So we end up with 2 724 isolates for analysis. Now our data looks
+
So we end up with 2 730 isolates for analysis. Now our data looks
like:
our_data_1st
-#> # A tibble: 2,724 × 9
+#> # A tibble: 2,730 × 9#> patient_id hospital date bacteria AMX AMC CIP GEN first#> <chr><chr><date><mo><sir><sir><sir><sir><lgl>#> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S TRUE
@@ -434,7 +434,7 @@ like:
#> 8 J3 A 2019-06-19 B_ESCHR_COLI S S S S TRUE #> 9 G6 A 2015-04-27 B_STPHY_AURS S S S S TRUE #> 10 P4 A 2011-06-21 B_ESCHR_COLI S S S S TRUE
-#> # ℹ 2,714 more rows
+#> # ℹ 2,720 more rows
Time for the analysis.
@@ -447,29 +447,29 @@ impression, as it comes with support for the new mo and
summary(our_data_1st)#> patient_id hospital date
-#> Length:2724 Length:2724 Min. :2011-01-01
-#> Class :character Class :character 1st Qu.:2013-04-07
-#> Mode :character Mode :character Median :2015-06-03
+#> Length:2730 Length:2730 Min. :2011-01-01
+#> Class :character Class :character 1st Qu.:2013-04-06
+#> Mode :character Mode :character Median :2015-06-04 #> Mean :2015-06-09
-#> 3rd Qu.:2017-08-11
+#> 3rd Qu.:2017-08-14 #> Max. :2019-12-27 #> bacteria AMX AMC #> Class :mo Class:sir Class:sir
-#> <NA> :0 %S :41.6% (n=1133) %S :52.6% (n=1432)
+#> <NA> :0 %S :40.1% (n=1071) %S :51.1% (n=1354) #> Unique:4 %SDD : 0.0% (n=0) %SDD : 0.0% (n=0)
-#> #1 :B_ESCHR_COLI %I :16.4% (n=446) %I :12.2% (n=333)
-#> #2 :B_STPHY_AURS %R :42.0% (n=1145) %R :35.2% (n=959)
+#> #1 :B_ESCHR_COLI %I :17.0% (n=453) %I :12.7% (n=335)
+#> #2 :B_STPHY_AURS %R :42.9% (n=1147) %R :36.2% (n=959) #> #3 :B_STRPT_PNMN %NI : 0.0% (n=0) %NI : 0.0% (n=0) #> CIP GEN first #> Class:sir Class:sir Mode:logical
-#> %S :52.5% (n=1431) %S :61.0% (n=1661) TRUE:2724
+#> %S :52.2% (n=1426) %S :60.7% (n=1656) TRUE:2730 #> %SDD : 0.0% (n=0) %SDD : 0.0% (n=0)
-#> %I : 6.5% (n=176) %I : 3.0% (n=82)
-#> %R :41.0% (n=1117) %R :36.0% (n=981)
+#> %I : 6.5% (n=178) %I : 3.0% (n=83)
+#> %R :41.2% (n=1126) %R :36.3% (n=991) #> %NI : 0.0% (n=0) %NI : 0.0% (n=0)glimpse(our_data_1st)
-#> Rows: 2,724
+#> Rows: 2,730#> Columns: 9#> $ patient_id <chr> "J3", "R7", "P3", "P10", "B7", "W3", "M3", "J3", "G6", "P4"…#> $ hospital <chr> "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",…
@@ -484,7 +484,7 @@ impression, as it comes with support for the new mo and
# number of unique values per column:sapply(our_data_1st, n_distinct)#> patient_id hospital date bacteria AMX AMC CIP
-#> 260 3 1854 4 3 3 3
+#> 260 3 1854 4 4 4 3 #> GEN first #> 3 1
@@ -524,7 +524,7 @@ in:
our_data_1st%>%select(date, aminoglycosides())#> ℹ For `aminoglycosides()` using column 'GEN' (gentamicin)
-#> # A tibble: 2,724 × 2
+#> # A tibble: 2,730 × 2#> date GEN #> <date><sir>#> 1 2012-11-21 S
@@ -537,13 +537,13 @@ in:
#> 8 2019-06-19 S #> 9 2015-04-27 S #> 10 2011-06-21 S
-#> # ℹ 2,714 more rows
+#> # ℹ 2,720 more rowsour_data_1st%>%select(bacteria, betalactams())#> ℹ For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC'#> (amoxicillin/clavulanic acid)
-#> # A tibble: 2,724 × 3
+#> # A tibble: 2,730 × 3#> bacteria AMX AMC #> <mo><sir><sir>#> 1B_ESCHR_COLI R I
