@@ -103,7 +103,8 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
FALSE ) , include_screening = getOption ( "AMR_include_screening" , FALSE ) ,
include_PKPD = getOption ( "AMR_include_PKPD" , TRUE ) ,
breakpoint_type = getOption ( "AMR_breakpoint_type" , "human" ) , host = NULL ,
- verbose = FALSE , info = TRUE , conserve_capped_values = NULL )
+ verbose = FALSE , info = TRUE , parallel = FALSE , max_cores = - 1 ,
+ conserve_capped_values = NULL )
sir_interpretation_history ( clean = FALSE )
@@ -209,6 +210,14 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
Column name of the names or codes of the microorganisms (see as.mo()
) - the default is the first column of class mo
. Values will be coerced using as.mo()
.
+parallel
+A logical to indicate if parallel computing must be used, defaults to FALSE
.
+
+
+max_cores
+Maximum number of cores to use if parallel = TRUE
. Use a negative value to subtract that number from the available number of cores, e.g. a value of -2
on an 8-core machine means that 6 cores will be used. Defaults to -1
. The available number of cores are detected using parallelly::availableCores()
if that package is installed, and base R 's parallel::detectCores()
otherwise.
+
+
clean
A logical to indicate whether previously stored results should be forgotten after returning the 'logbook' with results.
@@ -231,7 +240,10 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
your_data %>% mutate_if ( is.mic , as.sir , ab = c ( "cipro" , "ampicillin" , ... ) , mo = c ( "E. coli" , "K. pneumoniae" , ... ) )
# for veterinary breakpoints, also set `host`:
-your_data %>% mutate_if ( is.mic , as.sir , host = "column_with_animal_species" , guideline = "CLSI" )
+your_data %>% mutate_if ( is.mic , as.sir , host = "column_with_animal_species" , guideline = "CLSI" )
+
+# fast processing with parallel computing:
+as.sir ( your_data , ... , parallel = TRUE )
Operators like "<=" will be stripped before interpretation. When using capped_mic_handling = "conservative"
, an MIC value of e.g. ">2" will always return "R", even if the breakpoint according to the chosen guideline is ">=4". This is to prevent that capped values from raw laboratory data would not be treated conservatively. The default behaviour (capped_mic_handling = "standard"
) considers ">2" to be lower than ">=4" and might in this case return "S" or "I".
Note: When using CLSI as the guideline, MIC values must be log2-based doubling dilutions. Values not in this format, will be automatically rounded up to the nearest log2 level as CLSI instructs, and a warning will be thrown.
@@ -242,7 +254,10 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
your_data %>% mutate_if ( is.disk , as.sir , ab = c ( "cipro" , "ampicillin" , ... ) , mo = c ( "E. coli" , "K. pneumoniae" , ... ) )
# for veterinary breakpoints, also set `host`:
-your_data %>% mutate_if ( is.disk , as.sir , host = "column_with_animal_species" , guideline = "CLSI" )
+your_data %>% mutate_if ( is.disk , as.sir , host = "column_with_animal_species" , guideline = "CLSI" )
+
+# fast processing with parallel computing:
+as.sir ( your_data , ... , parallel = TRUE )
For interpreting a complete data set , with automatic determination of MIC values, disk diffusion diameters, microorganism names or codes, and antimicrobial test results. This is done very simply by running as.sir(your_data)
.
For points 2, 3 and 4: Use sir_interpretation_history()
to retrieve a data.frame with all results of all previous as.sir()
calls. It also contains notes about interpretation, and the exact input and output values.
@@ -263,9 +278,22 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
options (AMR_guideline = "EUCAST 2020" )
# or to reset:
options (AMR_guideline = NULL )
-For veterinary guidelines, these might be the best options:
+
+
+
+
Working with Veterinary Breakpoints
+
+
+
When using veterinary breakpoints (i.e., setting breakpoint_type = "animal"
), a column with animal species must be available or set manually using the host
argument. The column must contain names like "dogs", "cats", "cattle", "swine", "horses", "poultry", or "aquatic". Other animal names like "goats", "rabbits", or "monkeys" are also recognised but may not be available in all guidelines. Matching is case-insensitive and accepts Latin-based synonyms (e.g., "bovine" for cattle and "canine" for dogs).
