19 # [26] 18 25 25 24 21 21 17 25 17 31 18 21 18 21 30 18 29 20 27 29 29 19 25 21 22 # [51] 30 25 30 21 22 23 25 22 27 19 17 30 28 25 17 19 21 26 18 22 31 27 21 26 20 # [76] 21 30 24 26 17 31 23 23 23 19 25 31 17 21 23 24 22 29 23 24 21 22 27 27 23 # base R: plot(disk_values, mo = \"E. coli\", ab = \"cipro\") autoplot( disk_values, mo = \"E. coli\", ab = \"cipro\", guideline = \"CLSI\" )"},{"path":"https://msberends.github.io/AMR/articles/AMR.html","id":"independence-test","dir":"Articles","previous_headings":"Analysing the data","what":"Independence test","title":"How to conduct AMR data analysis","text":"next example uses example_isolates data set. data set included package contains 2,000 microbial isolates full antibiograms. reflects reality can used practise AMR data analysis. compare resistance amoxicillin/clavulanic acid (column FOS) ICU clinical wards. input fisher.test() can retrieved transformation like : can apply test now : can seen, p value practically zero (0.0000002263247), means amoxicillin/clavulanic acid resistance found isolates patients ICUs clinical wards really different.","code":"# use package 'tidyr' to pivot data: library(tidyr) check_FOS <- example_isolates %>% filter(ward %in% c(\"ICU\", \"Clinical\")) %>% # filter on only these wards select(ward, AMC) %>% # select the wards and amoxi/clav group_by(ward) %>% # group on the wards count_df(combine_SI = TRUE) %>% # count all isolates per group (ward) pivot_wider( names_from = ward, # transform output so \"ICU\" and \"Clinical\" are columns values_from = value ) %>% select(ICU, Clinical) %>% # and only select these columns as.matrix() # transform to a good old matrix for fisher.test() check_FOS # ICU Clinical # [1,] 396 942 # [2,] 184 240 # do Fisher's Exact Test fisher.test(check_FOS) # # Fisher's Exact Test for Count Data # # data: check_FOS # p-value = 2.263e-07 # alternative hypothesis: true odds ratio is not equal to 1 # 95 percent confidence interval: # 0.435261 0.691614 # sample estimates: # odds ratio # 0.5485079"},{"path":"https://msberends.github.io/AMR/articles/EUCAST.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"How to apply EUCAST rules","text":"EUCAST rules? European Committee Antimicrobial Susceptibility Testing (EUCAST) states website: EUCAST expert rules tabulated collection expert knowledge intrinsic resistances, exceptional resistance phenotypes interpretive rules may applied antimicrobial susceptibility testing order reduce errors make appropriate recommendations reporting particular resistances. Europe, lot medical microbiological laboratories already apply rules (Brown et al., 2015). package features latest insights intrinsic resistance unusual phenotypes (v3.3, 2021). Moreover, eucast_rules() function use purpose can also apply additional rules, like forcing ampicillin = R isolates amoxicillin/clavulanic acid = R.","code":""},{"path":"https://msberends.github.io/AMR/articles/EUCAST.html","id":"examples","dir":"Articles","previous_headings":"","what":"Examples","title":"How to apply EUCAST rules","text":"rules can used discard impossible bug-drug combinations data. example, Klebsiella produces beta-lactamase prevents ampicillin (amoxicillin) working . words, practically every strain Klebsiella resistant ampicillin. Sometimes, laboratory data can still contain strains ampicillin susceptible ampicillin. antibiogram available identification available, antibiogram re-interpreted based identification (namely, Klebsiella). EUCAST expert rules solve , can applied using eucast_rules(): convenient function mo_is_intrinsic_resistant() uses guideline, allows check one specific microorganisms antibiotics: EUCAST rules can used correction, can also used filling known resistance susceptibility based results antimicrobials drugs. process called interpretive reading, basically form imputation, part eucast_rules() function well:","code":"oops <- data.frame( mo = c( \"Klebsiella\", \"Escherichia\" ), ampicillin = \"S\" ) oops # mo ampicillin # 1 Klebsiella S # 2 Escherichia S eucast_rules(oops, info = FALSE) # mo ampicillin # 1 Klebsiella R # 2 Escherichia S mo_is_intrinsic_resistant( c(\"Klebsiella\", \"Escherichia\"), \"ampicillin\" ) # [1] TRUE FALSE mo_is_intrinsic_resistant( \"Klebsiella\", c(\"ampicillin\", \"kanamycin\") ) # [1] TRUE FALSE data <- data.frame( mo = c( \"Staphylococcus aureus\", \"Enterococcus faecalis\", \"Escherichia coli\", \"Klebsiella pneumoniae\", \"Pseudomonas aeruginosa\" ), VAN = \"-\", # Vancomycin AMX = \"-\", # Amoxicillin COL = \"-\", # Colistin CAZ = \"-\", # Ceftazidime CXM = \"-\", # Cefuroxime PEN = \"S\", # Benzylenicillin FOX = \"S\", # Cefoxitin stringsAsFactors = FALSE ) data eucast_rules(data)"},{"path":"https://msberends.github.io/AMR/articles/MDR.html","id":"type-of-input","dir":"Articles","previous_headings":"","what":"Type of input","title":"How to determine multi-drug resistance (MDR)","text":"mdro() function takes data set input, regular data.frame. tries automatically determine right columns info isolates, name species columns results antimicrobial agents. See help page info set right settings data command ?mdro. WHONET data (data), settings automatically set correctly.","code":""},{"path":"https://msberends.github.io/AMR/articles/MDR.html","id":"guidelines","dir":"Articles","previous_headings":"","what":"Guidelines","title":"How to determine multi-drug resistance (MDR)","text":"mdro() function support multiple guidelines. can select guideline guideline parameter. Currently supported guidelines (case-insensitive): guideline = \"CMI2012\" (default) Magiorakos AP, Srinivasan et al. “Multidrug-resistant, extensively drug-resistant pandrug-resistant bacteria: international expert proposal interim standard definitions acquired resistance.” Clinical Microbiology Infection (2012) (link) guideline = \"EUCAST3.2\" (simply guideline = \"EUCAST\") European international guideline - EUCAST Expert Rules Version 3.2 “Intrinsic Resistance Unusual Phenotypes” (link) guideline = \"EUCAST3.1\" European international guideline - EUCAST Expert Rules Version 3.1 “Intrinsic Resistance Exceptional Phenotypes Tables” (link) guideline = \"TB\" international guideline multi-drug resistant tuberculosis - World Health Organization “Companion handbook guidelines programmatic management drug-resistant tuberculosis” (link) guideline = \"MRGN\" German national guideline - Mueller et al. (2015) Antimicrobial Resistance Infection Control 4:7. DOI: 10.1186/s13756-015-0047-6 guideline = \"BRMO\" Dutch national guideline - Rijksinstituut voor Volksgezondheid en Milieu “WIP-richtlijn BRMO (Bijzonder Resistente Micro-Organismen) (ZKH)” (link) Please suggest (country-specific) guidelines letting us know: https://github.com/msberends/AMR/issues/new.","code":""},{"path":"https://msberends.github.io/AMR/articles/MDR.html","id":"custom-guidelines","dir":"Articles","previous_headings":"Guidelines","what":"Custom Guidelines","title":"How to determine multi-drug resistance (MDR)","text":"can also use custom guideline. Custom guidelines can set custom_mdro_guideline() function. great importance custom rules determine MDROs hospital, e.g., rules dependent ward, state contact isolation variables data. familiar case_when() dplyr package, recognise input method set rules. Rules must set using R considers ‘formula notation’: row/isolate matches first rule, value first ~ (case ‘Elderly Type ’) set MDRO value. Otherwise, second rule tried . maximum number rules unlimited. can print rules set console overview. Colours help reading console supports colours. outcome function can used guideline argument mdro() function: rules set (custom object case) exported shared file location using saveRDS() collaborate multiple users. custom rules set imported using readRDS().","code":"custom <- custom_mdro_guideline( CIP == \"R\" & age > 60 ~ \"Elderly Type A\", ERY == \"R\" & age > 60 ~ \"Elderly Type B\" ) custom # A set of custom MDRO rules: # 1. If CIP is \"R\" and age is higher than 60 then: Elderly Type A # 2. If ERY is \"R\" and age is higher than 60 then: Elderly Type B # 3. Otherwise: Negative # # Unmatched rows will return NA. # Results will be of class 'factor', with ordered levels: Negative < Elderly Type A < Elderly Type B x <- mdro(example_isolates, guideline = custom) table(x) # x # Negative Elderly Type A Elderly Type B # 1070 198 732"},{"path":"https://msberends.github.io/AMR/articles/MDR.html","id":"examples","dir":"Articles","previous_headings":"","what":"Examples","title":"How to determine multi-drug resistance (MDR)","text":"mdro() function always returns ordered factor predefined guidelines. example, output default guideline Magiorakos et al. returns factor levels ‘Negative’, ‘MDR’, ‘XDR’ ‘PDR’ order. next example uses example_isolates data set. data set included package contains full antibiograms 2,000 microbial isolates. reflects reality can used practise AMR data analysis. test MDR/XDR/PDR guideline data set, get: (16 isolates test results) Frequency table Class: factor > ordered (numeric) Length: 2,000 Levels: 4: Negative < Multi-drug-resistant (MDR) < Extensively drug-resistant … Available: 1,729 (86.45%, NA: 271 = 13.55%) Unique: 2 another example, create data set determine multi-drug resistant TB: column names automatically verified valid drug names codes, worked exactly way: data set now looks like : can now add interpretation MDR-TB data set. can use: shortcut mdr_tb(): Create frequency table results: Frequency table Class: factor > ordered (numeric) Length: 5,000 Levels: 5: Negative < Mono-resistant < Poly-resistant < Multi-drug-resistant <… Available: 5,000 (100%, NA: 0 = 0%) Unique: 5","code":"library(dplyr) # to support pipes: %>% library(cleaner) # to create frequency tables example_isolates %>% mdro() %>% freq() # show frequency table of the result # Warning: in mdro(): NA introduced for isolates where the available percentage of # antimicrobial classes was below 50% (set with pct_required_classes) # random_sir() is a helper function to generate # a random vector with values S, I and R my_TB_data <- data.frame( rifampicin = random_sir(5000), isoniazid = random_sir(5000), gatifloxacin = random_sir(5000), ethambutol = random_sir(5000), pyrazinamide = random_sir(5000), moxifloxacin = random_sir(5000), kanamycin = random_sir(5000) ) my_TB_data <- data.frame( RIF = random_sir(5000), INH = random_sir(5000), GAT = random_sir(5000), ETH = random_sir(5000), PZA = random_sir(5000), MFX = random_sir(5000), KAN = random_sir(5000) ) head(my_TB_data) # rifampicin isoniazid gatifloxacin ethambutol pyrazinamide moxifloxacin # 1 S I S R I S # 2 S R I I R I # 3 S S S S R R # 4 S R S I I R # 5 S I R S R I # 6 S R I R R S # kanamycin # 1 I # 2 S # 3 S # 4 R # 5 I # 6 S mdro(my_TB_data, guideline = \"TB\") my_TB_data$mdr <- mdr_tb(my_TB_data) # ℹ No column found as input for col_mo, assuming all rows contain # Mycobacterium tuberculosis. freq(my_TB_data$mdr)"},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/PCA.html","id":"transforming","dir":"Articles","previous_headings":"","what":"Transforming","title":"How to conduct principal component analysis (PCA) for AMR","text":"PCA, need transform AMR data first. example_isolates data set package looks like: Now transform data set resistance percentages per taxonomic order genus:","code":"library(AMR) library(dplyr) glimpse(example_isolates) # Rows: 2,000 # Columns: 46 # $ date 2002-01-02, 2002-01-03, 2002-01-07, 2002-01-07, 2002-01-13, 2… # $ patient \"A77334\", \"A77334\", \"067927\", \"067927\", \"067927\", \"067927\", \"4… # $ age 65, 65, 45, 45, 45, 45, 78, 78, 45, 79, 67, 67, 71, 71, 75, 50… # $ gender \"F\", \"F\", \"F\", \"F\", \"F\", \"F\", \"M\", \"M\", \"F\", \"F\", \"M\", \"M\", \"M… # $ ward \"Clinical\", \"Clinical\", \"ICU\", \"ICU\", \"ICU\", \"ICU\", \"Clinical\"… # $ mo \"B_ESCHR_COLI\", \"B_ESCHR_COLI\", \"B_STPHY_EPDR\", \"B_STPHY_EPDR\",… # $ PEN R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, S,… # $ OXA NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ FLC NA, NA, R, R, R, R, S, S, R, S, S, S, NA, NA, NA, NA, NA, R, R… # $ AMX NA, NA, NA, NA, NA, NA, R, R, NA, NA, NA, NA, NA, NA, R, NA, N… # $ AMC I, I, NA, NA, NA, NA, S, S, NA, NA, S, S, I, I, R, I, I, NA, N… # $ AMP NA, NA, NA, NA, NA, NA, R, R, NA, NA, NA, NA, NA, NA, R, NA, N… # $ TZP NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ CZO NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, NA,… # $ FEP NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ CXM I, I, R, R, R, R, S, S, R, S, S, S, S, S, NA, S, S, R, R, S, S… # $ FOX NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, NA,… # $ CTX NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, S, S… # $ CAZ NA, NA, R, R, R, R, R, R, R, R, R, R, NA, NA, NA, S, S, R, R, … # $ CRO NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, S, S… # $ GEN NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ TOB NA, NA, NA, NA, NA, NA, S, S, NA, NA, NA, NA, S, S, NA, NA, NA… # $ AMK NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ KAN NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ TMP R, R, S, S, R, R, R, R, S, S, NA, NA, S, S, S, S, S, R, R, R, … # $ SXT R, R, S, S, NA, NA, NA, NA, S, S, NA, NA, S, S, S, S, S, NA, N… # $ NIT NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R,… # $ FOS NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ LNZ R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R, R, R, N… # $ CIP NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, NA, NA, NA, NA, S, S… # $ MFX NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ VAN R, R, S, S, S, S, S, S, S, S, NA, NA, R, R, R, R, R, S, S, S, … # $ TEC R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R, R, R, N… # $ TCY R, R, S, S, S, S, S, S, S, I, S, S, NA, NA, I, R, R, S, I, R, … # $ TGC NA, NA, S, S, S, S, S, S, S, NA, S, S, NA, NA, NA, R, R, S, NA… # $ DOX NA, NA, S, S, S, S, S, S, S, NA, S, S, NA, NA, NA, R, R, S, NA… # $ ERY R, R, R, R, R, R, S, S, R, S, S, S, R, R, R, R, R, R, R, R, S,… # $ CLI R, R, NA, NA, NA, R, NA, NA, NA, NA, NA, NA, R, R, R, R, R, NA… # $ AZM R, R, R, R, R, R, S, S, R, S, S, S, R, R, R, R, R, R, R, R, S,… # $ IPM NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, S, S… # $ MEM NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ MTR NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ CHL NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ COL NA, NA, R, R, R, R, R, R, R, R, R, R, NA, NA, NA, R, R, R, R, … # $ MUP NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… # $ RIF R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R, R, R, N… resistance_data <- example_isolates %>% group_by( order = mo_order(mo), # group on anything, like order genus = mo_genus(mo) ) %>% # and genus as we do here summarise_if(is.sir, resistance) %>% # then get resistance of all drugs select( order, genus, AMC, CXM, CTX, CAZ, GEN, TOB, TMP, SXT ) # and select only relevant columns head(resistance_data) # # A tibble: 6 × 10 # # Groups: order [5] # order genus AMC CXM CTX CAZ GEN TOB TMP SXT # # 1 (unknown order) (unknown ge… NA NA NA NA NA NA NA NA # 2 Actinomycetales Schaalia NA NA NA NA NA NA NA NA # 3 Bacteroidales Bacteroides NA NA NA NA NA NA NA NA # 4 Campylobacterales Campylobact… NA NA NA NA NA NA NA NA # 5 Caryophanales Gemella NA NA NA NA NA NA NA NA # 6 Caryophanales Listeria NA NA NA NA NA NA NA NA"},{"path":"https://msberends.github.io/AMR/articles/PCA.html","id":"perform-principal-component-analysis","dir":"Articles","previous_headings":"","what":"Perform principal component analysis","title":"How to conduct principal component analysis (PCA) for AMR","text":"new pca() function automatically filter rows contain numeric values selected variables, now need : result can reviewed good old summary() function: Good news. first two components explain total 93.3% variance (see PC1 PC2 values Proportion Variance. can create -called biplot base R biplot() function, see antimicrobial resistance per drug explain difference per microorganism.","code":"pca_result <- pca(resistance_data) # ℹ Columns selected for PCA: \"AMC\", \"CAZ\", \"CTX\", \"CXM\", \"GEN\", \"SXT\", \"TMP\" # and \"TOB\". Total observations available: 7. summary(pca_result) # Groups (n=4, named as 'order'): # [1] \"Caryophanales\" \"Enterobacterales\" \"Lactobacillales\" \"Pseudomonadales\" # Importance of components: # PC1 PC2 PC3 PC4 PC5 PC6 PC7 # Standard deviation 2.1539 1.6807 0.6138 0.33879 0.20808 0.03140 1.232e-16 # Proportion of Variance 0.5799 0.3531 0.0471 0.01435 0.00541 0.00012 0.000e+00 # Cumulative Proportion 0.5799 0.9330 0.9801 0.99446 0.99988 1.00000 1.000e+00 # Groups (n=4, named as 'order'): # [1] \"Caryophanales\" \"Enterobacterales\" \"Lactobacillales\" \"Pseudomonadales\""},{"path":"https://msberends.github.io/AMR/articles/PCA.html","id":"plotting-the-results","dir":"Articles","previous_headings":"","what":"Plotting the results","title":"How to conduct principal component analysis (PCA) for AMR","text":"can’t see explanation points. Perhaps works better new ggplot_pca() function, automatically adds right labels even groups: can also print ellipse per group, edit appearance:","code":"biplot(pca_result) ggplot_pca(pca_result) ggplot_pca(pca_result, ellipse = TRUE) + ggplot2::labs(title = \"An AMR/PCA biplot!\")"},{"path":"https://msberends.github.io/AMR/articles/SPSS.html","id":"spss-sas-stata","dir":"Articles","previous_headings":"","what":"SPSS / SAS / Stata","title":"How to import data from SPSS / SAS / Stata","text":"SPSS (Statistical Package Social Sciences) probably well-known software package statistical analysis. SPSS easier learn R, SPSS click menu run parts analysis. user-friendliness, taught universities particularly useful students new statistics. experience, guess pretty much (bio)medical students know time graduate. SAS Stata comparable statistical packages popular big industries.","code":""},{"path":"https://msberends.github.io/AMR/articles/SPSS.html","id":"compared-to-r","dir":"Articles","previous_headings":"","what":"Compared to R","title":"How to import data from SPSS / SAS / Stata","text":"said, SPSS easier learn R. SPSS, SAS Stata come major downsides comparing R: R highly modular. official R network (CRAN) features 16,000 packages time writing, AMR package one . packages peer-reviewed publication. Aside official channel, also developers choose submit CRAN, rather keep public repository, like GitHub. may even lot 14,000 packages . Bottom line , can really extend ask somebody . Take example AMR package. Among things, adds reliable reference data R help data cleaning analysis. SPSS, SAS Stata never know valid MIC value Gram stain E. coli . species Klebiella resistant amoxicillin Floxapen® trade name flucloxacillin. facts properties often needed clean existing data, inconvenient software package without reliable reference data. See demonstration. R extremely flexible. write syntax , can anything want. flexibility transforming, arranging, grouping summarising data, drawing plots, endless - SPSS, SAS Stata bound algorithms format styles. may bit flexible, can probably never create specific publication-ready plot without using (paid) software. sometimes write syntaxes SPSS run complete analysis ‘automate’ work, lot less time R. notice writing syntaxes R lot nifty clever SPSS. Still, working statistical package, knowledge (statistically) willing accomplish. R can easily automated. last years, R Markdown really made interesting development. R Markdown, can easily produce reports, whether format Word, PowerPoint, website, PDF document just raw data Excel. even allows use reference file containing layout style (e.g. fonts colours) organisation. use lot generate weekly monthly reports automatically. Just write code enjoy automatically updated reports interval like. even professional environment, create Shiny apps: live manipulation data using custom made website. webdesign knowledge needed (JavaScript, CSS, HTML) almost zero. R huge community. Many R users just ask questions websites like StackOverflow.com, largest online community programmers. time writing, 480 015 R-related questions already asked platform (covers questions answers programming language). experience, questions answered within couple minutes. R understands data type, including SPSS/SAS/Stata. ’s vice versa ’m afraid. can import data source R. example SPSS, SAS Stata (link), Minitab, Epi Info EpiData (link), Excel (link), flat files like CSV, TXT TSV (link), directly databases datawarehouses anywhere world (link). can even scrape websites download tables live internet (link) get results API call transform data one command (link). best part - can export R data formats well. can import SPSS file, analysis neatly R export resulting tables Excel files sharing. R completely free open-source. strings attached. created maintained volunteers believe (data) science open publicly available everybody. SPSS, SAS Stata quite expensive. IBM SPSS Staticstics comes subscriptions nowadays, varying USD 1,300 USD 8,500 per user per year. SAS Analytics Pro costs around USD 10,000 per computer. Stata also business model subscription fees, varying USD 600 USD 2,800 per computer per year, lower prices come limitation number variables can work . still offer benefits R. working midsized small company, can save tens thousands dollars using R instead e.g. SPSS - gaining even functions flexibility. R enthousiasts can much PR want (like ), nobody officially associated affiliated R. really free. R (nowadays) preferred analysis software academic papers. present, R among world powerful statistical languages, generally popular science (Bollmann et al., 2017). reasons, number references R analysis method academic papers rising continuously even surpassed SPSS academic use (Muenchen, 2014). believe thing SPSS , always great user interface easy learn use. Back developed , little competition, let alone R. R didn’t even professional user interface last decade (called RStudio, see ). people used R nineties 2010 almost completely incomparable R used now. language restyled completely volunteers dedicated professionals field data science. SPSS great nothing else compete. now 2023, don’t see reason SPSS better use R. demonstrate first point:","code":"# not all values are valid MIC values: as.mic(0.125) # Class 'mic' # [1] 0.125 as.mic(\"testvalue\") # Class 'mic' # [1] # the Gram stain is available for all bacteria: mo_gramstain(\"E. coli\") # [1] \"Gram-negative\" # Klebsiella is intrinsic resistant to amoxicillin, according to EUCAST: klebsiella_test <- data.frame( mo = \"klebsiella\", amox = \"S\", stringsAsFactors = FALSE ) klebsiella_test # (our original data) # mo amox # 1 klebsiella S eucast_rules(klebsiella_test, info = FALSE) # (the edited data by EUCAST rules) # mo amox # 1 klebsiella R # hundreds of trade names can be translated to a name, trade name or an ATC code: ab_name(\"floxapen\") # [1] \"Flucloxacillin\" ab_tradenames(\"floxapen\") # [1] \"culpen\" \"floxacillin\" \"floxacillin sodium\" # [4] \"floxapen\" \"floxapen sodium salt\" \"fluclox\" # [7] \"flucloxacilina\" \"flucloxacillin\" \"flucloxacilline\" # [10] \"flucloxacillinum\" \"fluorochloroxacillin\" \"staphylex\" ab_atc(\"floxapen\") # [1] \"J01CF05\""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/SPSS.html","id":"rstudio","dir":"Articles","previous_headings":"Import data from SPSS/SAS/Stata","what":"RStudio","title":"How to import data from SPSS / SAS / Stata","text":"work R, probably best option use RStudio. open-source free desktop environment allows run R code, also supports project management, version management, package management convenient import menus work data sources. can also install RStudio Server private corporate server, brings nothing less complete RStudio software website (home work). import data file, just click Import Dataset Environment tab: additional packages needed, RStudio ask installed beforehand. window opens, can define options (parameters) used import ’re ready go: want named variables imported factors resembles SPSS , use as_factor(). difference :","code":"SPSS_data # # A tibble: 4,203 x 4 # v001 sex status statusage # # 1 10002 1 1 76.6 # 2 10004 0 1 59.1 # 3 10005 1 1 54.5 # 4 10006 1 1 54.1 # 5 10007 1 1 57.7 # 6 10008 1 1 62.8 # 7 10010 0 1 63.7 # 8 10011 1 1 73.1 # 9 10017 1 1 56.7 # 10 10018 0 1 66.6 # # ... with 4,193 more rows as_factor(SPSS_data) # # A tibble: 4,203 x 4 # v001 sex status statusage # # 1 10002 Male alive 76.6 # 2 10004 Female alive 59.1 # 3 10005 Male alive 54.5 # 4 10006 Male alive 54.1 # 5 10007 Male alive 57.7 # 6 10008 Male alive 62.8 # 7 10010 Female alive 63.7 # 8 10011 Male alive 73.1 # 9 10017 Male alive 56.7 # 10 10018 Female alive 66.6 # # ... with 4,193 more rows"},{"path":"https://msberends.github.io/AMR/articles/SPSS.html","id":"base-r","dir":"Articles","previous_headings":"Import data from SPSS/SAS/Stata","what":"Base R","title":"How to import data from SPSS / SAS / Stata","text":"import data SPSS, SAS Stata, can use great haven package : can now import files follows:","code":"# download and install the latest version: install.packages(\"haven\") # load the package you just installed: library(haven)"},{"path":"https://msberends.github.io/AMR/articles/SPSS.html","id":"spss","dir":"Articles","previous_headings":"Import data from SPSS/SAS/Stata > Base R","what":"SPSS","title":"How to import data from SPSS / SAS / Stata","text":"read files SPSS R: forget as_factor(), mentioned . export R objects SPSS file format:","code":"# read any SPSS file based on file extension (best way): read_spss(file = \"path/to/file\") # read .sav or .zsav file: read_sav(file = \"path/to/file\") # read .por file: read_por(file = \"path/to/file\") # save as .sav file: write_sav(data = yourdata, path = \"path/to/file\") # save as compressed .zsav file: write_sav(data = yourdata, path = \"path/to/file\", compress = TRUE)"},{"path":"https://msberends.github.io/AMR/articles/SPSS.html","id":"sas","dir":"Articles","previous_headings":"Import data from SPSS/SAS/Stata > Base R","what":"SAS","title":"How to import data from SPSS / SAS / Stata","text":"read files SAS R: export R objects SAS file format:","code":"# read .sas7bdat + .sas7bcat files: read_sas(data_file = \"path/to/file\", catalog_file = NULL) # read SAS transport files (version 5 and version 8): read_xpt(file = \"path/to/file\") # save as regular SAS file: write_sas(data = yourdata, path = \"path/to/file\") # the SAS transport format is an open format # (required for submission of the data to the FDA) write_xpt(data = yourdata, path = \"path/to/file\", version = 8)"},{"path":"https://msberends.github.io/AMR/articles/SPSS.html","id":"stata","dir":"Articles","previous_headings":"Import data from SPSS/SAS/Stata > Base R","what":"Stata","title":"How to import data from SPSS / SAS / Stata","text":"read files Stata R: export R objects Stata file format:","code":"# read .dta file: read_stata(file = \"/path/to/file\") # works exactly the same: read_dta(file = \"/path/to/file\") # save as .dta file, Stata version 14: # (supports Stata v8 until v15 at the time of writing) write_dta(data = yourdata, path = \"/path/to/file\", version = 14)"},{"path":"https://msberends.github.io/AMR/articles/WHONET.html","id":"import-of-data","dir":"Articles","previous_headings":"","what":"Import of data","title":"How to work with WHONET data","text":"tutorial assumes already imported WHONET data e.g. readxl package. RStudio, can done using menu button ‘Import Dataset’ tab ‘Environment’. Choose option ‘Excel’ select exported file. Make sure date fields imported correctly. example syntax look like : package comes example data set WHONET. use analysis.","code":"library(readxl) data <- read_excel(path = \"path/to/your/file.xlsx\")"},{"path":"https://msberends.github.io/AMR/articles/WHONET.html","id":"preparation","dir":"Articles","previous_headings":"","what":"Preparation","title":"How to work with WHONET data","text":"First, load relevant packages yet . use tidyverse analyses. . don’t know yet, suggest read website: https://www.tidyverse.org/. transform variables simplify automate analysis: Microorganisms transformed microorganism codes (called mo) using Catalogue Life reference data set, contains ~70,000 microorganisms taxonomic kingdoms Bacteria, Fungi Protozoa. tranformation .mo(). function also recognises almost WHONET abbreviations microorganisms. Antimicrobial results interpretations clean valid. words, contain values \"S\", \"\" \"R\". exactly .sir() function . errors warnings, values transformed succesfully. also created package dedicated data cleaning checking, called cleaner package. freq() function can used create frequency tables. let’s check data, couple frequency tables: Frequency table Class: character Length: 500 Available: 500 (100%, NA: 0 = 0%) Unique: 38 Shortest: 11 Longest: 40 (omitted 28 entries, n = 57 [11.4%]) Frequency table Class: factor > ordered > sir (numeric) Length: 500 Levels: 3: S < < R Available: 481 (96.2%, NA: 19 = 3.8%) Unique: 3 Drug: Amoxicillin/clavulanic acid (AMC, J01CR02) Drug group: Beta-lactams/penicillins %SI: 78.59%","code":"library(dplyr) # part of tidyverse library(ggplot2) # part of tidyverse library(AMR) # this package library(cleaner) # to create frequency tables # transform variables data <- WHONET %>% # get microbial