@@ -556,11 +556,11 @@ in:
#> 8B_ESCHR_COLI S S #> 9B_STPHY_AURS S S #> 10B_ESCHR_COLI S S
-#> # ℹ 2,714 more rows
+#> # ℹ 2,720 more rowsour_data_1st%>%select(bacteria, where(is.sir))
-#> # A tibble: 2,724 × 5
+#> # A tibble: 2,730 × 5#> bacteria AMX AMC CIP GEN #> <mo><sir><sir><sir><sir>#> 1B_ESCHR_COLI R I S S
@@ -573,13 +573,13 @@ in:
#> 8B_ESCHR_COLI S S S S #> 9B_STPHY_AURS S S S S #> 10B_ESCHR_COLI S S S S
-#> # ℹ 2,714 more rows
+#> # ℹ 2,720 more rows# filtering using AB selectors is also possible:our_data_1st%>%filter(any(aminoglycosides()=="R"))#> ℹ For `aminoglycosides()` using column 'GEN' (gentamicin)
-#> # A tibble: 981 × 9
+#> # A tibble: 991 × 9#> patient_id hospital date bacteria AMX AMC CIP GEN first#> <chr><chr><date><mo><sir><sir><sir><sir><lgl>#> 1 J5 A 2017-12-25 B_STRPT_PNMN R S S R TRUE
@@ -592,13 +592,13 @@ in:
#> 8 P5 A 2019-03-09 B_STPHY_AURS S S S R TRUE #> 9 Q8 A 2019-08-10 B_STPHY_AURS S S S R TRUE #> 10 K5 A 2013-03-15 B_STRPT_PNMN S S S R TRUE
-#> # ℹ 971 more rows
+#> # ℹ 981 more rowsour_data_1st%>%filter(all(betalactams()=="R"))#> ℹ For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC'#> (amoxicillin/clavulanic acid)
-#> # A tibble: 462 × 9
+#> # A tibble: 461 × 9#> patient_id hospital date bacteria AMX AMC CIP GEN first#> <chr><chr><date><mo><sir><sir><sir><sir><lgl>#> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE
@@ -611,13 +611,13 @@ in:
#> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE #> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE #> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE
-#> # ℹ 452 more rows
+#> # ℹ 451 more rows# even works in base R (since R 3.0):our_data_1st[all(betalactams()=="R"), ]#> ℹ For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC'#> (amoxicillin/clavulanic acid)
-#> # A tibble: 462 × 9
+#> # A tibble: 461 × 9#> patient_id hospital date bacteria AMX AMC CIP GEN first#> <chr><chr><date><mo><sir><sir><sir><sir><lgl>#> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE
@@ -630,7 +630,7 @@ in:
#> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE #> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE #> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE
-#> # ℹ 452 more rows
+#> # ℹ 451 more rows
Generate antibiograms
@@ -1283,7 +1283,7 @@ I (proportion_SI(), equa
own:
Or can be used in conjunction with group_by() and
summarise(), both from the dplyr package:
@@ -1293,8 +1293,8 @@ own:
#> # A tibble: 3 × 2#> hospital amoxicillin#> <chr><dbl>
-#> 1 A 0.340
-#> 2 B 0.551
+#> 1 A 0.341
+#> 2 B 0.586#> 3 C 0.370
diff --git a/articles/AMR.md b/articles/AMR.md
index 516ecd23f..041b17c84 100644
--- a/articles/AMR.md
+++ b/articles/AMR.md
@@ -3,7 +3,7 @@
**Note:** values on this page will change with every website update
since they are based on randomly created values and the page was written
in [R Markdown](https://rmarkdown.rstudio.com/). However, the
-methodology remains unchanged. This page was generated on 24 November
+methodology remains unchanged. This page was generated on 15 December
2025.