+
Regarding choice of veterinary guidelines, these might be the best options to set before analysis:
options (AMR_guideline = "CLSI" )
- options (AMR_breakpoint_type = "animal" )
+
options (AMR_breakpoint_type = "animal" )
+
TODO #187 When applying veterinary breakpoints (by setting host
or by setting breakpoint_type = "animal"
), the CLSI VET09 guideline will be applied to cope with missing animal species-specific breakpoints.
+
+
+
+
+
@@ -762,6 +790,9 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
#> Caused by warning:
#> ! The following animal host(s) could not be coerced: "animal_species"
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 1 remaining warning.
+
#> ℹ Returning previously coerced values for "E. coli". Run
+
#> mo_reset_session() to reset this. This note will be shown once per
+
#> session for this input.
#>
#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
#> all the details of the breakpoint interpretations.
@@ -799,6 +830,9 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
as.sir ( df_wide )
#>
+
#> ℹ Running SIR interpretation in sequential mode. Consider setting parallel
+
#> = TRUE to speed up processing on multiple cores.
+
#>
#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
#> all the details of the breakpoint interpretations.
#>
@@ -824,23 +858,23 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
# return a 'logbook' about the results:
sir_interpretation_history ( )
-
#> # A tibble: 65 × 17
-
#> datetime index method ab_given mo_given host_given input_given
-
#> <dttm> <int> <chr> <chr> <chr> <chr> <chr>
-
#> 1 2025-04-25 09:23:57 1 DISK ampicillin Strep pneu human 18
-
#> 2 2025-04-25 09:23:58 1 DISK AMP Escherich… human 20
-
#> 3 2025-04-25 09:23:58 1 DISK AMP Escherich… human 20
-
#> 4 NA NA NA NA NA NA NA
-
#> 5 2025-04-25 09:23:58 1 DISK GEN Escherich… human 18
-
#> 6 2025-04-25 09:23:58 1 DISK TOB Escherich… human 16
-
#> 7 2025-04-25 09:23:59 1 MIC AMX B_STRPT_P… human 2
-
#> 8 2025-04-25 09:23:59 1 MIC AMX B_STRPT_P… human 0.01
-
#> 9 2025-04-25 09:23:59 2 MIC AMX B_STRPT_P… human 2
-
#> 10 2025-04-25 09:23:59 3 MIC AMX B_STRPT_P… human 4
-
#> # ℹ 55 more rows
-
#> # ℹ 10 more variables: ab <ab>, mo <mo>, host <chr>, input <chr>,
+
#> # A tibble: 54 × 18
+
#> datetime index method ab_given mo_given host_given input_given
+
#> <dttm> <int> <chr> <chr> <chr> <chr> <chr>
+
#> 1 2025-04-26 13:53:13 1 MIC amoxicillin Escheric… human 8
+
#> 2 2025-04-26 13:53:14 1 MIC cipro Escheric… human 0.256
+
#> 3 2025-04-26 13:53:14 1 MIC amoxicillin Escheric… human 8
+
#> 4 2025-04-26 13:53:14 1 MIC cipro Escheric… human 0.256
+
#> 5 2025-04-26 13:53:14 1 DISK tobra Escheric… human 16
+
#> 6 2025-04-26 13:53:15 1 DISK genta Escheric… human 18
+
#> 7 2025-04-26 13:53:15 1 MIC amoxicillin Escheric… human 8
+
#> 8 2025-04-26 13:53:15 1 MIC cipro Escheric… human 0.256
+
#> 9 2025-04-26 13:53:15 1 MIC amoxicillin Escheric… human 8
+
#> 10 2025-04-26 13:53:16 1 MIC cipro Escheric… human 0.256
+
#> # ℹ 44 more rows
+
#> # ℹ 11 more variables: ab <ab>, mo <mo>, host <chr>, input <chr>,
#> # outcome <sir>, notes <chr>, guideline <chr>, ref_table <chr>, uti <lgl>,
-
#> # breakpoint_S_R <chr>
+
#> # breakpoint_S_R <chr>, site <lgl>
# for single values
as.sir (
@@ -854,10 +888,7 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
#> all the details of the breakpoint interpretations.