ID based on given organism mutate(mo = as.mo(Organism)) %>% # transform everything from \"AMP_ND10\" to \"CIP_EE\" to the new `sir` class mutate_at(vars(AMP_ND10:CIP_EE), as.sir) # our newly created `mo` variable, put in the mo_name() function data %>% freq(mo_name(mo), nmax = 10) # our transformed antibiotic columns # amoxicillin/clavulanic acid (J01CR02) as an example data %>% freq(AMC_ND2)"},{"path":"https://msberends.github.io/AMR/articles/WHONET.html","id":"a-first-glimpse-at-results","dir":"Articles","previous_headings":"","what":"A first glimpse at results","title":"How to work with WHONET data","text":"easy ggplot already give lot information, using included ggplot_sir() function:","code":"data %>% group_by(Country) %>% select(Country, AMP_ND2, AMC_ED20, CAZ_ED10, CIP_ED5) %>% ggplot_sir(translate_ab = \"ab\", facet = \"Country\", datalabels = FALSE)"},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"microorganisms-full-microbial-taxonomy","dir":"Articles","previous_headings":"","what":"microorganisms: Full Microbial Taxonomy","title":"Data sets for download / own use","text":"data set 52 142 rows 22 columns, containing following column names:mo, fullname, status, kingdom, phylum, class, order, family, genus, species, subspecies, rank, ref, source, lpsn, lpsn_parent, lpsn_renamed_to, gbif, gbif_parent, gbif_renamed_to, prevalence snomed. data set R available microorganisms, load AMR package. last updated 6 February 2023 10:57:22 UTC. Find info structure data set . Direct download links: Download original R Data Structure (RDS) file (1.2 MB) Download tab-separated text file (11.3 MB) Download Microsoft Excel workbook (5 MB) Download Apache Feather file (5.4 MB) Download Apache Parquet file (2.6 MB) Download SAS data file (50.9 MB) Download IBM SPSS Statistics data file (16.9 MB) Download Stata DTA file (47.1 MB) NOTE: exported files SAS, SPSS Stata contain first 50 SNOMED codes per record, file size otherwise exceed 100 MB; file size limit GitHub. Advice? Use R instead. tab-separated text file Microsoft Excel workbook contain SNOMED codes comma separated values.","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source","dir":"Articles","previous_headings":"microorganisms: Full Microbial Taxonomy","what":"Source","title":"Data sets for download / own use","text":"data set contains full microbial taxonomy five kingdoms List Prokaryotic names Standing Nomenclature (LPSN) Global Biodiversity Information Facility (GBIF): Parte, AC et al. (2020). List Prokaryotic names Standing Nomenclature (LPSN) moves DSMZ. International Journal Systematic Evolutionary Microbiology, 70, 5607-5612; . Accessed https://lpsn.dsmz.de 11 December, 2022. GBIF Secretariat (2022). GBIF Backbone Taxonomy. Checklist dataset . Accessed https://www.gbif.org 11 December, 2022. Public Health Information Network Vocabulary Access Distribution System (PHIN VADS). US Edition SNOMED CT 1 September 2020. Value Set Name ‘Microoganism’, OID 2.16.840.1.114222.4.11.1009 (v12). URL: https://phinvads.cdc.gov","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"example-content","dir":"Articles","previous_headings":"microorganisms: Full Microbial Taxonomy","what":"Example content","title":"Data sets for download / own use","text":"Included (sub)species per taxonomic kingdom: Example rows filtering genus Escherichia:","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"antibiotics-antibiotic-antifungal-drugs","dir":"Articles","previous_headings":"","what":"antibiotics: Antibiotic (+Antifungal) Drugs","title":"Data sets for download / own use","text":"data set 483 rows 14 columns, containing following column names:ab, cid, name, group, atc, atc_group1, atc_group2, abbreviations, synonyms, oral_ddd, oral_units, iv_ddd, iv_units loinc. data set R available antibiotics, load AMR package. last updated 30 October 2022 20:05:46 UTC. Find info structure data set . Direct download links: Download original R Data Structure (RDS) file (39 kB) Download tab-separated text file (0.1 MB) Download Microsoft Excel workbook (66 kB) Download Apache Feather file (0.1 MB) Download Apache Parquet file (97 kB) Download SAS data file (1.9 MB) Download IBM SPSS Statistics data file (0.3 MB) Download Stata DTA file (0.4 MB) tab-separated text file Microsoft Excel workbook, SAS, SPSS Stata files contain ATC codes, common abbreviations, trade names LOINC codes comma separated values.","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-1","dir":"Articles","previous_headings":"antibiotics: Antibiotic (+Antifungal) Drugs","what":"Source","title":"Data sets for download / own use","text":"data set contains EARS-Net ATC codes gathered WHONET, compound IDs PubChem. also contains brand names (synonyms) found PubChem Defined Daily Doses (DDDs) oral parenteral administration. ATC/DDD index Collaborating Centre Drug Statistics Methodology (note: may used commercial purposes, freely available CC website personal use) PubChem US National Library Medicine WHONET software 2019 LOINC (Logical Observation Identifiers Names Codes)","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"antivirals-antiviral-drugs","dir":"Articles","previous_headings":"","what":"antivirals: Antiviral Drugs","title":"Data sets for download / own use","text":"data set 120 rows 11 columns, containing following column names:av, name, atc, cid, atc_group, synonyms, oral_ddd, oral_units, iv_ddd, iv_units loinc. data set R available antivirals, load AMR package. last updated 13 November 2022 07:46:10 UTC. Find info structure data set . Direct download links: Download original R Data Structure (RDS) file (5 kB) Download tab-separated text file (16 kB) Download Microsoft Excel workbook (16 kB) Download Apache Feather file (15 kB) Download Apache Parquet file (13 kB) Download SAS data file (84 kB) Download IBM SPSS Statistics data file (30 kB) Download Stata DTA file (73 kB) tab-separated text file Microsoft Excel workbook, SAS, SPSS Stata files contain trade names LOINC codes comma separated values.","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-2","dir":"Articles","previous_headings":"antivirals: Antiviral Drugs","what":"Source","title":"Data sets for download / own use","text":"data set contains ATC codes gathered compound IDs PubChem. also contains brand names (synonyms) found PubChem Defined Daily Doses (DDDs) oral parenteral administration. ATC/DDD index Collaborating Centre Drug Statistics Methodology (note: may used commercial purposes, freely available CC website personal use) PubChem US National Library Medicine LOINC (Logical Observation Identifiers Names Codes)","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"clinical_breakpoints-interpretation-from-mic-values-disk-diameters-to-sir","dir":"Articles","previous_headings":"","what":"clinical_breakpoints: Interpretation from MIC values & disk diameters to SIR","title":"Data sets for download / own use","text":"data set 18 308 rows 11 columns, containing following column names:guideline, method, site, mo, rank_index, ab, ref_tbl, disk_dose, breakpoint_S, breakpoint_R uti. data set R available clinical_breakpoints, load AMR package. last updated 21 January 2023 22:47:20 UTC. Find info structure data set . Direct download links: Download original R Data Structure (RDS) file (42 kB) Download tab-separated text file (1.9 MB) Download Microsoft Excel workbook (0.8 MB) Download Apache Feather file (0.7 MB) Download Apache Parquet file (87 kB) Download SAS data file (3.6 MB) Download IBM SPSS Statistics data file (2.3 MB) Download Stata DTA file (3.4 MB)","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-3","dir":"Articles","previous_headings":"clinical_breakpoints: Interpretation from MIC values & disk diameters to SIR","what":"Source","title":"Data sets for download / own use","text":"data set contains interpretation rules MIC values disk diffusion diameters. Included guidelines CLSI (2013-2022) EUCAST (2013-2022).","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"intrinsic_resistant-intrinsic-bacterial-resistance","dir":"Articles","previous_headings":"","what":"intrinsic_resistant: Intrinsic Bacterial Resistance","title":"Data sets for download / own use","text":"data set 134 634 rows 2 columns, containing following column names:mo ab. data set R available intrinsic_resistant, load AMR package. last updated 16 December 2022 15:10:43 UTC. Find info structure data set . Direct download links: Download original R Data Structure (RDS) file (78 kB) Download tab-separated text file (5.1 MB) Download Microsoft Excel workbook (1.3 MB) Download Apache Feather file (1.2 MB) Download Apache Parquet file (0.2 MB) Download SAS data file (9.8 MB) Download IBM SPSS Statistics data file (7.4 MB) Download Stata DTA file (9.5 MB)","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-4","dir":"Articles","previous_headings":"intrinsic_resistant: Intrinsic Bacterial Resistance","what":"Source","title":"Data sets for download / own use","text":"data set contains defined intrinsic resistance EUCAST bug-drug combinations, based ‘EUCAST Expert Rules’ ‘EUCAST Intrinsic Resistance Unusual Phenotypes’ v3.3 (2021).","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"example-content-4","dir":"Articles","previous_headings":"intrinsic_resistant: Intrinsic Bacterial Resistance","what":"Example content","title":"Data sets for download / own use","text":"Example rows filtering Enterobacter cloacae:","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"dosage-dosage-guidelines-from-eucast","dir":"Articles","previous_headings":"","what":"dosage: Dosage Guidelines from EUCAST","title":"Data sets for download / own use","text":"data set 336 rows 9 columns, containing following column names:ab, name, type, dose, dose_times, administration, notes, original_txt eucast_version. data set R available dosage, load AMR package. last updated 14 November 2022 14:20:39 UTC. Find info structure data set . Direct download links: Download original R Data Structure (RDS) file (3 kB) Download tab-separated text file (29 kB) Download Microsoft Excel workbook (19 kB) Download Apache Feather file (16 kB) Download Apache Parquet file (8 kB) Download SAS data file (92 kB) Download IBM SPSS Statistics data file (43 kB) Download Stata DTA file (82 kB)","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-5","dir":"Articles","previous_headings":"dosage: Dosage Guidelines from EUCAST","what":"Source","title":"Data sets for download / own use","text":"EUCAST breakpoints used package based dosages data set. Currently included dosages data set meant : ‘EUCAST Clinical Breakpoint Tables’ v11.0 (2021) ‘EUCAST Clinical Breakpoint Tables’ v12.0 (2022).","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"example_isolates-example-data-for-practice","dir":"Articles","previous_headings":"","what":"example_isolates: Example Data for Practice","title":"Data sets for download / own use","text":"data set 2 000 rows 46 columns, containing following column names:date, patient, age, gender, ward, mo, PEN, OXA, FLC, AMX, AMC, AMP, TZP, CZO, FEP, CXM, FOX, CTX, CAZ, CRO, GEN, TOB, AMK, KAN, TMP, SXT, NIT, FOS, LNZ, CIP, MFX, VAN, TEC, TCY, TGC, DOX, ERY, CLI, AZM, IPM, MEM, MTR, CHL, COL, MUP RIF. data set R available example_isolates, load AMR package. last updated 21 January 2023 22:47:20 UTC. Find info structure data set .","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-6","dir":"Articles","previous_headings":"example_isolates: Example Data for Practice","what":"Source","title":"Data sets for download / own use","text":"data set contains randomised fictitious data, reflects reality can used practise AMR data analysis.","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"example_isolates_unclean-example-data-for-practice","dir":"Articles","previous_headings":"","what":"example_isolates_unclean: Example Data for Practice","title":"Data sets for download / own use","text":"data set 3 000 rows 8 columns, containing following column names:patient_id, hospital, date, bacteria, AMX, AMC, CIP GEN. data set R available example_isolates_unclean, load AMR package. last updated 27 August 2022 18:49:37 UTC. Find info structure data set .","code":""},{"path":"https://msberends.github.io/AMR/articles/datasets.html","id":"source-7","dir":"Articles","previous_headings":"example_isolates_unclean: Example Data for Practice","what":"Source","title":"Data sets for download / own use","text":"data set contains randomised fictitious data, reflects reality can used practise AMR data analysis.","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/articles/resistance_predict.html","id":"needed-r-packages","dir":"Articles","previous_headings":"","what":"Needed R packages","title":"How to predict antimicrobial resistance","text":"many uses R, need additional packages AMR data analysis. package works closely together tidyverse packages dplyr ggplot2. tidyverse tremendously improves way conduct data science - allows natural way writing syntaxes creating beautiful plots R. AMR package depends packages even extends use functions.","code":"library(dplyr) library(ggplot2) library(AMR) # (if not yet installed, install with:) # install.packages(c(\"tidyverse\", \"AMR\"))"},{"path":"https://msberends.github.io/AMR/articles/resistance_predict.html","id":"prediction-analysis","dir":"Articles","previous_headings":"","what":"Prediction analysis","title":"How to predict antimicrobial resistance","text":"package contains function resistance_predict(), takes input functions AMR data analysis. Based date column, calculates cases per year uses regression model predict antimicrobial resistance. basically easy : function look date column col_date set. running commands, summary regression model printed unless using resistance_predict(..., info = FALSE). text printed summary - actual result (output) function data.frame containing year: number observations, actual observed resistance, estimated resistance standard error estimation: function plot available base R, can extended packages depend output based type input. extended function cope resistance predictions: fastest way plot result. automatically adds right axes, error bars, titles, number available observations type model. also support ggplot2 package custom function ggplot_sir_predict() create appealing plots:","code":"# resistance prediction of piperacillin/tazobactam (TZP): resistance_predict(tbl = example_isolates, col_date = \"date\", col_ab = \"TZP\", model = \"binomial\") # or: example_isolates %>% resistance_predict( col_ab = \"TZP\", model = \"binomial\" ) # to bind it to object 'predict_TZP' for example: predict_TZP <- example_isolates %>% resistance_predict( col_ab = \"TZP\", model = \"binomial\" ) predict_TZP # # A tibble: 32 × 7 # year value se_min se_max observations observed estimated # * # 1 2002 0.2 NA NA 15 0.2 0.0562 # 2 2003 0.0625 NA NA 32 0.0625 0.0616 # 3 2004 0.0854 NA NA 82 0.0854 0.0676 # 4 2005 0.05 NA NA 60 0.05 0.0741 # 5 2006 0.0508 NA NA 59 0.0508 0.0812 # 6 2007 0.121 NA NA 66 0.121 0.0889 # 7 2008 0.0417 NA NA 72 0.0417 0.0972 # 8 2009 0.0164 NA NA 61 0.0164 0.106 # 9 2010 0.0566 NA NA 53 0.0566 0.116 # 10 2011 0.183 NA NA 93 0.183 0.127 # # … with 22 more rows plot(predict_TZP) ggplot_sir_predict(predict_TZP) # choose for error bars instead of a ribbon ggplot_sir_predict(predict_TZP, ribbon = FALSE)"},{"path":"https://msberends.github.io/AMR/articles/resistance_predict.html","id":"choosing-the-right-model","dir":"Articles","previous_headings":"Prediction analysis","what":"Choosing the right model","title":"How to predict antimicrobial resistance","text":"Resistance easily predicted; look vancomycin resistance Gram-positive bacteria, spread (.e. standard error) enormous: Vancomycin resistance 100% ten years, might remain low. can define model model parameter. model chosen generalised linear regression model using binomial distribution, assuming period zero resistance followed period increasing resistance leading slowly resistance. Valid values : vancomycin resistance Gram-positive bacteria, linear model might appropriate: model also available object, attribute:","code":"example_isolates %>% filter(mo_gramstain(mo, language = NULL) == \"Gram-positive\") %>% resistance_predict(col_ab = \"VAN\", year_min = 2010, info = FALSE, model = \"binomial\") %>% ggplot_sir_predict() example_isolates %>% filter(mo_gramstain(mo, language = NULL) == \"Gram-positive\") %>% resistance_predict(col_ab = \"VAN\", year_min = 2010, info = FALSE, model = \"linear\") %>% ggplot_sir_predict() model <- attributes(predict_TZP)$model summary(model)$family # # Family: binomial # Link function: logit summary(model)$coefficients # Estimate Std. Error z value Pr(>|z|) # (Intercept) -200.67944891 46.17315349 -4.346237 1.384932e-05 # year 0.09883005 0.02295317 4.305725 1.664395e-05"},{"path":"https://msberends.github.io/AMR/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Matthijs S. Berends. Author, maintainer. Christian F. Luz. Author, contributor. Dennis Souverein. Author, contributor. Erwin E. . Hassing. Author, contributor. Casper J. Albers. Thesis advisor. Peter Dutey-Magni. Contributor. Judith M. Fonville. Contributor. Alex W. Friedrich. Thesis advisor. Corinna Glasner. Thesis advisor. Eric H. L. C. M. Hazenberg. Contributor. Gwen Knight. Contributor. Annick Lenglet. Contributor. Bart C. Meijer. Contributor. Dmytro Mykhailenko. Contributor. Anton Mymrikov. Contributor. Andrew P. Norgan. Contributor. Sofia Ny. Contributor. Jonas Salm. Contributor. Rogier P. Schade. Contributor. Bhanu N. M. Sinha. Thesis advisor. Anthony Underwood. Contributor. Anita Williams. Contributor.","code":""},{"path":"https://msberends.github.io/AMR/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C (2022). “AMR: R Package Working Antimicrobial Resistance Data.” Journal Statistical Software, 104(3), 1–31. doi:10.18637/jss.v104.i03.","code":"@Article{, title = {{AMR}: An {R} Package for Working with Antimicrobial Resistance Data}, author = {Matthijs S. Berends and Christian F. Luz and Alexander W. Friedrich and Bhanu N. M. Sinha and Casper J. Albers and Corinna Glasner}, journal = {Journal of Statistical Software}, year = {2022}, volume = {104}, number = {3}, pages = {1--31}, doi = {10.18637/jss.v104.i03}, }"},{"path":"https://msberends.github.io/AMR/index.html","id":"the-amr-package-for-r-","dir":"","previous_headings":"","what":"Antimicrobial Resistance Data Analysis","title":"Antimicrobial Resistance Data Analysis","text":"Generates antibiograms - traditional, combined, syndromic, even WISCA Provides full microbiological taxonomy data antimicrobial drugs Applies recent CLSI EUCAST clinical breakpoints MICs disk zones Corrects duplicate isolates, calculates predicts AMR per antibiotic class Integrates WHONET, ATC, EARS-Net, PubChem, LOINC SNOMED CT Works Windows, macOS Linux versions R since R-3.0 completely dependency-free, highly suitable places limited resources https://msberends.github.io/AMR https://doi.org/10.18637/jss.v104.i03","code":""},{"path":"https://msberends.github.io/AMR/index.html","id":"introduction","dir":"","previous_headings":"","what":"Introduction","title":"Antimicrobial Resistance Data Analysis","text":"AMR package free open-source R package zero dependencies simplify analysis prediction Antimicrobial Resistance (AMR) work microbial antimicrobial data properties, using evidence-based methods. aim provide standard clean reproducible AMR data analysis, can therefore empower epidemiological analyses continuously enable surveillance treatment evaluation setting. Many different researchers around globe continually helping us make successful durable project! work published Journal Statistical Software (Volume 104(3); DOI 10.18637/jss.v104.i03) formed basis two PhD theses (DOI 10.33612/diss.177417131 DOI 10.33612/diss.192486375). installing package, R knows ~52,000 distinct microbial species (updated December 2022) ~600 antibiotic, antimycotic antiviral drugs name code (including ATC, EARS-Net, ASIARS-Net, PubChem, LOINC SNOMED CT), knows valid SIR MIC values. integral breakpoint guidelines CLSI EUCAST included last 10 years. supports can read data format, including WHONET data. package works Windows, macOS Linux versions R since R-3.0 (April 2013). designed work setting, including limited resources. created routine data analysis academic research Faculty Medical Sciences University Groningen, collaboration non-profit organisations Certe Medical Diagnostics Advice Foundation University Medical Center Groningen.","code":""},{"path":"https://msberends.github.io/AMR/index.html","id":"used-in-over-175-countries-translated-into-20-languages","dir":"","previous_headings":"Introduction","what":"Used in over 175 countries, translated into 20 languages","title":"Antimicrobial Resistance Data Analysis","text":"Since first public release early 2018, R package used almost countries world. Click map enlarge see country names. help contributors corners world, AMR package available English, Czech, Chinese, Danish, Dutch, Finnish, French, German, Greek, Italian, Japanese, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish, Swedish, Turkish, Ukrainian. Antimicrobial drug (group) names colloquial microorganism names provided languages.","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/index.html","id":"filtering-and-selecting-data","dir":"","previous_headings":"Practical examples","what":"Filtering and selecting data","title":"Antimicrobial Resistance Data Analysis","text":"defined row filter Gram-negative bacteria intrinsic resistance cefotaxime (mo_is_gram_negative() mo_is_intrinsic_resistant()) column selection two antibiotic groups (aminoglycosides() carbapenems()), reference data microorganisms antibiotics AMR package make sure get meant: base R equivalent : base R snippet work version R since April 2013 (R-3.0).","code":"# AMR works great with dplyr, but it's not required or neccesary library(AMR) library(dplyr) example_isolates %>% mutate(bacteria = mo_fullname()) %>% filter(mo_is_gram_negative(), mo_is_intrinsic_resistant(ab = \"cefotax\")) %>% select(bacteria, aminoglycosides(), carbapenems()) example_isolates$bacteria <- mo_fullname(example_isolates$mo) example_isolates[which(mo_is_gram_negative() & mo_is_intrinsic_resistant(ab = \"cefotax\")), c(\"bacteria\", aminoglycosides(), carbapenems())]"},{"path":"https://msberends.github.io/AMR/index.html","id":"generating-antibiograms","dir":"","previous_headings":"Practical examples","what":"Generating antibiograms","title":"Antimicrobial Resistance Data Analysis","text":"AMR package supports generating traditional, combined, syndromic, even weighted-incidence syndromic combination antibiograms (WISCA). used inside R Markdown Quarto, table printed right output format automatically (markdown, LaTeX, HTML, etc.). combination antibiograms, clear combined antibiotics yield higher empiric coverage:","code":"antibiogram(example_isolates, antibiotics = c(aminoglycosides(), carbapenems())) antibiogram(example_isolates, antibiotics = c(\"TZP\", \"TZP+TOB\", \"TZP+GEN\"), mo_transform = \"gramstain\")"},{"path":"https://msberends.github.io/AMR/index.html","id":"calculating-resistance-per-group","dir":"","previous_headings":"Practical examples","what":"Calculating resistance per group","title":"Antimicrobial Resistance Data Analysis","text":"","code":"library(AMR) library(dplyr) out <- example_isolates %>% # group by ward: group_by(ward) %>% # calculate AMR using resistance(), over all aminoglycosides # and polymyxins: summarise(across(c(aminoglycosides(), polymyxins()), resistance)) out # transform the antibiotic columns to names: out %>% set_ab_names() # transform the antibiotic column to ATC codes: out %>% set_ab_names(property = \"atc\")"},{"path":"https://msberends.github.io/AMR/index.html","id":"what-else-can-you-do-with-this-package","dir":"","previous_headings":"","what":"What else can you do with this package?","title":"Antimicrobial Resistance Data Analysis","text":"package intended comprehensive toolbox integrated AMR data analysis. package can used : Reference taxonomy microorganisms, since package contains microbial (sub)species List Prokaryotic names Standing Nomenclature (LPSN) Global Biodiversity Information Facility (GBIF) (manual) Interpreting raw MIC disk diffusion values, based CLSI EUCAST guideline last 10 years (manual) Retrieving antimicrobial drug names, doses forms administration clinical health care records (manual) Determining first isolates used AMR data analysis (manual) Calculating antimicrobial resistance (tutorial) Determining multi-drug resistance (MDR) / multi-drug resistant organisms (MDRO) (tutorial) Calculating (empirical) susceptibility mono therapy combination therapies (tutorial) Predicting future antimicrobial resistance using regression models (tutorial) Getting properties microorganism (like Gram stain, species, genus family) (manual) Getting properties antibiotic (like name, code EARS-Net/ATC/LOINC/PubChem, defined daily dose trade name) (manual) Plotting antimicrobial resistance (tutorial) Applying EUCAST expert rules (manual) Getting SNOMED codes microorganism, getting properties microorganism based SNOMED code (manual) Getting LOINC codes antibiotic, getting properties antibiotic based LOINC code (manual) Machine reading EUCAST CLSI guidelines 2011-2021 translate MIC values disk diffusion diameters SIR (link) Principal component analysis AMR (tutorial)","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/index.html","id":"latest-official-version","dir":"","previous_headings":"Get this package","what":"Latest official version","title":"Antimicrobial Resistance Data Analysis","text":"package available official R network (CRAN). Install package R CRAN using command: downloaded installed automatically. RStudio, click menu Tools > Install Packages… type “AMR” press Install. Note: functions website may available latest release. use functions data sets mentioned website, install latest development version.","code":"install.packages(\"AMR\")"},{"path":"https://msberends.github.io/AMR/index.html","id":"latest-development-version","dir":"","previous_headings":"Get this package","what":"Latest development version","title":"Antimicrobial Resistance Data Analysis","text":"Please read Developer Guideline . latest unpublished development version can installed GitHub two ways: Manually, using: Automatically, using rOpenSci R-universe platform, adding R-universe address list repositories (‘repos’): , can install update AMR package like official release (e.g., using install.packages(\"AMR\") RStudio via Tools > Check Package Updates…).","code":"install.packages(\"remotes\") # if you haven't already remotes::install_github(\"msberends/AMR\") options(repos = c(getOption(\"repos\"), msberends = \"https://msberends.r-universe.dev\"))"},{"path":"https://msberends.github.io/AMR/index.html","id":"get-started","dir":"","previous_headings":"","what":"Get started","title":"Antimicrobial Resistance Data Analysis","text":"find conduct AMR data analysis, please continue reading get started click link ‘’ menu.","code":""},{"path":"https://msberends.github.io/AMR/index.html","id":"partners","dir":"","previous_headings":"","what":"Partners","title":"Antimicrobial Resistance Data Analysis","text":"development package part , related , made possible following non-profit organisations initiatives:","code":""},{"path":"https://msberends.github.io/AMR/index.html","id":"copyright","dir":"","previous_headings":"","what":"Copyright","title":"Antimicrobial Resistance Data Analysis","text":"R package free, open-source software licensed GNU General Public License v2.0 (GPL-2). nutshell, means package: May used commercial purposes May used private purposes May used patent purposes May modified, although: Modifications must released license distributing package Changes made code must documented May distributed, although: Source code must made available package distributed copy license copyright notice must included package. Comes LIMITATION liability Comes warranty","code":""},{"path":"https://msberends.github.io/AMR/reference/AMR-deprecated.html","id":null,"dir":"Reference","previous_headings":"","what":"Deprecated Functions — AMR-deprecated","title":"Deprecated Functions — AMR-deprecated","text":"functions -called 'Deprecated'. removed future release. Using functions give warning name function replaced (one).","code":""},{"path":"https://msberends.github.io/AMR/reference/AMR-deprecated.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Deprecated Functions — AMR-deprecated","text":"","code":"NA_rsi_ as.rsi(x, ...) facet_rsi(...) geom_rsi(...) ggplot_rsi(...) ggplot_rsi_predict(...) is.rsi(x, ...) is.rsi.eligible(...) labels_rsi_count(...) n_rsi(...) random_rsi(...) rsi_df(...) rsi_predict(...) scale_rsi_colours(...) theme_rsi(...)"},{"path":"https://msberends.github.io/AMR/reference/AMR-deprecated.