## Introduction
@@ -52,9 +52,9 @@ structure of your data generally look like this:
| date | patient_id | mo | AMX | CIP |
|:----------:|:----------:|:----------------:|:---:|:---:|
-| 2025-11-24 | abcd | Escherichia coli | S | S |
-| 2025-11-24 | abcd | Escherichia coli | S | R |
-| 2025-11-24 | efgh | Escherichia coli | R | S |
+| 2025-12-15 | abcd | Escherichia coli | S | S |
+| 2025-12-15 | abcd | Escherichia coli | S | R |
+| 2025-12-15 | efgh | Escherichia coli | R | S |
### Needed R packages
@@ -322,7 +322,7 @@ our_data <- our_data %>%
#> ℹ Using column 'patient_id' as input for `col_patient_id`.
#> ℹ Basing inclusion on all antimicrobial results, using a points threshold
#> of 2
-#> => Found 2,724 'phenotype-based' first isolates (90.8% of total where a
+#> => Found 2,730 'phenotype-based' first isolates (91.0% of total where a
#> microbial ID was available)
```
@@ -342,11 +342,11 @@ our_data_1st <- our_data %>%
filter_first_isolate()
```
-So we end up with 2 724 isolates for analysis. Now our data looks like:
+So we end up with 2 730 isolates for analysis. Now our data looks like:
``` r
our_data_1st
-#> # A tibble: 2,724 × 9
+#> # A tibble: 2,730 × 9
#> patient_id hospital date bacteria AMX AMC CIP GEN first
#>
#> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S TRUE
@@ -359,7 +359,7 @@ our_data_1st
#> 8 J3 A 2019-06-19 B_ESCHR_COLI S S S S TRUE
#> 9 G6 A 2015-04-27 B_STPHY_AURS S S S S TRUE
#> 10 P4 A 2011-06-21 B_ESCHR_COLI S S S S TRUE
-#> # ℹ 2,714 more rows
+#> # ℹ 2,720 more rows
```
Time for the analysis.
@@ -373,29 +373,29 @@ and `sir` classes that we now have in our data set:
``` r
summary(our_data_1st)
#> patient_id hospital date
-#> Length:2724 Length:2724 Min. :2011-01-01
-#> Class :character Class :character 1st Qu.:2013-04-07
-#> Mode :character Mode :character Median :2015-06-03
+#> Length:2730 Length:2730 Min. :2011-01-01
+#> Class :character Class :character 1st Qu.:2013-04-06
+#> Mode :character Mode :character Median :2015-06-04
#> Mean :2015-06-09
-#> 3rd Qu.:2017-08-11
+#> 3rd Qu.:2017-08-14
#> Max. :2019-12-27
#> bacteria AMX AMC
#> Class :mo Class:sir Class:sir
-#> :0 %S :41.6% (n=1133) %S :52.6% (n=1432)
+#> :0 %S :40.1% (n=1071) %S :51.1% (n=1354)
#> Unique:4 %SDD : 0.0% (n=0) %SDD : 0.0% (n=0)
-#> #1 :B_ESCHR_COLI %I :16.4% (n=446) %I :12.2% (n=333)
-#> #2 :B_STPHY_AURS %R :42.0% (n=1145) %R :35.2% (n=959)
+#> #1 :B_ESCHR_COLI %I :17.0% (n=453) %I :12.7% (n=335)
+#> #2 :B_STPHY_AURS %R :42.9% (n=1147) %R :36.2% (n=959)
#> #3 :B_STRPT_PNMN %NI : 0.0% (n=0) %NI : 0.0% (n=0)
#> CIP GEN first
#> Class:sir Class:sir Mode:logical
-#> %S :52.5% (n=1431) %S :61.0% (n=1661) TRUE:2724
+#> %S :52.2% (n=1426) %S :60.7% (n=1656) TRUE:2730
#> %SDD : 0.0% (n=0) %SDD : 0.0% (n=0)
-#> %I : 6.5% (n=176) %I : 3.0% (n=82)
-#> %R :41.0% (n=1117) %R :36.0% (n=981)
+#> %I : 6.5% (n=178) %I : 3.0% (n=83)
+#> %R :41.2% (n=1126) %R :36.3% (n=991)
#> %NI : 0.0% (n=0) %NI : 0.0% (n=0)
glimpse(our_data_1st)
-#> Rows: 2,724
+#> Rows: 2,730
#> Columns: 9
#> $ patient_id "J3", "R7", "P3", "P10", "B7", "W3", "M3", "J3", "G6", "P4"…
#> $ hospital "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",…
@@ -410,7 +410,7 @@ glimpse(our_data_1st)