#>
#> Interpreting MIC values: ' AMP ' (ampicillin), EUCAST 2025 ...
-
#> NOTE
-
#> • Multiple breakpoints available for ampicillin (AMP) in Streptococcus pneumoniae - assuming body site 'Non-meningitis, Non-endocarditis'.
-
#> Class 'sir'
-
#> [1] R
+
#> Error in rbindlist(l, use.names, fill, idcol, ignore.attr): Class attribute on column 5 of item 2 does not match with column 5 of item 1. You can deactivate this safety-check by using ignore.attr=TRUE
as.sir (
x = as.disk ( 18 ) ,
@@ -912,6 +943,9 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
# example_isolates %>%
# mutate(across(where(is_sir_eligible), as.sir))
}
+
#>
+
#> ℹ Running SIR interpretation in sequential mode. Consider setting parallel
+
#> = TRUE to speed up processing on multiple cores.
#> # A tibble: 2,000 × 46
#> date patient age gender ward mo PEN OXA FLC AMX
#> <date> <chr> <dbl> <chr> <chr> <mo> <sir> <sir> <sir> <sir>
diff --git a/reference/atc_online.html b/reference/atc_online.html
index 724ea8f0b..7aa8c8da5 100644
--- a/reference/atc_online.html
+++ b/reference/atc_online.html
@@ -7,7 +7,7 @@
AMR (for R)
-
2.1.1.9252
+
2.1.1.9253
diff --git a/reference/av_from_text.html b/reference/av_from_text.html
index cdb5e2097..e7228e2e1 100644
--- a/reference/av_from_text.html
+++ b/reference/av_from_text.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/av_property.html b/reference/av_property.html
index 3d25e4732..b23857e9f 100644
--- a/reference/av_property.html
+++ b/reference/av_property.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/availability.html b/reference/availability.html
index d0f9ae550..f68bb773b 100644
--- a/reference/availability.html
+++ b/reference/availability.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/bug_drug_combinations.html b/reference/bug_drug_combinations.html
index d3d9683b0..ff9aee740 100644
--- a/reference/bug_drug_combinations.html
+++ b/reference/bug_drug_combinations.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/clinical_breakpoints.html b/reference/clinical_breakpoints.html
index 3301d0304..40bb633dd 100644
--- a/reference/clinical_breakpoints.html
+++ b/reference/clinical_breakpoints.html
@@ -21,7 +21,7 @@ Use as.sir() to transform MICs or disks measurements to SIR values."> AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/count.html b/reference/count.html
index f7c7120e4..b0b51741c 100644
--- a/reference/count.html
+++ b/reference/count.html
@@ -9,7 +9,7 @@ count_resistant() should be used to count resistant isolates, count_susceptible(
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/custom_eucast_rules.html b/reference/custom_eucast_rules.html
index 4dcc5f8b0..a6577eaee 100644
--- a/reference/custom_eucast_rules.html
+++ b/reference/custom_eucast_rules.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/dosage.html b/reference/dosage.html
index d680fcd40..18e7205b4 100644
--- a/reference/dosage.html
+++ b/reference/dosage.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/eucast_rules.html b/reference/eucast_rules.html
index b7d7608f9..002b6a3af 100644
--- a/reference/eucast_rules.html
+++ b/reference/eucast_rules.html
@@ -9,7 +9,7 @@ To improve the interpretation of the antibiogram before EUCAST rules are applied
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/example_isolates.html b/reference/example_isolates.html
index 38f49bbc3..61561b239 100644
--- a/reference/example_isolates.html
+++ b/reference/example_isolates.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/example_isolates_unclean.html b/reference/example_isolates_unclean.html
index fc0be01b5..8aea89478 100644