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Deprecated Functions — AMR-deprecated","text":"object class rsi (inherits ordered, factor) length 1.","code":""},{"path":"https://msberends.github.io/AMR/reference/AMR-options.html","id":null,"dir":"Reference","previous_headings":"","what":"Options for the AMR package — AMR-options","title":"Options for the AMR package — AMR-options","text":"overview package-specific options() can set AMR package.","code":""},{"path":"https://msberends.github.io/AMR/reference/AMR-options.html","id":"options","dir":"Reference","previous_headings":"","what":"Options","title":"Options for the AMR package — AMR-options","text":"AMR_custom_ab Allows use custom antimicrobial drugs package. explained add_custom_antimicrobials(). AMR_custom_mo Allows use custom microorganisms package. explained add_custom_microorganisms(). AMR_eucastrules Used setting default types rules eucast_rules() function, must one : \"breakpoints\", \"expert\", \"\", \"custom\", \"\", defaults c(\"breakpoints\", \"expert\"). AMR_guideline Used setting default guideline interpreting MIC values disk diffusion diameters .sir(). Can guideline name (e.g., \"CLSI\") name year (e.g. \"CLSI 2019\"). default \"EUCAST 2022\". Supported guideline currently EUCAST (2013-2022) CLSI (2013-2022). AMR_ignore_pattern regular expression define input must ignored .mo() mo_* functions. AMR_include_PKPD logical use .sir(), indicate PK/PD clinical breakpoints must applied last resort, defaults TRUE. AMR_keep_synonyms logical use .mo() mo_* functions, indicate old, previously valid taxonomic names must preserved corrected currently accepted names. AMR_locale language use AMR package, can one supported language names ISO-639-1 codes: English (en), Chinese (zh), Czech (cs), Danish (da), Dutch (nl), Finnish (fi), French (fr), German (de), Greek (el), Italian (), Japanese (ja), Norwegian (), Polish (pl), Portuguese (pt), Romanian (ro), Russian (ru), Spanish (es), Swedish (sv), Turkish (tr) Ukrainian (uk). AMR_mo_source file location manual code list used .mo() mo_* functions. explained set_mo_source().","code":""},{"path":"https://msberends.github.io/AMR/reference/AMR-options.html","id":"saving-settings-between-sessions","dir":"Reference","previous_headings":"","what":"Saving Settings Between Sessions","title":"Options for the AMR package — AMR-options","text":"Settings R saved globally thus lost R exited. can save options .Rprofile file, user-specific file. can edit using: file, can set options options(AMR_locale = \"pt\") Portuguese language support antibiotics.","code":"utils::file.edit(\"~/.Rprofile\")"},{"path":"https://msberends.github.io/AMR/reference/AMR-options.html","id":"share-options-within-team","dir":"Reference","previous_headings":"","what":"Share Options Within Team","title":"Options for the AMR package — AMR-options","text":"global approach, e.g. within data team, save options file remote file location, shared network drive. work way: Save plain text file e.g. \"X:/team_folder/R_options.R\" fill preferred settings. user, open .Rprofile file using utils::file.edit(\"~/.Rprofile\") put : Reload R/RStudio check settings getOption(), e.g. getOption(\"AMR_locale\") set value. Now team settings configured one place, can maintained .","code":"source(\"X:/team_folder/R_options.R\")"},{"path":"https://msberends.github.io/AMR/reference/AMR.html","id":null,"dir":"Reference","previous_headings":"","what":"The AMR Package — AMR","title":"The AMR Package — AMR","text":"Welcome AMR package. AMR package free open-source R package zero dependencies simplify analysis prediction Antimicrobial Resistance (AMR) work microbial antimicrobial data properties, using evidence-based methods. aim provide standard clean reproducible AMR data analysis, can therefore empower epidemiological analyses continuously enable surveillance treatment evaluation setting. Many different researchers around globe continually helping us make successful durable project! work published Journal Statistical Software (Volume 104(3); DOI 10.18637/jss.v104.i03) formed basis two PhD theses (DOI 10.33612/diss.177417131 DOI 10.33612/diss.192486375). installing package, R knows ~52 000 (updated December 2022) ~600 antibiotic, antimycotic antiviral drugs name code (including ATC, EARS-Net, ASIARS-Net, PubChem, LOINC SNOMED CT), knows valid SIR MIC values. integral breakpoint guidelines CLSI EUCAST included last 10 years. supports can read data format, including WHONET data. package works Windows, macOS Linux versions R since R-3.0 (April 2013). designed work setting, including limited resources. created routine data analysis academic research Faculty Medical Sciences University Groningen, collaboration non-profit organisations Certe Medical Diagnostics Advice Foundation University Medical Center Groningen. AMR package available English, Chinese, Danish, Dutch, French, German, Greek, Italian, Japanese, Polish, Portuguese, Russian, Spanish, Swedish, Turkish Ukrainian. Antimicrobial drug (group) names colloquial microorganism names provided languages.","code":""},{"path":"https://msberends.github.io/AMR/reference/AMR.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"The AMR Package — AMR","text":"cite AMR publications use: Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C (2022). \"AMR: R Package Working Antimicrobial Resistance Data.\" Journal Statistical Software, 104(3), 1-31. doi:10.18637/jss.v104.i03 . BibTeX entry LaTeX users :","code":"@Article{, title = {{AMR}: An {R} Package for Working with Antimicrobial Resistance Data}, author = {Matthijs S. Berends and Christian F. Luz and Alexander W. Friedrich and Bhanu N. M. Sinha and Casper J. Albers and Corinna Glasner}, journal = {Journal of Statistical Software}, year = {2022}, volume = {104}, number = {3}, pages = {1--31}, doi = {10.18637/jss.v104.i03}, }"},{"path":"https://msberends.github.io/AMR/reference/AMR.html","id":"reference-data-publicly-available","dir":"Reference","previous_headings":"","what":"Reference Data Publicly Available","title":"The AMR Package — AMR","text":"data sets AMR package (microorganisms, antibiotics, SIR interpretation, EUCAST rules, etc.) publicly freely available download following formats: R, MS Excel, Apache Feather, Apache Parquet, SPSS, SAS, Stata. also provide tab-separated plain text files machine-readable suitable input software program, laboratory information systems. Please visit website download links. actual files course available GitHub repository.","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/reference/AMR.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"The AMR Package — AMR","text":"Maintainer: Matthijs S. Berends m.berends@certe.nl (ORCID) Authors: Christian F. Luz (ORCID) [contributor] Dennis Souverein (ORCID) [contributor] Erwin E. . Hassing [contributor] contributors: Casper J. Albers (ORCID) [thesis advisor] Peter Dutey-Magni (ORCID) [contributor] Judith M. Fonville [contributor] Alex W. Friedrich (ORCID) [thesis advisor] Corinna Glasner (ORCID) [thesis advisor] Eric H. L. C. M. Hazenberg [contributor] Gwen Knight (ORCID) [contributor] Annick Lenglet (ORCID) [contributor] Bart C. Meijer [contributor] Dmytro Mykhailenko [contributor] Anton Mymrikov [contributor] Andrew P. Norgan (ORCID) [contributor] Sofia Ny (ORCID) [contributor] Jonas Salm [contributor] Rogier P. Schade [contributor] Bhanu N. M. Sinha (ORCID) [thesis advisor] Anthony Underwood (ORCID) [contributor] Anita Williams (ORCID) [contributor]","code":""},{"path":"https://msberends.github.io/AMR/reference/WHOCC.html","id":null,"dir":"Reference","previous_headings":"","what":"WHOCC: WHO Collaborating Centre for Drug Statistics Methodology — WHOCC","title":"WHOCC: WHO Collaborating Centre for Drug Statistics Methodology — WHOCC","text":"antimicrobial drugs official names, ATC codes, ATC groups defined daily dose (DDD) included package, using Collaborating Centre Drug Statistics Methodology.","code":""},{"path":"https://msberends.github.io/AMR/reference/WHOCC.html","id":"whocc","dir":"Reference","previous_headings":"","what":"WHOCC","title":"WHOCC: WHO Collaborating Centre for Drug Statistics Methodology — WHOCC","text":"package contains ~550 antibiotic, antimycotic antiviral drugs Anatomical Therapeutic Chemical (ATC) codes, ATC groups Defined Daily Dose (DDD) World Health Organization Collaborating Centre Drug Statistics Methodology (WHOCC, https://www.whocc.) Pharmaceuticals Community Register European Commission (https://ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm). become gold standard international drug utilisation monitoring research. WHOCC located Oslo Norwegian Institute Public Health funded Norwegian government. European Commission executive European Union promotes general interest. NOTE: WHOCC copyright allow use commercial purposes, unlike info package. See https://www.whocc./copyright_disclaimer/.","code":""},{"path":"https://msberends.github.io/AMR/reference/WHOCC.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"WHOCC: WHO Collaborating Centre for Drug Statistics Methodology — WHOCC","text":"","code":"as.ab(\"meropenem\") #> Class 'ab' #> [1] MEM ab_name(\"J01DH02\") #> [1] \"Meropenem\" ab_tradenames(\"flucloxacillin\") #> [1] \"culpen\" \"floxacillin\" \"floxacillin sodium\" #> [4] \"floxapen\" \"floxapen sodium salt\" \"fluclox\" #> [7] \"flucloxacilina\" \"flucloxacillin\" \"flucloxacilline\" #> [10] \"flucloxacillinum\" \"fluorochloroxacillin\" \"staphylex\""},{"path":"https://msberends.github.io/AMR/reference/WHONET.html","id":null,"dir":"Reference","previous_headings":"","what":"Data Set with 500 Isolates - WHONET Example — WHONET","title":"Data Set with 500 Isolates - WHONET Example — WHONET","text":"example data set exact structure export file WHONET. files can used package, example data set shows. antibiotic results example_isolates data set. patient names created using online surname generators place practice purposes.","code":""},{"path":"https://msberends.github.io/AMR/reference/WHONET.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Data Set with 500 Isolates - WHONET Example — WHONET","text":"","code":"WHONET"},{"path":"https://msberends.github.io/AMR/reference/WHONET.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Data Set with 500 Isolates - WHONET Example — WHONET","text":"tibble 500 observations 53 variables: Identification number ID sample Specimen number ID specimen Organism Name microorganism. analysis, transform valid microbial class, using .mo(). Country Country origin Laboratory Name laboratory Last name Fictitious last name patient First name Fictitious initial patient Sex Fictitious gender patient Age Fictitious age patient Age category Age group, can also looked using age_groups() Date admissionDate hospital admission Specimen dateDate specimen received laboratory Specimen type Specimen type group Specimen type (Numeric) Translation \"Specimen type\" Reason Reason request Differential Diagnosis Isolate number ID isolate Organism type Type microorganism, can also looked using mo_type() Serotype Serotype microorganism Beta-lactamase Microorganism produces beta-lactamase? ESBL Microorganism produces extended spectrum beta-lactamase? Carbapenemase Microorganism produces carbapenemase? MRSA screening test Microorganism possible MRSA? Inducible clindamycin resistance Clindamycin can induced? Comment comments Date data entryDate data entered WHONET AMP_ND10:CIP_EE 0 different antibiotics. can lookup abbreviations antibiotics data set, use e.g. ab_name(\"AMP\") get official name immediately. analysis, transform valid antibiotic class, using .sir().","code":""},{"path":"https://msberends.github.io/AMR/reference/WHONET.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Data Set with 500 Isolates - WHONET Example — WHONET","text":"Like data sets package, data set publicly available download following formats: R, MS Excel, Apache Feather, Apache Parquet, SPSS, SAS, Stata. Please visit website download links. actual files course available GitHub repository.","code":""},{"path":"https://msberends.github.io/AMR/reference/WHONET.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Data Set with 500 Isolates - WHONET Example — WHONET","text":"","code":"WHONET #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> Warning: * The 'rsi' class has been replaced with 'sir'. Transform your 'rsi' #> columns to 'sir' with as.sir(), e.g.: #> your_data %>% mutate_if(is.rsi, as.sir) #> # A tibble: 500 × 53 #> Identif…¹ Speci…² Organ…³ Country Labor…⁴ Last …⁵ First…⁶ Sex Age Age c…⁷ #> #> 1 fe41d7ba… 1748 SPN Belgium Nation… Abel B. F 68 55-74 #> 2 91f175ec… 1767 eco The Ne… Nation… Delacr… F. M 89 75+ #> 3 cc401505… 1343 eco The Ne… Nation… Steens… F. M 85 75+ #> 4 e864b692… 1894 MAP Denmark Nation… Beyers… L. M 62 55-74 #> 5 3d051fe3… 1739 PVU Belgium Nation… Hummel W. M 86 75+ #> 6 c80762a0… 1846 103 The Ne… Nation… Eikenb… J. F 53 25-54 #> 7 8022d372… 1628 103 Denmark Nation… Leclerc S. F 77 75+ #> 8 f3dc5f55… 1493 eco The Ne… Nation… Delacr… W. M 53 25-54 #> 9 15add38f… 1847 eco France Nation… Van La… S. F 63 55-74 #> 10 fd41248d… 1458 eco Germany Nation… Moulin O. F 75 75+ #> # … with 490 more rows, 43 more variables: `Date of admission` , #> # `Specimen date` , `Specimen type` , #> # `Specimen type (Numeric)` , Reason , `Isolate number` , #> # `Organism type` , Serotype , `Beta-lactamase` , ESBL , #> # Carbapenemase , `MRSA screening test` , #> # `Inducible clindamycin resistance` , Comment , #> # `Date of data entry` , AMP_ND10 , AMC_ED20 , …"},{"path":"https://msberends.github.io/AMR/reference/ab_from_text.html","id":null,"dir":"Reference","previous_headings":"","what":"Retrieve Antimicrobial Drug Names and Doses from Clinical Text — ab_from_text","title":"Retrieve Antimicrobial Drug Names and Doses from Clinical Text — ab_from_text","text":"Use function e.g. clinical texts health care records. returns list antimicrobial drugs, doses forms administration found texts.","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_from_text.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Retrieve Antimicrobial Drug Names and Doses from Clinical Text — ab_from_text","text":"","code":"ab_from_text( text, type = c(\"drug\", \"dose\", \"administration\"), collapse = NULL, translate_ab = FALSE, thorough_search = NULL, info = interactive(), ... )"},{"path":"https://msberends.github.io/AMR/reference/ab_from_text.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Retrieve Antimicrobial Drug Names and Doses from Clinical Text — ab_from_text","text":"text text analyse type type property search , either \"drug\", \"dose\" \"administration\", see Examples collapse character pass paste(, collapse = ...) return one character per element text, see Examples translate_ab type = \"drug\": column name antibiotics data set translate antibiotic abbreviations , using ab_property(). Defaults FALSE. Using TRUE equal using \"name\". thorough_search logical indicate whether input must extensively searched misspelling faulty input values. Setting TRUE take considerably time using FALSE. default, turn TRUE input elements contain maximum three words. info logical indicate whether progress bar printed, defaults TRUE interactive mode ... arguments passed .ab()","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_from_text.