# number of unique values per column:
sapply(our_data_1st, n_distinct)
#> patient_id hospital date bacteria AMX AMC CIP
-#> 260 3 1854 4 3 3 3
+#> 260 3 1854 4 4 4 3
#> GEN first
#> 3 1
```
@@ -437,9 +437,9 @@ our_data_1st %>%
#> # A tibble: 4 × 2
#> `mo_name(bacteria)` n
#>
-#> 1 Escherichia coli 1321
-#> 2 Staphylococcus aureus 682
-#> 3 Streptococcus pneumoniae 402
+#> 1 Escherichia coli 1326
+#> 2 Staphylococcus aureus 684
+#> 3 Streptococcus pneumoniae 401
#> 4 Klebsiella pneumoniae 319
```
@@ -453,7 +453,7 @@ in:
our_data_1st %>%
select(date, aminoglycosides())
#> ℹ For `aminoglycosides()` using column 'GEN' (gentamicin)
-#> # A tibble: 2,724 × 2
+#> # A tibble: 2,730 × 2
#> date GEN
#>
#> 1 2012-11-21 S
@@ -466,13 +466,13 @@ our_data_1st %>%
#> 8 2019-06-19 S
#> 9 2015-04-27 S
#> 10 2011-06-21 S
-#> # ℹ 2,714 more rows
+#> # ℹ 2,720 more rows
our_data_1st %>%
select(bacteria, betalactams())
#> ℹ For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC'
#> (amoxicillin/clavulanic acid)
-#> # A tibble: 2,724 × 3
+#> # A tibble: 2,730 × 3
#> bacteria AMX AMC
#>
#> 1 B_ESCHR_COLI R I
@@ -485,11 +485,11 @@ our_data_1st %>%
#> 8 B_ESCHR_COLI S S
#> 9 B_STPHY_AURS S S
#> 10 B_ESCHR_COLI S S
-#> # ℹ 2,714 more rows
+#> # ℹ 2,720 more rows
our_data_1st %>%
select(bacteria, where(is.sir))
-#> # A tibble: 2,724 × 5
+#> # A tibble: 2,730 × 5
#> bacteria AMX AMC CIP GEN
#>
#> 1 B_ESCHR_COLI R I S S
@@ -502,13 +502,13 @@ our_data_1st %>%
#> 8 B_ESCHR_COLI S S S S
#> 9 B_STPHY_AURS S S S S
#> 10 B_ESCHR_COLI S S S S
-#> # ℹ 2,714 more rows
+#> # ℹ 2,720 more rows
# filtering using AB selectors is also possible:
our_data_1st %>%
filter(any(aminoglycosides() == "R"))
#> ℹ For `aminoglycosides()` using column 'GEN' (gentamicin)
-#> # A tibble: 981 × 9
+#> # A tibble: 991 × 9
#> patient_id hospital date bacteria AMX AMC CIP GEN first
#>
#> 1 J5 A 2017-12-25 B_STRPT_PNMN R S S R TRUE
@@ -521,13 +521,13 @@ our_data_1st %>%
#> 8 P5 A 2019-03-09 B_STPHY_AURS S S S R TRUE
#> 9 Q8 A 2019-08-10 B_STPHY_AURS S S S R TRUE
#> 10 K5 A 2013-03-15 B_STRPT_PNMN S S S R TRUE
-#> # ℹ 971 more rows
+#> # ℹ 981 more rows
our_data_1st %>%
filter(all(betalactams() == "R"))
#> ℹ For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC'
#> (amoxicillin/clavulanic acid)
-#> # A tibble: 462 × 9
+#> # A tibble: 461 × 9
#> patient_id hospital date bacteria AMX AMC CIP GEN first
#>
#> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE
@@ -540,13 +540,13 @@ our_data_1st %>%
#> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE
#> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE
#> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE
-#> # ℹ 452 more rows
+#> # ℹ 451 more rows
# even works in base R (since R 3.0):
our_data_1st[all(betalactams() == "R"), ]
#> ℹ For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC'
#> (amoxicillin/clavulanic acid)
-#> # A tibble: 462 × 9
+#> # A tibble: 461 × 9
#> patient_id hospital date bacteria AMX AMC CIP GEN first
#>
#> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE
@@ -559,7 +559,7 @@ our_data_1st[all(betalactams() == "R"), ]
#> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE
#> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE
#> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE
-#> # ℹ 452 more rows
+#> # ℹ 451 more rows
```
### Generate antibiograms
@@ -843,7 +843,7 @@ These functions can be used on their own:
``` r
our_data_1st %>% resistance(AMX)
-#> [1] 0.4203377
+#> [1] 0.4294272
```
Or can be used in conjunction with
@@ -858,8 +858,8 @@ our_data_1st %>%
#> # A tibble: 3 × 2
#> hospital amoxicillin
#>
-#> 1 A 0.340
-#> 2 B 0.551
+#> 1 A 0.341
+#> 2 B 0.586
#> 3 C 0.370
```
diff --git a/articles/AMR_for_Python.html b/articles/AMR_for_Python.html
index 65d08935e..d19f090a3 100644
--- a/articles/AMR_for_Python.html
+++ b/articles/AMR_for_Python.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.1.9003
+ 3.0.1.9004
diff --git a/articles/AMR_with_tidymodels.html b/articles/AMR_with_tidymodels.html
index 42d2fe8c8..415fa4edd 100644
--- a/articles/AMR_with_tidymodels.html
+++ b/articles/AMR_with_tidymodels.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.1.9003
+ 3.0.1.9004
diff --git a/articles/EUCAST.html b/articles/EUCAST.html
index cea7f1cd3..5687512fd 100644
--- a/articles/EUCAST.html
+++ b/articles/EUCAST.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.1.9003
+ 3.0.1.9004
diff --git a/articles/PCA.html b/articles/PCA.html
index 8168310c6..b3bf0b8a9 100644
--- a/articles/PCA.html
+++ b/articles/PCA.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.1.9003
+ 3.0.1.9004
diff --git a/articles/WHONET.html b/articles/WHONET.html
index cabec7b01..41bcba1f8 100644
--- a/articles/WHONET.html
+++ b/articles/WHONET.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.1.9003
+ 3.0.1.9004
diff --git a/articles/WISCA.html b/articles/WISCA.html
index 672c466c8..756d05bca 100644
--- a/articles/WISCA.html
+++ b/articles/WISCA.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.1.9003
+ 3.0.1.9004
diff --git a/articles/datasets.html b/articles/datasets.html
index 7bc589768..df529cc53 100644
--- a/articles/datasets.html
+++ b/articles/datasets.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.1.9003
+ 3.0.1.9004
@@ -80,7 +80,7 @@
Fixed a bug in antibiogram() for when no antimicrobials are set
Added taniborbactam (TAN) and cefepime/taniborbactam (FTA) to the antimicrobials data set
+
Fixed a bug in as.sir() where for numeric input the arguments S, i, and R would not be considered (#244)
+
Added explaining message to as.sir() when interpreting numeric values (e.g., 1 for S, 2 for I, 3 for R) (#244)
+
Updated handling of capped MIC values (<, <=, >, >=) in as.sir() in the argument capped_mic_handling: (#243)
+
Introduced four clearly defined options: "none", "conservative" (default), "standard", and "lenient"
+
+
Interpretation of capped MIC values now consistently returns "NI" (non-interpretable) when the true MIC could be at either side of a breakpoint, depending on the selected handling mode
+
This results in more reliable behaviour compared to previous versions for capped MIC values
+
Removed the "inverse" option, which has now become redundant
+
diff --git a/news/index.md b/news/index.md
index 782d60256..cd082253c 100644
--- a/news/index.md
+++ b/news/index.md
@@ -1,6 +1,6 @@
# Changelog
-## AMR 3.0.1.9003
+## AMR 3.0.1.9004
#### Changed
@@ -9,6 +9,25 @@