--- a/reference/example_isolates_unclean.html
+++ b/reference/example_isolates_unclean.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/export_ncbi_biosample.html b/reference/export_ncbi_biosample.html
index a74325a04..29b492c2f 100644
--- a/reference/export_ncbi_biosample.html
+++ b/reference/export_ncbi_biosample.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/first_isolate.html b/reference/first_isolate.html
index 6be70af13..95965941a 100644
--- a/reference/first_isolate.html
+++ b/reference/first_isolate.html
@@ -9,7 +9,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/g.test.html b/reference/g.test.html
index 7cd09f704..5d7a53eec 100644
--- a/reference/g.test.html
+++ b/reference/g.test.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/get_episode.html b/reference/get_episode.html
index 13ef6680f..0adf03f8e 100644
--- a/reference/get_episode.html
+++ b/reference/get_episode.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/ggplot_pca.html b/reference/ggplot_pca.html
index e57c385be..4d1f72f94 100644
--- a/reference/ggplot_pca.html
+++ b/reference/ggplot_pca.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/ggplot_sir.html b/reference/ggplot_sir.html
index 7e5748f0e..eb9a65b54 100644
--- a/reference/ggplot_sir.html
+++ b/reference/ggplot_sir.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/guess_ab_col.html b/reference/guess_ab_col.html
index 7d486bade..8c87828c4 100644
--- a/reference/guess_ab_col.html
+++ b/reference/guess_ab_col.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/index.html b/reference/index.html
index 810c4db24..dd4257071 100644
--- a/reference/index.html
+++ b/reference/index.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/intrinsic_resistant.html b/reference/intrinsic_resistant.html
index dbe972dc4..5a8467444 100644
--- a/reference/intrinsic_resistant.html
+++ b/reference/intrinsic_resistant.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/italicise_taxonomy.html b/reference/italicise_taxonomy.html
index 0d825f8d5..d4f6aa59a 100644
--- a/reference/italicise_taxonomy.html
+++ b/reference/italicise_taxonomy.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/join.html b/reference/join.html
index 3e3be7b1d..51aebe167 100644
--- a/reference/join.html
+++ b/reference/join.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/key_antimicrobials.html b/reference/key_antimicrobials.html
index be4a9ca16..ef807996b 100644
--- a/reference/key_antimicrobials.html
+++ b/reference/key_antimicrobials.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/kurtosis.html b/reference/kurtosis.html
index 12ff7be0e..2123fa326 100644
--- a/reference/kurtosis.html
+++ b/reference/kurtosis.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/like.html b/reference/like.html
index b141002d6..806374638 100644
--- a/reference/like.html
+++ b/reference/like.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/mdro.html b/reference/mdro.html
index 9a8254a4d..a44e4a856 100644
--- a/reference/mdro.html
+++ b/reference/mdro.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/mean_amr_distance.html b/reference/mean_amr_distance.html
index fecae9d21..51c8ae705 100644
--- a/reference/mean_amr_distance.html
+++ b/reference/mean_amr_distance.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/microorganisms.codes.html b/reference/microorganisms.codes.html
index cdfcc27f7..099dd917d 100644
--- a/reference/microorganisms.codes.html
+++ b/reference/microorganisms.codes.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/microorganisms.groups.html b/reference/microorganisms.groups.html
index b51abda19..a458a6609 100644
--- a/reference/microorganisms.groups.html