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Retrieve Antimicrobial Drug Names and Doses from Clinical Text — ab_from_text","text":"list, character collapse NULL","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_from_text.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Retrieve Antimicrobial Drug Names and Doses from Clinical Text — ab_from_text","text":"function also internally used .ab(), although searches first drug name throw note drug names returned. Note: .ab() function may use long regular expression match brand names antimicrobial drugs. may fail systems.","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_from_text.html","id":"argument-type","dir":"Reference","previous_headings":"","what":"Argument type","title":"Retrieve Antimicrobial Drug Names and Doses from Clinical Text — ab_from_text","text":"default, function search antimicrobial drug names. text elements searched official names, ATC codes brand names. uses .ab() internally, correct misspelling. type = \"dose\" (similar, like \"dosing\", \"doses\"), text elements searched numeric values higher 100 resemble years. output numeric. supports unit (g, mg, IE, etc.) multiple values one clinical text, see Examples. type = \"administration\" (abbreviations, like \"admin\", \"adm\"), text elements searched form drug administration. supports following forms (including common abbreviations): buccal, implant, inhalation, instillation, intravenous, nasal, oral, parenteral, rectal, sublingual, transdermal vaginal. Abbreviations oral ('po', 'per os') become \"oral\", values intravenous ('iv', 'intraven') become \"iv\". supports multiple values one clinical text, see Examples.","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_from_text.html","id":"argument-collapse","dir":"Reference","previous_headings":"","what":"Argument collapse","title":"Retrieve Antimicrobial Drug Names and Doses from Clinical Text — ab_from_text","text":"Without using collapse, function return list. can convenient use e.g. inside mutate()):df %>% mutate(abx = ab_from_text(clinical_text)) returned AB codes can transformed official names, groups, etc. ab_* functions ab_name() ab_group(), using translate_ab argument. using collapse, function return character:df %>% mutate(abx = ab_from_text(clinical_text, collapse = \"|\"))","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_from_text.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Retrieve Antimicrobial Drug Names and Doses from Clinical Text — ab_from_text","text":"","code":"# mind the bad spelling of amoxicillin in this line, # straight from a true health care record: ab_from_text(\"28/03/2020 regular amoxicilliin 500mg po tid\") #> [[1]] #> Class 'ab' #> [1] AMX #> ab_from_text(\"500 mg amoxi po and 400mg cipro iv\") #> [[1]] #> Class 'ab' #> [1] AMX CIP #> ab_from_text(\"500 mg amoxi po and 400mg cipro iv\", type = \"dose\") #> [[1]] #> [1] 500 400 #> ab_from_text(\"500 mg amoxi po and 400mg cipro iv\", type = \"admin\") #> [[1]] #> [1] \"oral\" \"iv\" #> ab_from_text(\"500 mg amoxi po and 400mg cipro iv\", collapse = \", \") #> [1] \"AMX, CIP\" # \\donttest{ # if you want to know which antibiotic groups were administered, do e.g.: abx <- ab_from_text(\"500 mg amoxi po and 400mg cipro iv\") ab_group(abx[[1]]) #> [1] \"Beta-lactams/penicillins\" \"Quinolones\" if (require(\"dplyr\")) { tibble(clinical_text = c( \"given 400mg cipro and 500 mg amox\", \"started on doxy iv today\" )) %>% mutate( abx_codes = ab_from_text(clinical_text), abx_doses = ab_from_text(clinical_text, type = \"doses\"), abx_admin = ab_from_text(clinical_text, type = \"admin\"), abx_coll = ab_from_text(clinical_text, collapse = \"|\"), abx_coll_names = ab_from_text(clinical_text, collapse = \"|\", translate_ab = \"name\" ), abx_coll_doses = ab_from_text(clinical_text, type = \"doses\", collapse = \"|\" ), abx_coll_admin = ab_from_text(clinical_text, type = \"admin\", collapse = \"|\" ) ) } #> Loading required package: dplyr #> #> Attaching package: ‘dplyr’ #> The following objects are masked from ‘package:stats’: #> #> filter, lag #> The following objects are masked from ‘package:base’: #> #> intersect, setdiff, setequal, union #> # A tibble: 2 × 8 #> clinical_text abx_c…¹ abx_d…² abx_a…³ abx_c…⁴ abx_c…⁵ abx_c…⁶ abx_c…⁷ #> #> 1 given 400mg cipro and… CIP|AMX Ciprof… 400|500 NA #> 2 started on doxy iv to… DOX Doxycy… NA iv #> # … with abbreviated variable names ¹abx_codes, ²abx_doses, ³abx_admin, #> # ⁴abx_coll, ⁵abx_coll_names, ⁶abx_coll_doses, ⁷abx_coll_admin # }"},{"path":"https://msberends.github.io/AMR/reference/ab_property.html","id":null,"dir":"Reference","previous_headings":"","what":"Get Properties of an Antibiotic — ab_property","title":"Get Properties of an Antibiotic — ab_property","text":"Use functions return specific property antibiotic antibiotics data set. input values evaluated internally .ab().","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_property.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get Properties of an Antibiotic — ab_property","text":"","code":"ab_name(x, language = get_AMR_locale(), tolower = FALSE, ...) ab_cid(x, ...) ab_synonyms(x, ...) ab_tradenames(x, ...) ab_group(x, language = get_AMR_locale(), ...) ab_atc(x, only_first = FALSE, ...) ab_atc_group1(x, language = get_AMR_locale(), ...) ab_atc_group2(x, language = get_AMR_locale(), ...) ab_loinc(x, ...) ab_ddd(x, administration = \"oral\", ...) ab_ddd_units(x, administration = \"oral\", ...) ab_info(x, language = get_AMR_locale(), ...) ab_url(x, open = FALSE, ...) ab_property(x, property = \"name\", language = get_AMR_locale(), ...) set_ab_names( data, ..., property = \"name\", language = get_AMR_locale(), snake_case = NULL )"},{"path":"https://msberends.github.io/AMR/reference/ab_property.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get Properties of an Antibiotic — ab_property","text":"x (vector ) text can coerced valid antibiotic drug code .ab() language language returned text, defaults system language (see get_AMR_locale()) can also set option AMR_locale. Use language = NULL language = \"\" prevent translation. tolower logical indicate whether first character every output transformed lower case character. lead e.g. \"polymyxin B\" \"polymyxin b\". ... case set_ab_names() data data.frame: columns select (supports tidy selection column1:column4), otherwise arguments passed .ab() only_first logical indicate whether first ATC code must returned, giving preference J0-codes (.e., antimicrobial drug group) administration way administration, either \"oral\" \"iv\" open browse URL using utils::browseURL() property one column names one antibiotics data set: vector_or(colnames(antibiotics), sort = FALSE). data data.frame columns need renamed, character vector column names snake_case logical indicate whether names -called snake case: lower case spaces/slashes replaced underscore (_)","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_property.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get Properties of an Antibiotic — ab_property","text":"integer case ab_cid() named list case ab_info() multiple ab_atc()/ab_synonyms()/ab_tradenames() double case ab_ddd() data.frame case set_ab_names() character cases","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_property.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Get Properties of an Antibiotic — ab_property","text":"output translated possible. function ab_url() return direct URL official website. warning returned required ATC code available. function set_ab_names() special column renaming function data.frames. renames columns names resemble antimicrobial drugs. always makes sure new column names unique. property = \"atc\" set, preference given ATC codes J-group.","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_property.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Get Properties of an Antibiotic — ab_property","text":"World Health Organization () Collaborating Centre Drug Statistics Methodology: https://www.whocc./atc_ddd_index/ European Commission Public Health PHARMACEUTICALS - COMMUNITY REGISTER: https://ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm","code":""},{"path":"https://msberends.github.io/AMR/reference/ab_property.html","id":"reference-data-publicly-available","dir":"Reference","previous_headings":"","what":"Reference Data Publicly Available","title":"Get Properties of an Antibiotic — ab_property","text":"data sets AMR package (microorganisms, antibiotics, SIR interpretation, EUCAST rules, etc.) publicly freely available download following formats: R, MS Excel, Apache Feather, Apache Parquet, SPSS, SAS, Stata. also provide tab-separated plain text files machine-readable suitable input software program, laboratory information systems. Please visit website download links. actual files course available GitHub repository.","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/reference/ab_property.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get Properties of an Antibiotic — ab_property","text":"","code":"# all properties: ab_name(\"AMX\") #> [1] \"Amoxicillin\" ab_atc(\"AMX\") #> [1] \"J01CA04\" ab_cid(\"AMX\") #> [1] 33613 ab_synonyms(\"AMX\") #> [1] \"actimoxi\" \"amoclen\" \"amolin\" #> [4] \"amopen\" \"amopenixin\" \"amoxibiotic\" #> [7] \"amoxicaps\" \"amoxicilina\" \"amoxicillin\" #> [10] \"amoxicillin hydrate\" \"amoxicilline\" \"amoxicillinum\" #> [13] \"amoxiden\" \"amoxil\" \"amoxivet\" #> [16] \"amoxy\" \"amoxycillin\" \"amoxyke\" #> [19] \"anemolin\" \"aspenil\" \"atoksilin\" #> [22] \"biomox\" \"bristamox\" \"cemoxin\" #> [25] \"clamoxyl\" \"damoxy\" \"delacillin\" #> [28] \"demoksil\" \"dispermox\" \"efpenix\" #> [31] \"flemoxin\" \"hiconcil\" \"histocillin\" #> [34] \"hydroxyampicillin\" \"ibiamox\" \"imacillin\" #> [37] \"lamoxy\" \"largopen\" \"metafarma capsules\" #> [40] \"metifarma capsules\" \"moksilin\" \"moxacin\" #> [43] \"moxatag\" \"ospamox\" \"pamoxicillin\" #> [46] \"piramox\" \"promoxil\" \"remoxil\" #> [49] \"robamox\" \"sawamox pm\" \"tolodina\" #> [52] \"topramoxin\" \"unicillin\" \"utimox\" #> [55] \"vetramox\" ab_tradenames(\"AMX\") #> [1] \"actimoxi\" \"amoclen\" \"amolin\" #> [4] \"amopen\" \"amopenixin\" \"amoxibiotic\" #> [7] \"amoxicaps\" \"amoxicilina\" \"amoxicillin\" #> [10] \"amoxicillin hydrate\" \"amoxicilline\" \"amoxicillinum\" #> [13] \"amoxiden\" \"amoxil\" \"amoxivet\" #> [16] \"amoxy\" \"amoxycillin\" \"amoxyke\" #> [19] \"anemolin\" \"aspenil\" \"atoksilin\" #> [22] \"biomox\" \"bristamox\" \"cemoxin\" #> [25] \"clamoxyl\" \"damoxy\" \"delacillin\" #> [28] \"demoksil\" \"dispermox\" \"efpenix\" #> [31] \"flemoxin\" \"hiconcil\" \"histocillin\" #> [34] \"hydroxyampicillin\" \"ibiamox\" \"imacillin\" #> [37] \"lamoxy\" \"largopen\" \"metafarma capsules\" #> [40] \"metifarma capsules\" \"moksilin\" \"moxacin\" #> [43] \"moxatag\" \"ospamox\" \"pamoxicillin\" #> [46] \"piramox\" \"promoxil\" \"remoxil\" #> [49] \"robamox\" \"sawamox pm\" \"tolodina\" #> [52] \"topramoxin\" \"unicillin\" \"utimox\" #> [55] \"vetramox\" ab_group(\"AMX\") #> [1] \"Beta-lactams/penicillins\" ab_atc_group1(\"AMX\") #> [1] \"Beta-lactam antibacterials, penicillins\" ab_atc_group2(\"AMX\") #> [1] \"Penicillins with extended spectrum\" ab_url(\"AMX\") #> Amoxicillin #> \"https://www.whocc.no/atc_ddd_index/?code=J01CA04&showdescription=no\" # smart lowercase tranformation ab_name(x = c(\"AMC\", \"PLB\")) #> [1] \"Amoxicillin/clavulanic acid\" \"Polymyxin B\" ab_name(x = c(\"AMC\", \"PLB\"), tolower = TRUE) #> [1] \"amoxicillin/clavulanic acid\" \"polymyxin B\" # defined daily doses (DDD) ab_ddd(\"AMX\", \"oral\") #> [1] 1.5 ab_ddd_units(\"AMX\", \"oral\") #> [1] \"g\" ab_ddd(\"AMX\", \"iv\") #> [1] 3 ab_ddd_units(\"AMX\", \"iv\") #> [1] \"g\" ab_info(\"AMX\") # all properties as a list #> $ab #> [1] \"AMX\" #> #> $cid #> [1] 33613 #> #> $name #> [1] \"Amoxicillin\" #> #> $group #> [1] \"Beta-lactams/penicillins\" #> #> $atc #> [1] \"J01CA04\" #> #> $atc_group1 #> [1] \"Beta-lactam antibacterials, penicillins\" #> #> $atc_group2 #> [1] \"Penicillins with extended spectrum\" #> #> $tradenames #> [1] \"actimoxi\" \"amoclen\" \"amolin\" #> [4] \"amopen\" \"amopenixin\" \"amoxibiotic\" #> [7] \"amoxicaps\" \"amoxicilina\" \"amoxicillin\" #> [10] \"amoxicillin hydrate\" \"amoxicilline\" \"amoxicillinum\" #> [13] \"amoxiden\" \"amoxil\" \"amoxivet\" #> [16] \"amoxy\" \"amoxycillin\" \"amoxyke\" #> [19] \"anemolin\" \"aspenil\" \"atoksilin\" #> [22] \"biomox\" \"bristamox\" \"cemoxin\" #> [25] \"clamoxyl\" \"damoxy\" \"delacillin\" #> [28] \"demoksil\" \"dispermox\" \"efpenix\" #> [31] \"flemoxin\" \"hiconcil\" \"histocillin\" #> [34] \"hydroxyampicillin\" \"ibiamox\" \"imacillin\" #> [37] \"lamoxy\" \"largopen\" \"metafarma capsules\" #> [40] \"metifarma capsules\" \"moksilin\" \"moxacin\" #> [43] \"moxatag\" \"ospamox\" \"pamoxicillin\" #> [46] \"piramox\" \"promoxil\" \"remoxil\" #> [49] \"robamox\" \"sawamox pm\" \"tolodina\" #> [52] \"topramoxin\" \"unicillin\" \"utimox\" #> [55] \"vetramox\" #> #> $loinc #> [1] \"16365-9\" \"25274-2\" \"3344-9\" \"80133-2\" #> #> $ddd #> $ddd$oral #> $ddd$oral$amount #> [1] 1.5 #> #> $ddd$oral$units #> [1] \"g\" #> #> #> $ddd$iv #> $ddd$iv$amount #> [1] 3 #> #> $ddd$iv$units #> [1] \"g\" #> #> #> # all ab_* functions use as.ab() internally, so you can go from 'any' to 'any': ab_atc(\"AMP\") #> [1] \"J01CA01\" \"S01AA19\" ab_group(\"J01CA01\") #> [1] \"Beta-lactams/penicillins\" ab_loinc(\"ampicillin\") #> [1] \"21066-6\" \"3355-5\" \"33562-0\" \"33919-2\" \"43883-8\" \"43884-6\" \"87604-5\" ab_name(\"21066-6\") #> [1] \"Ampicillin\" ab_name(6249) #> [1] \"Ampicillin\" ab_name(\"J01CA01\") #> [1] \"Ampicillin\" # spelling from different languages and dyslexia are no problem ab_atc(\"ceftriaxon\") #> [1] \"J01DD04\" ab_atc(\"cephtriaxone\") #> [1] \"J01DD04\" ab_atc(\"cephthriaxone\") #> [1] \"J01DD04\" ab_atc(\"seephthriaaksone\") #> [1] \"J01DD04\" # use set_ab_names() for renaming columns