when no antimicrobials are set
- Added taniborbactam (`TAN`) and cefepime/taniborbactam (`FTA`) to the
`antimicrobials` data set
+- Fixed a bug in [`as.sir()`](https://amr-for-r.org/reference/as.sir.md)
+ where for numeric input the arguments `S`, `i`, and `R` would not be
+ considered ([\#244](https://github.com/msberends/AMR/issues/244))
+- Added explaining message to
+ [`as.sir()`](https://amr-for-r.org/reference/as.sir.md) when
+ interpreting numeric values (e.g., 1 for S, 2 for I, 3 for R)
+ ([\#244](https://github.com/msberends/AMR/issues/244))
+- Updated handling of capped MIC values (`<`, `<=`, `>`, `>=`) in
+ [`as.sir()`](https://amr-for-r.org/reference/as.sir.md) in the
+ argument `capped_mic_handling`:
+ ([\#243](https://github.com/msberends/AMR/issues/243))
+ - Introduced four clearly defined options: `"none"`, `"conservative"`
+ (default), `"standard"`, and `"lenient"`
+ - Interpretation of capped MIC values now consistently returns `"NI"`
+ (non-interpretable) when the true MIC could be at either side of a
+ breakpoint, depending on the selected handling mode
+ - This results in more reliable behaviour compared to previous
+ versions for capped MIC values
+ - Removed the `"inverse"` option, which has now become redundant
## AMR 3.0.1
diff --git a/pkgdown.yml b/pkgdown.yml
index bbf743107..9cf64ec60 100644
--- a/pkgdown.yml
+++ b/pkgdown.yml
@@ -10,7 +10,7 @@ articles:
PCA: PCA.html
WHONET: WHONET.html
WISCA: WISCA.html
-last_built: 2025-11-24T10:38Z
+last_built: 2025-12-15T12:28Z
urls:
reference: https://amr-for-r.org/reference
article: https://amr-for-r.org/articles
diff --git a/reference/AMR-deprecated.html b/reference/AMR-deprecated.html
index 2625e2a88..3cb954b0b 100644
--- a/reference/AMR-deprecated.html
+++ b/reference/AMR-deprecated.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9003
+ 3.0.1.9004
diff --git a/reference/AMR-options.html b/reference/AMR-options.html
index 68eecd374..ed6ed3a13 100644
--- a/reference/AMR-options.html
+++ b/reference/AMR-options.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9003
+ 3.0.1.9004
@@ -60,7 +60,7 @@
AMR_antibiogram_formatting_type A numeric (1-22) to use in antibiogram(), to indicate which formatting type to use.
AMR_breakpoint_type A character to use in as.sir(), to indicate which breakpoint type to use. This must be either "ECOFF", "animal", or "human".
-
AMR_capped_mic_handling A character to use in as.sir(), to indicate how capped MIC values (<, <=, >, >=) should be interpreted. Must be one of "standard", "strict", "relaxed", or "inverse" - the default is "standard".
+
AMR_capped_mic_handling A character to use in as.sir(), to indicate how capped MIC values (<, <=, >, >=) should be interpreted. Must be one of "none", "conservative", "standard", or "lenient" - the default is "conservative".
AMR_cleaning_regex A regular expression (case-insensitive) to use in as.mo() and all mo_* functions, to clean the user input. The default is the outcome of mo_cleaning_regex(), which removes texts between brackets and texts such as "species" and "serovar".
AMR_custom_ab A file location to an RDS file, to use custom antimicrobial drugs with this package. This is explained in add_custom_antimicrobials().