+++ b/reference/microorganisms.groups.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/microorganisms.html b/reference/microorganisms.html
index 94142e539..f696eb240 100644
--- a/reference/microorganisms.html
+++ b/reference/microorganisms.html
@@ -9,7 +9,7 @@ This data set is carefully crafted, yet made 100% reproducible from public and a
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/mo_matching_score.html b/reference/mo_matching_score.html
index 889a2b5d5..cb9dd848b 100644
--- a/reference/mo_matching_score.html
+++ b/reference/mo_matching_score.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/mo_property.html b/reference/mo_property.html
index c9b59b505..0d786498c 100644
--- a/reference/mo_property.html
+++ b/reference/mo_property.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/mo_source.html b/reference/mo_source.html
index 091f81743..f7f0b8a42 100644
--- a/reference/mo_source.html
+++ b/reference/mo_source.html
@@ -9,7 +9,7 @@ This is the fastest way to have your organisation (or analysis) specific codes p
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/pca.html b/reference/pca.html
index 3bddad8c4..741da4060 100644
--- a/reference/pca.html
+++ b/reference/pca.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/plot-10.png b/reference/plot-10.png
index 5d8578536..b47e1b208 100644
Binary files a/reference/plot-10.png and b/reference/plot-10.png differ
diff --git a/reference/plot-11.png b/reference/plot-11.png
index 8251241ad..d2070ec20 100644
Binary files a/reference/plot-11.png and b/reference/plot-11.png differ
diff --git a/reference/plot-12.png b/reference/plot-12.png
index b47e1b208..9bf911bf8 100644
Binary files a/reference/plot-12.png and b/reference/plot-12.png differ
diff --git a/reference/plot-13.png b/reference/plot-13.png
index d2070ec20..72f8665c3 100644
Binary files a/reference/plot-13.png and b/reference/plot-13.png differ
diff --git a/reference/plot-14.png b/reference/plot-14.png
index 9bf911bf8..fb72ef631 100644
Binary files a/reference/plot-14.png and b/reference/plot-14.png differ
diff --git a/reference/plot-15.png b/reference/plot-15.png
index 72f8665c3..d0cc8ea45 100644
Binary files a/reference/plot-15.png and b/reference/plot-15.png differ
diff --git a/reference/plot-16.png b/reference/plot-16.png
deleted file mode 100644
index ea73fd846..000000000
Binary files a/reference/plot-16.png and /dev/null differ
diff --git a/reference/plot-17.png b/reference/plot-17.png
deleted file mode 100644
index fb72ef631..000000000
Binary files a/reference/plot-17.png and /dev/null differ
diff --git a/reference/plot-18.png b/reference/plot-18.png
deleted file mode 100644
index d79f12c82..000000000
Binary files a/reference/plot-18.png and /dev/null differ
diff --git a/reference/plot-19.png b/reference/plot-19.png
deleted file mode 100644
index 51580a9bf..000000000
Binary files a/reference/plot-19.png and /dev/null differ
diff --git a/reference/plot-2.png b/reference/plot-2.png
index 98e3360c3..1611fd3e5 100644
Binary files a/reference/plot-2.png and b/reference/plot-2.png differ
diff --git a/reference/plot-20.png b/reference/plot-20.png
deleted file mode 100644
index d0cc8ea45..000000000
Binary files a/reference/plot-20.png and /dev/null differ
diff --git a/reference/plot-3.png b/reference/plot-3.png
index e2f78ab13..17e45a612 100644
Binary files a/reference/plot-3.png and b/reference/plot-3.png differ
diff --git a/reference/plot-4.png b/reference/plot-4.png
index 1611fd3e5..26d26629e 100644
Binary files a/reference/plot-4.png and b/reference/plot-4.png differ
diff --git a/reference/plot-5.png b/reference/plot-5.png