colnames(example_isolates) #> [1] \"date\" \"patient\" \"age\" \"gender\" \"ward\" \"mo\" \"PEN\" #> [8] \"OXA\" \"FLC\" \"AMX\" \"AMC\" \"AMP\" \"TZP\" \"CZO\" #> [15] \"FEP\" \"CXM\" \"FOX\" \"CTX\" \"CAZ\" \"CRO\" \"GEN\" #> [22] \"TOB\" \"AMK\" \"KAN\" \"TMP\" \"SXT\" \"NIT\" \"FOS\" #> [29] \"LNZ\" \"CIP\" \"MFX\" \"VAN\" \"TEC\" \"TCY\" \"TGC\" #> [36] \"DOX\" \"ERY\" \"CLI\" \"AZM\" \"IPM\" \"MEM\" \"MTR\" #> [43] \"CHL\" \"COL\" \"MUP\" \"RIF\" colnames(set_ab_names(example_isolates)) #> [1] \"date\" \"patient\" #> [3] \"age\" \"gender\" #> [5] \"ward\" \"mo\" #> [7] \"benzylpenicillin\" \"oxacillin\" #> [9] \"flucloxacillin\" \"amoxicillin\" #> [11] \"amoxicillin_clavulanic_acid\" \"ampicillin\" #> [13] \"piperacillin_tazobactam\" \"cefazolin\" #> [15] \"cefepime\" \"cefuroxime\" #> [17] \"cefoxitin\" \"cefotaxime\" #> [19] \"ceftazidime\" \"ceftriaxone\" #> [21] \"gentamicin\" \"tobramycin\" #> [23] \"amikacin\" \"kanamycin\" #> [25] \"trimethoprim\" \"trimethoprim_sulfamethoxazole\" #> [27] \"nitrofurantoin\" \"fosfomycin\" #> [29] \"linezolid\" \"ciprofloxacin\" #> [31] \"moxifloxacin\" \"vancomycin\" #> [33] \"teicoplanin\" \"tetracycline\" #> [35] \"tigecycline\" \"doxycycline\" #> [37] \"erythromycin\" \"clindamycin\" #> [39] \"azithromycin\" \"imipenem\" #> [41] \"meropenem\" \"metronidazole\" #> [43] \"chloramphenicol\" \"colistin\" #> [45] \"mupirocin\" \"rifampicin\" colnames(set_ab_names(example_isolates, NIT:VAN)) #> [1] \"date\" \"patient\" \"age\" \"gender\" #> [5] \"ward\" \"mo\" \"PEN\" \"OXA\" #> [9] \"FLC\" \"AMX\" \"AMC\" \"AMP\" #> [13] \"TZP\" \"CZO\" \"FEP\" \"CXM\" #> [17] \"FOX\" \"CTX\" \"CAZ\" \"CRO\" #> [21] \"GEN\" \"TOB\" \"AMK\" \"KAN\" #> [25] \"TMP\" \"SXT\" \"nitrofurantoin\" \"fosfomycin\" #> [29] \"linezolid\" \"ciprofloxacin\" \"moxifloxacin\" \"vancomycin\" #> [33] \"TEC\" \"TCY\" \"TGC\" \"DOX\" #> [37] \"ERY\" \"CLI\" \"AZM\" \"IPM\" #> [41] \"MEM\" \"MTR\" \"CHL\" \"COL\" #> [45] \"MUP\" \"RIF\" # \\donttest{ if (require(\"dplyr\")) { example_isolates %>% set_ab_names() # this does the same: example_isolates %>% rename_with(set_ab_names) # set_ab_names() works with any AB property: example_isolates %>% set_ab_names(property = \"atc\") example_isolates %>% set_ab_names(where(is.sir)) %>% colnames() example_isolates %>% set_ab_names(NIT:VAN) %>% colnames() } #> [1] \"date\" \"patient\" \"age\" \"gender\" #> [5] \"ward\" \"mo\" \"PEN\" \"OXA\" #> [9] \"FLC\" \"AMX\" \"AMC\" \"AMP\" #> [13] \"TZP\" \"CZO\" \"FEP\" \"CXM\" #> [17] \"FOX\" \"CTX\" \"CAZ\" \"CRO\" #> [21] \"GEN\" \"TOB\" \"AMK\" \"KAN\" #> [25] \"TMP\" \"SXT\" \"nitrofurantoin\" \"fosfomycin\" #> [29] \"linezolid\" \"ciprofloxacin\" \"moxifloxacin\" \"vancomycin\" #> [33] \"TEC\" \"TCY\" \"TGC\" \"DOX\" #> [37] \"ERY\" \"CLI\" \"AZM\" \"IPM\" #> [41] \"MEM\" \"MTR\" \"CHL\" \"COL\" #> [45] \"MUP\" \"RIF\" # }"},{"path":"https://msberends.github.io/AMR/reference/add_custom_antimicrobials.html","id":null,"dir":"Reference","previous_headings":"","what":"Add Custom Antimicrobials — add_custom_antimicrobials","title":"Add Custom Antimicrobials — add_custom_antimicrobials","text":"add_custom_antimicrobials() can add custom antimicrobial drug names codes.","code":""},{"path":"https://msberends.github.io/AMR/reference/add_custom_antimicrobials.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add Custom Antimicrobials — add_custom_antimicrobials","text":"","code":"add_custom_antimicrobials(x) clear_custom_antimicrobials()"},{"path":"https://msberends.github.io/AMR/reference/add_custom_antimicrobials.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add Custom Antimicrobials — add_custom_antimicrobials","text":"x data.frame resembling antibiotics data set, least containing columns \"ab\" \"name\"","code":""},{"path":"https://msberends.github.io/AMR/reference/add_custom_antimicrobials.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Add Custom Antimicrobials — add_custom_antimicrobials","text":"Important: Due R works, add_custom_antimicrobials() function run every R session - added antimicrobials stored sessions thus lost R exited. two ways automate process: Method 1: Using option AMR_custom_ab, preferred method. use method: Create data set structure antibiotics data set (containing least columns \"ab\" \"name\") save saveRDS() location choice, e.g. \"~/my_custom_ab.rds\", remote location. Set file location option AMR_custom_ab: options(AMR_custom_ab = \"~/my_custom_ab.rds\"). can even remote file location, https URL. Since options saved R sessions, best save option .Rprofile file loaded start-R. , open .Rprofile file using e.g. utils::file.edit(\"~/.Rprofile\"), add text save file: Upon package load, file loaded run add_custom_antimicrobials() function. Method 2: Loading antimicrobial additions directly .Rprofile file. important downside requires AMR package installed else method fail. use method: Edit .Rprofile file using e.g. utils::file.edit(\"~/.Rprofile\"). Add text like save file: Use clear_custom_antimicrobials() clear previously added antimicrobials.","code":"# Add custom antimicrobial codes: options(AMR_custom_ab = \"~/my_custom_ab.rds\") # Add custom antibiotic drug codes: AMR::add_custom_antimicrobials( data.frame(ab = \"TESTAB\", name = \"Test Antibiotic\", group = \"Test Group\") )"},{"path":[]},{"path":"https://msberends.github.io/AMR/reference/add_custom_antimicrobials.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add Custom Antimicrobials — add_custom_antimicrobials","text":"","code":"# \\donttest{ # returns NA and throws a warning (which is suppressed here): suppressWarnings( as.ab(\"testab\") ) #> Class 'ab' #> [1] # now add a custom entry - it will be considered by as.ab() and # all ab_*() functions add_custom_antimicrobials( data.frame( ab = \"TESTAB\", name = \"Test Antibiotic\", # you can add any property present in the # 'antibiotics' data set, such as 'group': group = \"Test Group\" ) ) #> ℹ Added one record to the internal antibiotics data set. # \"testab\" is now a new antibiotic: as.ab(\"testab\") #> Class 'ab' #> [1] TESTAB ab_name(\"testab\") #> [1] \"Test Antibiotic\" ab_group(\"testab\") #> [1] \"Test Group\" ab_info(\"testab\") #> $ab #> [1] \"TESTAB\" #> #> $cid #> [1] NA #> #> $name #> [1] \"Test Antibiotic\" #> #> $group #> [1] \"Test Group\" #> #> $atc #> [1] NA #> #> $atc_group1 #> [1] NA #> #> $atc_group2 #> [1] NA #> #> $tradenames #> [1] NA #> #> $loinc #> [1] NA #> #> $ddd #> $ddd$oral #> $ddd$oral$amount #> [1] NA #> #> $ddd$oral$units #> [1] NA #> #> #> $ddd$iv #> $ddd$iv$amount #> [1] NA #> #> $ddd$iv$units #> [1] NA #> #> #> # Add Co-fluampicil, which is one of the many J01CR50 codes, see # https://www.whocc.no/ddd/list_of_ddds_combined_products/ add_custom_antimicrobials( data.frame( ab = \"COFLU\", name = \"Co-fluampicil\", atc = \"J01CR50\", group = \"Beta-lactams/penicillins\" ) ) #> ℹ Added one record to the internal antibiotics data set. ab_atc(\"Co-fluampicil\") #> [1] \"J01CR50\" ab_name(\"J01CR50\") #> [1] \"Co-fluampicil\" # even antibiotic selectors work x <- data.frame( random_column = \"some value\", coflu = as.sir(\"S\"), ampicillin = as.sir(\"R\") ) x #> random_column coflu ampicillin #> 1 some value S R x[, betalactams()] #> ℹ For betalactams() using columns 'coflu' (co-fluampicil) and #> 'ampicillin' #> coflu ampicillin #> 1 S R # }"},{"path":"https://msberends.github.io/AMR/reference/add_custom_microorganisms.html","id":null,"dir":"Reference","previous_headings":"","what":"Add Custom Microorganisms — add_custom_microorganisms","title":"Add Custom Microorganisms — add_custom_microorganisms","text":"add_custom_microorganisms() can add custom microorganisms, non-taxonomic outcome laboratory analysis.","code":""},{"path":"https://msberends.github.io/AMR/reference/add_custom_microorganisms.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add Custom Microorganisms — add_custom_microorganisms","text":"","code":"add_custom_microorganisms(x) clear_custom_microorganisms()"},{"path":"https://msberends.github.io/AMR/reference/add_custom_microorganisms.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add Custom Microorganisms — add_custom_microorganisms","text":"x data.frame resembling microorganisms data set, least containing column \"genus\" (case-insensitive)","code":""},{"path":"https://msberends.github.io/AMR/reference/add_custom_microorganisms.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Add Custom Microorganisms — add_custom_microorganisms","text":"function fill missing taxonomy , specific taxonomic columns missing, see Examples. Important: Due R works, add_custom_microorganisms() function run every R session - added microorganisms stored sessions thus lost R exited. two ways automate process: Method 1: Using option AMR_custom_mo, preferred method. use method: Create data set structure microorganisms data set (containing least column \"genus\") save saveRDS() location choice, e.g. \"~/my_custom_mo.rds\", remote location. Set file location option AMR_custom_mo: options(AMR_custom_mo = \"~/my_custom_mo.rds\"). can even remote file location, https URL. Since options saved R sessions, best save option .Rprofile file loaded start-R. , open .Rprofile file using e.g. utils::file.edit(\"~/.Rprofile\"), add text save file: Upon package load, file loaded run add_custom_microorganisms() function. Method 2: Loading microorganism directly .Rprofile file. important downside requires AMR package installed else method fail. use method: Edit .Rprofile file using e.g. utils::file.edit(\"~/.Rprofile\"). Add text like save file: Use clear_custom_microorganisms() clear previously added antimicrobials.","code":"# Add custom microorganism codes: options(AMR_custom_mo = \"~/my_custom_mo.rds\") # Add custom antibiotic drug codes: AMR::add_custom_microorganisms( data.frame(genus = \"Enterobacter\", species = \"asburiae/cloacae\") )"},{"path":[]},{"path":"https://msberends.github.io/AMR/reference/add_custom_microorganisms.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add Custom Microorganisms — add_custom_microorganisms","text":"","code":"# \\donttest{ # a combination of species is not formal taxonomy, so # this will result in only \"Enterobacter asburiae\": mo_name(\"Enterobacter asburiae/cloacae\") #> [1] \"Enterobacter asburiae\" # now add a custom entry - it will be considered by as.mo() and # all mo_*() functions add_custom_microorganisms( data.frame( genus = \"Enterobacter\", species = \"asburiae/cloacae\" ) ) #> ℹ Added Enterobacter asburiae/cloacae to the internal microorganisms data #> set. # E. asburiae/cloacae is now a new microorganism: mo_name(\"Enterobacter asburiae/cloacae\") #> [1] \"Enterobacter asburiae/cloacae\" # its code: as.mo(\"Enterobacter asburiae/cloacae\") #> Class 'mo' #> [1] CUSTOM1_ENTRBC_A_C # all internal algorithms will work as well: mo_name(\"Ent asburia cloacae\") #> [1] \"Enterobacter asburiae/cloacae\" # and even the taxonomy was added based on the genus! mo_family(\"E. asburiae/cloacae\") #> [1] \"Enterobacteriaceae\" mo_gramstain(\"Enterobacter asburiae/cloacae\") #> [1] \"Gram-negative\" mo_info(\"Enterobacter asburiae/cloacae\") #> $mo #> [1] \"CUSTOM1_ENTRBC_A_C\" #> #> $kingdom #> [1] \"Bacteria\" #> #> $phylum #> [1] \"Pseudomonadota\" #> #> $class #> [1] \"Gammaproteobacteria\" #> #> $order #> [1] \"Enterobacterales\" #> #> $family #> [1] \"Enterobacteriaceae\" #> #> $genus #> [1] \"Enterobacter\" #> #> $species #> [1] \"asburiae/cloacae\" #> #> $subspecies #> [1] \"\" #> #> $status #> [1] \"accepted\" #> #> $synonyms #> NULL #> #> $gramstain #> [1] \"Gram-negative\" #> #> $url #> [1] \"\" #> #> $ref #> [1] \"Self-added, 2023\" #> #> $snomed #> [1] NA #> # the function tries to be forgiving: add_custom_microorganisms( data.frame( GENUS = \"BACTEROIDES / PARABACTEROIDES SLASHLINE\", SPECIES = \"SPECIES\" ) ) #> ℹ Added Bacteroides/Parabacteroides to the internal microorganisms data #> set. mo_name(\"BACTEROIDES / PARABACTEROIDES\") #> [1] \"Bacteroides/Parabacteroides\" mo_rank(\"BACTEROIDES / PARABACTEROIDES\") #> [1] \"genus\" # taxonomy still works, although a slashline genus was given as input: mo_family(\"Bacteroides/Parabacteroides\") #> [1] \"Bacteroidaceae\" # for groups and complexes, set them as species or subspecies: add_custom_microorganisms( data.frame( genus = \"Citrobacter\", species = c(\"freundii\", \"braakii complex\"), subspecies = c(\"complex\", \"\") ) ) #> ℹ Added Citrobacter braakii complex and Citrobacter freundii complex to the #> internal microorganisms data set. mo_name(c(\"C. freundii complex\", \"C. braakii complex\")) #> [1] \"Citrobacter freundii complex\" \"Citrobacter braakii complex\" mo_species(c(\"C. freundii complex\", \"C. braakii complex\")) #> [1] \"freundii complex\" \"braakii complex\" mo_gramstain(c(\"C. freundii complex\", \"C. braakii complex\")) #> [1] \"Gram-negative\" \"Gram-negative\" # }"},{"path":"https://msberends.github.io/AMR/reference/age.html","id":null,"dir":"Reference","previous_headings":"","what":"Age in Years of Individuals — age","title":"Age in Years of Individuals — age","text":"Calculates age years based reference date, system date default.","code":""},{"path":"https://msberends.github.io/AMR/reference/age.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Age in Years of Individuals — age","text":"","code":"age(x, reference = Sys.Date(), exact = FALSE, na.rm = FALSE, ...)"},{"path":"https://msberends.github.io/AMR/reference/age.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Age in Years of Individuals — age","text":"x date(s), character (vectors) coerced .POSIXlt() reference reference date(s) (defaults today), character (vectors) coerced .POSIXlt() exact logical indicate whether age calculation exact, .e. decimals. divides number days year--date (YTD) x number days year reference (either 365 366). na.rm logical indicate whether missing values removed ... arguments passed .POSIXlt(), origin","code":""},{"path":"https://msberends.github.io/AMR/reference/age.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Age in Years of Individuals — age","text":"integer (decimals) exact = FALSE, double (decimals) otherwise","code":""},{"path":"https://msberends.github.io/AMR/reference/age.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Age in Years of Individuals — age","text":"Ages 0 returned NA warning. Ages 120 give warning. function vectorises x reference, meaning either can length 1 argument larger length.","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/reference/age.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Age in Years of Individuals — age","text":"","code":"# 10 random pre-Y2K birth dates df <- data.frame(birth_date = as.Date(\"2000-01-01\") - runif(10) * 25000) # add ages df$age <- age(df$birth_date) # add exact ages df$age_exact <- age(df$birth_date, exact = TRUE) # add age at millenium switch df$age_at_y2k <- age(df$birth_date, \"2000-01-01\") df #> birth_date age age_exact age_at_y2k #> 1 1973-02-10 50 50.00548 26 #> 2 1996-11-25 26 26.21644 3 #> 3 1944-11-18 78 78.23562 55 #> 4 1953-05-17 69 69.74247 46 #> 5 1947-10-24 75 75.30411 52 #> 6 1946-10-16 76 76.32603 53 #> 7 1990-07-02 32 32.61644 9 #> 8 1967-10-18 55 55.32055 32 #> 9 1974-09-23 48 48.38904 25 #> 10 1978-11-08 44 44.26301 21"},{"path":"https://msberends.github.io/AMR/reference/age_groups.html","id":null,"dir":"Reference","previous_headings":"","what":"Split Ages into Age Groups — age_groups","title":"Split Ages into Age Groups — age_groups","text":"Split ages age groups defined split argument. allows easier demographic (antimicrobial resistance) analysis.","code":""},{"path":"https://msberends.github.io/AMR/reference/age_groups.