1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-09 04:02:19 +02:00

pm update, unit test fix?

This commit is contained in:
2023-02-08 13:48:06 +01:00
parent 4a54d59f70
commit 822e9de82c
13 changed files with 2118 additions and 720 deletions

1741
R/aa_helper_pm_functions.R Executable file → Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1425,13 +1425,15 @@ case_when <- function(...) {
}
# dplyr implementations ----
# dplyr/tidyr implementations ----
# take {dplyr} functions if available, and the slower {poorman} functions otherwise
if (pkg_is_available("dplyr", also_load = FALSE)) {
# take {dplyr} and {tidyr} functions if available, and the slower {poorman} functions otherwise
if (pkg_is_available("dplyr", min_version = "1.0.0", also_load = FALSE)) {
`%>%` <- import_fn("%>%", "dplyr", error_on_fail = FALSE)
across <- import_fn("across", "dplyr", error_on_fail = FALSE)
anti_join <- import_fn("anti_join", "dplyr", error_on_fail = FALSE)
arrange <- import_fn("arrange", "dplyr", error_on_fail = FALSE)
bind_rows <- import_fn("bind_rows", "dplyr", error_on_fail = FALSE)
count <- import_fn("count", "dplyr", error_on_fail = FALSE)
desc <- import_fn("desc", "dplyr", error_on_fail = FALSE)
distinct <- import_fn("distinct", "dplyr", error_on_fail = FALSE)
@ -1443,22 +1445,22 @@ if (pkg_is_available("dplyr", also_load = FALSE)) {
inner_join <- import_fn("inner_join", "dplyr", error_on_fail = FALSE)
lag <- import_fn("lag", "dplyr", error_on_fail = FALSE)
left_join <- import_fn("left_join", "dplyr", error_on_fail = FALSE)
mutate <- import_fn("mutate", "dplyr", error_on_fail = FALSE)
n_distinct <- import_fn("n_distinct", "dplyr", error_on_fail = FALSE)
pull <- import_fn("pull", "dplyr", error_on_fail = FALSE)
rename <- import_fn("rename", "dplyr", error_on_fail = FALSE)
right_join <- import_fn("right_join", "dplyr", error_on_fail = FALSE)
row_number <- import_fn("row_number", "dplyr", error_on_fail = FALSE)
select <- import_fn("select", "dplyr", error_on_fail = FALSE)
semi_join <- import_fn("semi_join", "dplyr", error_on_fail = FALSE)
summarise <- import_fn("summarise", "dplyr", error_on_fail = FALSE)
ungroup <- import_fn("ungroup", "dplyr", error_on_fail = FALSE)
mutate <- import_fn("mutate", "dplyr", error_on_fail = FALSE)
bind_rows <- import_fn("bind_rows", "dplyr", error_on_fail = FALSE)
where <- import_fn("where", "dplyr", error_on_fail = FALSE)
} else {
`%>%` <- `%pm>%`
across <- pm_across
anti_join <- pm_anti_join
arrange <- pm_arrange
bind_rows <- pm_bind_rows
count <- pm_count
desc <- pm_desc
distinct <- pm_distinct
@ -1470,62 +1472,22 @@ if (pkg_is_available("dplyr", also_load = FALSE)) {
inner_join <- pm_inner_join
lag <- pm_lag
left_join <- pm_left_join
mutate <- pm_mutate
n_distinct <- pm_n_distinct
pull <- pm_pull
rename <- pm_rename
right_join <- pm_right_join
row_number <- pm_row_number
select <- pm_select
semi_join <- pm_semi_join
summarise <- pm_summarise
ungroup <- pm_ungroup
mutate <- function(.data, ...) {
# pm_mutate is buggy, use this simple alternative
dots <- list(...)
for (i in seq_len(length(dots))) {
.data[, names(dots)[i]] <- dots[[i]]
}
.data
}
bind_rows <- function(..., fill = NA) {
# this AMAZING code is from ChatGPT when I asked for a base R dplyr::bind_rows alternative
dfs <- list(...)
all_cols <- unique(unlist(lapply(dfs, colnames)))
mat_list <- lapply(dfs, function(x) {
mat <- matrix(NA, nrow = nrow(x), ncol = length(all_cols))
colnames(mat) <- all_cols
mat[, colnames(x)] <- as.matrix(x)
mat
})
mat <- do.call(rbind, mat_list)
as.data.frame(mat, stringsAsFactors = FALSE)
}
where <- function(fn) {
# adapted from https://github.com/nathaneastwood/poorman/blob/52eb6947e0b4430cd588976ed8820013eddf955f/R/where.R#L17-L32
if (!is.function(fn)) {
stop_("`", deparse(substitute(fn)), "()` is not a valid predicate function.")
}
df <- pm_select_env$.data
cols <- pm_select_env$get_colnames()
if (is.null(df)) {
df <- get_current_data("where", call = FALSE)
cols <- colnames(df)
}
preds <- unlist(lapply(
df,
function(x, fn) {
do.call("fn", list(x))
},
fn
))
if (!is.logical(preds)) stop_("`where()` must be used with functions that return `TRUE` or `FALSE`.")
data_cols <- cols
cols <- data_cols[preds]
which(data_cols %in% cols)
}
where <- pm_where
}
if (pkg_is_available("tidyr", min_version = "1.0.0", also_load = FALSE)) {
pivot_longer <- import_fn("pivot_longer", "tidyr", error_on_fail = FALSE)
} else {
pivot_longer <- pm_pivot_longer
}
# Faster data.table implementations ----

View File

@ -49,7 +49,6 @@
#' @return (internally) a [character] vector of column names, with additional class `"ab_selector"`
#' @export
#' @inheritSection AMR Reference Data Publicly Available
#' @examples
#' # `example_isolates` is a data set available in the AMR package.
#' # See ?example_isolates.

View File

@ -85,10 +85,7 @@ bug_drug_combinations <- function(x,
}
# use dplyr and tidyr if they are available, they are much faster!
if (pkg_is_available("dplyr", min_version = "1.0.0", also_load = FALSE) &&
pkg_is_available("tidyr", min_version = "1.0.0", also_load = FALSE)) {
across <- import_fn("across", "dplyr")
pivot_longer <- import_fn("pivot_longer", "tidyr")
if (identical(pivot_longer, import_fn("pivot_longer", "tidyr", error_on_fail = FALSE))) {
out <- x %>%
ungroup() %>%
mutate(mo = FUN(ungroup(x)[, col_mo, drop = TRUE], ...)) %>%

View File

@ -926,7 +926,7 @@ eucast_rules <- function(x,
# Print overview ----------------------------------------------------------
if (isTRUE(info) || isTRUE(verbose)) {
verbose_info <- x.bak %>%
mutate(row = row_number()) %>%
mutate(row = seq_len(NROW(x.bak))) %>%
select(`.rowid`, row) %>%
right_join(verbose_info,
by = c(".rowid" = "rowid")