AMR_custom_mo A file location to an RDS file, to use custom microorganisms with this package. This is explained in add_custom_microorganisms().
diff --git a/reference/AMR-options.md b/reference/AMR-options.md
index ca59a19e1..9166daa49 100644
--- a/reference/AMR-options.md
+++ b/reference/AMR-options.md
@@ -21,8 +21,8 @@ This is an overview of all the package-specific
A [character](https://rdrr.io/r/base/character.html) to use in
[`as.sir()`](https://amr-for-r.org/reference/as.sir.md), to indicate
how capped MIC values (`<`, `<=`, `>`, `>=`) should be interpreted.
- Must be one of `"standard"`, `"strict"`, `"relaxed"`, or `"inverse"` -
- the default is `"standard"`.
+ Must be one of `"none"`, `"conservative"`, `"standard"`, or
+ `"lenient"` - the default is `"conservative"`.
- `AMR_cleaning_regex`
A [regular expression](https://rdrr.io/r/base/regex.html)
diff --git a/reference/AMR.html b/reference/AMR.html
index 4580ef7e1..5542bb480 100644
--- a/reference/AMR.html
+++ b/reference/AMR.html
@@ -21,7 +21,7 @@ The AMR package is available in English, Arabic, Bengali, Chinese, Czech, Danish
AMR (for R)
- 3.0.1.9003
+ 3.0.1.9004
diff --git a/reference/WHOCC.html b/reference/WHOCC.html
index 2cc33530a..577ba75b6 100644
--- a/reference/WHOCC.html
+++ b/reference/WHOCC.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9003
+ 3.0.1.9004
diff --git a/reference/WHONET.html b/reference/WHONET.html
index 24abf2b26..d98df6895 100644
--- a/reference/WHONET.html
+++ b/reference/WHONET.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9003
+ 3.0.1.9004
diff --git a/reference/ab_from_text.html b/reference/ab_from_text.html
index 205280753..4246a01e2 100644
--- a/reference/ab_from_text.html
+++ b/reference/ab_from_text.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9003
+ 3.0.1.9004
diff --git a/reference/ab_property.html b/reference/ab_property.html
index 5ed00031d..3248aa63d 100644
--- a/reference/ab_property.html
+++ b/reference/ab_property.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9003
+ 3.0.1.9004
diff --git a/reference/add_custom_antimicrobials.html b/reference/add_custom_antimicrobials.html
index cce9f3254..1316bfd61 100644
--- a/reference/add_custom_antimicrobials.html
+++ b/reference/add_custom_antimicrobials.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9003
+ 3.0.1.9004
diff --git a/reference/add_custom_microorganisms.html b/reference/add_custom_microorganisms.html
index aebc922ca..04854530b 100644
--- a/reference/add_custom_microorganisms.html
+++ b/reference/add_custom_microorganisms.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9003
+ 3.0.1.9004
diff --git a/reference/age.html b/reference/age.html
index b6b6a0be5..b21db5aef 100644
--- a/reference/age.html
+++ b/reference/age.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9003
+ 3.0.1.9004
@@ -112,16 +112,16 @@
df#> birth_date age age_exact age_at_y2k
-#> 1 1980-02-27 45 45.73973 19
-#> 2 1953-07-26 72 72.33151 46
-#> 3 1949-09-02 76 76.22740 50
-#> 4 1986-08-03 39 39.30959 13
-#> 5 1932-11-19 93 93.01370 67
-#> 6 1949-03-30 76 76.65479 50
-#> 7 1996-06-23 29 29.42192 3
-#> 8 1963-09-16 62 62.18904 36
-#> 9 1952-05-16 73 73.52603 47
-#> 10 1952-11-14 73 73.02740 47
+#> 1 1980-02-27 45 45.79726 19
+#> 2 1953-07-26 72 72.38904 46
+#> 3 1949-09-02 76 76.28493 50
+#> 4 1986-08-03 39 39.36712 13
+#> 5 1932-11-19 93 93.07123 67
+#> 6 1949-03-30 76 76.71233 50
+#> 7 1996-06-23 29 29.47945 3
+#> 8 1963-09-16 62 62.24658 36
+#> 9 1952-05-16 73 73.58356 47
+#> 10 1952-11-14 73 73.08493 47