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Split Ages into Age Groups — age_groups","text":"","code":"age_groups(x, split_at = c(12, 25, 55, 75), na.rm = FALSE)"},{"path":"https://msberends.github.io/AMR/reference/age_groups.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Split Ages into Age Groups — age_groups","text":"x age, e.g. calculated age() split_at values split x , defaults age groups 0-11, 12-24, 25-54, 55-74 75+. See Details. na.rm logical indicate whether missing values removed","code":""},{"path":"https://msberends.github.io/AMR/reference/age_groups.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Split Ages into Age Groups — age_groups","text":"Ordered factor","code":""},{"path":"https://msberends.github.io/AMR/reference/age_groups.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Split Ages into Age Groups — age_groups","text":"split ages, input split_at argument can : numeric vector. value e.g. c(10, 20) split x 0-9, 10-19 20+. value 50 split x 0-49 50+. default split young children (0-11), youth (12-24), young adults (25-54), middle-aged adults (55-74) elderly (75+). character: \"children\" \"kids\", equivalent : c(0, 1, 2, 4, 6, 13, 18). split 0, 1, 2-3, 4-5, 6-12, 13-17 18+. \"elderly\" \"seniors\", equivalent : c(65, 75, 85). split 0-64, 65-74, 75-84, 85+. \"fives\", equivalent : 1:20 * 5. split 0-4, 5-9, ..., 95-99, 100+. \"tens\", equivalent : 1:10 * 10. split 0-9, 10-19, ..., 90-99, 100+.","code":""},{"path":[]},{"path":"https://msberends.github.io/AMR/reference/age_groups.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Split Ages into Age Groups — age_groups","text":"","code":"ages <- c(3, 8, 16, 54, 31, 76, 101, 43, 21) # split into 0-49 and 50+ age_groups(ages, 50) #> [1] 0-49 0-49 0-49 50+ 0-49 50+ 50+ 0-49 0-49 #> Levels: 0-49 < 50+ # split into 0-19, 20-49 and 50+ age_groups(ages, c(20, 50)) #> [1] 0-19 0-19 0-19 50+ 20-49 50+ 50+ 20-49 20-49 #> Levels: 0-19 < 20-49 < 50+ # split into groups of ten years age_groups(ages, 1:10 * 10) #> [1] 0-9 0-9 10-19 50-59 30-39 70-79 100+ 40-49 20-29 #> 11 Levels: 0-9 < 10-19 < 20-29 < 30-39 < 40-49 < 50-59 < 60-69 < ... < 100+ age_groups(ages, split_at = \"tens\") #> [1] 0-9 0-9 10-19 50-59 30-39 70-79 100+ 40-49 20-29 #> 11 Levels: 0-9 < 10-19 < 20-29 < 30-39 < 40-49 < 50-59 < 60-69 < ... < 100+ # split into groups of five years age_groups(ages, 1:20 * 5) #> [1] 0-4 5-9 15-19 50-54 30-34 75-79 100+ 40-44 20-24 #> 21 Levels: 0-4 < 5-9 < 10-14 < 15-19 < 20-24 < 25-29 < 30-34 < ... < 100+ age_groups(ages, split_at = \"fives\") #> [1] 0-4 5-9 15-19 50-54 30-34 75-79 100+ 40-44 20-24 #> 21 Levels: 0-4 < 5-9 < 10-14 < 15-19 < 20-24 < 25-29 < 30-34 < ... < 100+ # split specifically for children age_groups(ages, c(1, 2, 4, 6, 13, 18)) #> [1] 2-3 6-12 13-17 18+ 18+ 18+ 18+ 18+ 18+ #> Levels: 0 < 1 < 2-3 < 4-5 < 6-12 < 13-17 < 18+ age_groups(ages, \"children\") #> [1] 2-3 6-12 13-17 18+ 18+ 18+ 18+ 18+ 18+ #> Levels: 0 < 1 < 2-3 < 4-5 < 6-12 < 13-17 < 18+ # \\donttest{ # resistance of ciprofloxacin per age group if (require(\"dplyr\") && require(\"ggplot2\")) { example_isolates %>% filter_first_isolate() %>% filter(mo == as.mo(\"Escherichia coli\")) %>% group_by(age_group = age_groups(age)) %>% select(age_group, CIP) %>% ggplot_sir( x = \"age_group\", minimum = 0, x.title = \"Age Group\", title = \"Ciprofloxacin resistance per age group\" ) } #> Loading required package: ggplot2 # }"},{"path":"https://msberends.github.io/AMR/reference/antibiogram.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Antibiogram: Traditional, Combined, Syndromic, or Weighted-Incidence Syndromic Combination (WISCA) — antibiogram","title":"Generate Antibiogram: Traditional, Combined, Syndromic, or Weighted-Incidence Syndromic Combination (WISCA) — antibiogram","text":"Generate antibiogram, communicate results plots tables. functions follow logic Klinker et al. (2021, doi:10.1177/20499361211011373 ) Barbieri et al. (2021, doi:10.1186/s13756-021-00939-2 ), allow reporting e.g. R Markdown Quarto well.","code":""},{"path":"https://msberends.github.io/AMR/reference/antibiogram.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Antibiogram: Traditional, Combined, Syndromic, or Weighted-Incidence Syndromic Combination (WISCA) — antibiogram","text":"","code":"antibiogram( x, antibiotics = where(is.sir), mo_transform = \"shortname\", ab_transform = NULL, syndromic_group = NULL, add_total_n = TRUE, only_all_tested = FALSE, digits = 0, col_mo = NULL, language = get_AMR_locale(), minimum = 30, combine_SI = TRUE, sep = \" + \" ) # S3 method for antibiogram plot(x, ...) # S3 method for antibiogram autoplot(object, ...) # S3 method for antibiogram print(x, as_kable = !interactive(), ...)"},{"path":"https://msberends.github.io/AMR/reference/antibiogram.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Generate Antibiogram: Traditional, Combined, Syndromic, or Weighted-Incidence Syndromic Combination (WISCA) — antibiogram","text":"Klinker KP et al. (2021). Antimicrobial stewardship antibiograms: importance moving beyond traditional antibiograms. Therapeutic Advances Infectious Disease, May 5;8:20499361211011373; doi:10.1177/20499361211011373 Barbieri E et al. (2021). Development Weighted-Incidence Syndromic Combination Antibiogram (WISCA) guide choice empiric antibiotic treatment urinary tract infection paediatric patients: Bayesian approach Antimicrobial Resistance & Infection Control May 1;10(1):74; doi:10.1186/s13756-021-00939-2 M39 Analysis Presentation Cumulative Antimicrobial Susceptibility Test Data, 5th Edition, 2022, Clinical Laboratory Standards Institute (CLSI). https://clsi.org/standards/products/microbiology/documents/m39/.","code":""},{"path":"https://msberends.github.io/AMR/reference/antibiogram.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Antibiogram: Traditional, Combined, Syndromic, or Weighted-Incidence Syndromic Combination (WISCA) — antibiogram","text":"x data.frame containing least column microorganisms columns antibiotic results (class 'sir', see .sir()) antibiotics vector column names, (combinations ) antibiotic selectors aminoglycosides() carbapenems(). combination antibiograms, can also column names separated \"+\", \"TZP+TOB\" given data set contains columns \"TZP\" \"TOB\". See Examples. mo_transform character transform microorganism input - must \"name\", \"shortname\", \"gramstain\", one column names microorganisms data set: \"mo\", \"fullname\", \"status\", \"kingdom\", \"phylum\", \"class\", \"order\", \"family\", \"genus\", \"species\", \"subspecies\", \"rank\", \"ref\", \"source\", \"lpsn\", \"lpsn_parent\", \"lpsn_renamed_to\", \"gbif\", \"gbif_parent\", \"gbif_renamed_to\", \"prevalence\" \"snomed\". Can also NULL transform input. ab_transform character transform antibiotic input - must one column names antibiotics data set: \"ab\", \"cid\", \"name\", \"group\", \"atc\", \"atc_group1\", \"atc_group2\", \"abbreviations\", \"synonyms\", \"oral_ddd\", \"oral_units\", \"iv_ddd\", \"iv_units\" \"loinc\". Can also NULL transform input. syndromic_group column name x, values calculated split rows x, e.g. using ifelse() case_when(). See Examples. add_total_n logical indicate whether total available numbers per pathogen added table (defaults TRUE). add lowest highest number available isolate per antibiotic (e.g, E. coli 200 isolates available ciprofloxacin 150 amoxicillin, returned number \"150-200\"). only_all_tested (combination antibiograms): logical indicate isolates must tested antibiotics, see Details digits number digits use rounding col_mo column name names codes microorganisms (see .mo()), defaults first column class mo. Values coerced using .mo(). language language translate text, defaults system language (see get_AMR_locale()) minimum minimum allowed number available (tested) isolates. isolate count lower minimum return NA warning. default number 30 isolates advised Clinical Laboratory Standards Institute (CLSI) best practice, see Source. combine_SI logical indicate whether susceptibility determined results either S , instead S (defaults TRUE) sep separating character antibiotic columns combination antibiograms ... method extensions object antibiogram() object as_kable logical indicate whether printing done using knitr::kable() (default non-interactive sessions)","code":""},{"path":"https://msberends.github.io/AMR/reference/antibiogram.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Generate Antibiogram: Traditional, Combined, Syndromic, or Weighted-Incidence Syndromic Combination (WISCA) — antibiogram","text":"function returns table values 0 100 susceptibility, resistance. Remember filter data let contain first isolates! needed exclude duplicates reduce selection bias. Use first_isolate() determine data set one four available algorithms. four antibiogram types, proposed Klinker et al. (2021, doi:10.1177/20499361211011373 ), supported antibiogram(): Traditional Antibiogram Case example: Susceptibility Pseudomonas aeruginosa piperacillin/tazobactam (TZP) Code example: Combination Antibiogram Case example: Additional susceptibility Pseudomonas aeruginosa TZP + tobramycin versus TZP alone Code example: Syndromic Antibiogram Case example: Susceptibility Pseudomonas aeruginosa TZP among respiratory specimens (obtained among ICU patients ) Code example: Weighted-Incidence Syndromic Combination Antibiogram (WISCA) Case example: Susceptibility Pseudomonas aeruginosa TZP among respiratory specimens (obtained among ICU patients ) male patients age >=65 years heart failure Code example: types antibiograms can generated functions described page, can plotted (using ggplot2::autoplot() base R plot()/barplot()) printed R Markdown / Quarto formats reports. Use functions specific 'table reporting' packages transform output antibiogram() needs, e.g. flextable::as_flextable() gt::gt(). Note combination antibiograms, important realise susceptibility can calculated two ways, can set only_all_tested argument (defaults FALSE). See example two antibiotics, Drug Drug B, antibiogram() works calculate %SI: Printing antibiogram non-interactive sessions done knitr::kable(), support implemented formats, \"markdown\". knitr format automatically determined printed inside knitr document (LaTeX, HTML, etc.).","code":"antibiogram(your_data, antibiotics = \"TZP\") antibiogram(your_data, antibiotics = c(\"TZP\", \"TZP+TOB\", \"TZP+GEN\")) antibiogram(your_data, antibiotics = penicillins(), syndromic_group = \"ward\") antibiogram(your_data, antibiotics = c(\"TZP\", \"TZP+TOB\", \"TZP+GEN\"), syndromic_group = ifelse(your_data$age >= 65 & your_data$gender == \"Male\", \"Group 1\", \"Group 2\")) -------------------------------------------------------------------- only_all_tested = FALSE only_all_tested = TRUE ----------------------- ----------------------- Drug A Drug B include as include as include as include as numerator denominator numerator denominator -------- -------- ---------- ----------- ---------- ----------- S or I S or I X X X X R S or I X X X X S or I X X - - S or I R X X X X R R - X - X R - - - - S or I X X - - R - - - - - - - - --------------------------------------------------------------------"},{"path":"https://msberends.github.io/AMR/reference/antibiogram.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Generate Antibiogram: Traditional, Combined, Syndromic, or Weighted-Incidence Syndromic Combination (WISCA) — antibiogram","text":"","code":"# example_isolates is a data set available in the AMR package. # run ?example_isolates for more info. example_isolates #> # A tibble: 2,000 × 46 #> date patient age gender ward mo PEN OXA FLC AMX #> #> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA #> # … with 1,990 more rows, and 36 more variables: AMC , AMP , #> # TZP , CZO , FEP , CXM , FOX , CTX , #> # CAZ , CRO , GEN , TOB , AMK , KAN , #> # TMP , SXT , NIT , FOS , LNZ , CIP , #> # MFX , VAN , TEC , TCY , TGC , DOX , #> # ERY , CLI , AZM , IPM , MEM , MTR , #> # CHL , COL , MUP , RIF # Traditional antibiogram ---------------------------------------------- antibiogram(example_isolates, antibiotics = c(aminoglycosides(), carbapenems())) #> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin) and 'KAN' (kanamycin) #> ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem) #> ℹ 502 combinations had less than minimum = 30 results and were ignored #> # A tibble: 10 × 7 #> `Pathogen (N min-max)` AMK GEN IPM KAN MEM TOB #> * #> 1 CoNS (43-309) 0 86 52 0 52 22 #> 2 E. coli (0-462) 100 98 100 NA 100 97 #> 3 E. faecalis (0-39) 0 0 100 0 NA 0 #> 4 K. pneumoniae (0-58) NA 90 100 NA 100 90 #> 5 P. aeruginosa (17-30) NA 100 NA 0 NA 100 #> 6 P. mirabilis (0-34) NA 94 94 NA NA 94 #> 7 S. aureus (2-233) NA 99 NA NA NA 98 #> 8 S. epidermidis (8-163) 0 79 NA 0 NA 51 #> 9 S. hominis (3-80) NA 92 NA NA NA 85 #> 10 S. pneumoniae (11-117) 0 0 NA 0 NA 0 antibiogram(example_isolates, antibiotics = aminoglycosides(), ab_transform = \"atc\", mo_transform = \"gramstain\") #> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin) and 'KAN' (kanamycin) #> ℹ 4 combinations had less than minimum = 30 results and were ignored #> # A tibble: 2 × 5 #> `Pathogen (N min-max)` J01GB01 J01GB03 J01GB04 J01GB06 #> * #> 1 Gram-negative (35-686) 96 96 0 98 #> 2 Gram-positive (436-1170) 34 63 0 0 antibiogram(example_isolates, antibiotics = carbapenems(), ab_transform = \"name\", mo_transform = \"name\") #> ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem) #> ℹ 172 combinations had less than minimum = 30 results and were ignored #> # A tibble: 5 × 3 #> `Pathogen (N min-max)` Imipenem Meropenem #> * #> 1 Coagulase-negative Staphylococcus (CoNS) (48-48) 52 52 #> 2 Enterococcus faecalis (0-38) 100 NA #> 3 Escherichia coli (418-422) 100 100 #> 4 Klebsiella pneumoniae (51-53) 100 100 #> 5 Proteus mirabilis (27-32) 94 NA # Combined antibiogram ------------------------------------------------- # combined antibiotics yield higher empiric coverage antibiogram(example_isolates, antibiotics = c(\"TZP\", \"TZP+TOB\", \"TZP+GEN\"), mo_transform = \"gramstain\") #> ℹ 3 combinations had less than minimum = 30 results and were ignored #> # A tibble: 2 × 4 #> `Pathogen (N min-max)` TZP `TZP + GEN` `TZP + TOB` #> *