index 17e45a612..8dec4586d 100644
Binary files a/reference/plot-5.png and b/reference/plot-5.png differ
diff --git a/reference/plot-6.png b/reference/plot-6.png
index 26d26629e..ed646966b 100644
Binary files a/reference/plot-6.png and b/reference/plot-6.png differ
diff --git a/reference/plot-7.png b/reference/plot-7.png
index 8dec4586d..cece3581a 100644
Binary files a/reference/plot-7.png and b/reference/plot-7.png differ
diff --git a/reference/plot-8.png b/reference/plot-8.png
index ed646966b..5d8578536 100644
Binary files a/reference/plot-8.png and b/reference/plot-8.png differ
diff --git a/reference/plot-9.png b/reference/plot-9.png
index cece3581a..8251241ad 100644
Binary files a/reference/plot-9.png and b/reference/plot-9.png differ
diff --git a/reference/plot.html b/reference/plot.html
index 5a3f4a6f2..b716ff919 100644
--- a/reference/plot.html
+++ b/reference/plot.html
@@ -9,7 +9,7 @@ Especially the scale_*_mic() functions are relevant wrappers to plot MIC values
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
@@ -308,7 +308,7 @@ Especially the scale_*_mic() functions are relevant wrappers to plot MIC values
# when providing the microorganism and antibiotic, colours will show interpretations:
autoplot ( some_mic_values , mo = "Escherichia coli" , ab = "cipro" )
}
-
+#> Error in rbindlist(l, use.names, fill, idcol, ignore.attr): Class attribute on column 4 of item 2 does not match with column 4 of item 1. You can deactivate this safety-check by using ignore.attr=TRUE
if ( require ( "ggplot2" ) ) {
# support for 20 languages, various guidelines, and many options
autoplot ( some_disk_values ,
@@ -317,7 +317,7 @@ Especially the scale_*_mic() functions are relevant wrappers to plot MIC values
title = "Disk diffusion from the North"
)
}
-
+#> Error in rbindlist(l, use.names, fill, idcol, ignore.attr): Class attribute on column 4 of item 2 does not match with column 4 of item 1. You can deactivate this safety-check by using ignore.attr=TRUE
# Plotting using scale_x_mic() -----------------------------------------
@@ -333,31 +333,31 @@ Especially the scale_*_mic() functions are relevant wrappers to plot MIC values
mic_plot +
labs ( title = "without scale_x_mic()" )
}
-
+
if ( require ( "ggplot2" ) ) {
mic_plot +
scale_x_mic ( ) +
labs ( title = "with scale_x_mic()" )
}
-
+
if ( require ( "ggplot2" ) ) {
mic_plot +
scale_x_mic ( keep_operators = "all" ) +
labs ( title = "with scale_x_mic() keeping all operators" )
}
-
+
if ( require ( "ggplot2" ) ) {
mic_plot +
scale_x_mic ( mic_range = c ( 1 , 16 ) ) +
labs ( title = "with scale_x_mic() using a manual 'within' range" )
}
-
+
if ( require ( "ggplot2" ) ) {
mic_plot +
scale_x_mic ( mic_range = c ( 0.032 , 256 ) ) +
labs ( title = "with scale_x_mic() using a manual 'outside' range" )
}
-
+
# Plotting using scale_y_mic() -----------------------------------------
@@ -375,7 +375,7 @@ Especially the scale_*_mic() functions are relevant wrappers to plot MIC values
geom_violin ( linetype = 2 , colour = "grey" , fill = NA ) +
scale_y_mic ( )
}
-
+
if ( require ( "ggplot2" ) ) {
ggplot (
data.frame (
@@ -388,7 +388,7 @@ Especially the scale_*_mic() functions are relevant wrappers to plot MIC values
geom_violin ( linetype = 2 , colour = "grey" , fill = NA ) +
scale_y_mic ( mic_range = c ( NA , 0.25 ) )
}
-
+
# Plotting using scale_x_sir() -----------------------------------------
@@ -403,7 +403,7 @@ Especially the scale_*_mic() functions are relevant wrappers to plot MIC values
geom_col ( ) +
scale_x_sir ( )
}
-
+
# Plotting using scale_y_mic() and scale_colour_sir() ------------------
@@ -432,14 +432,14 @@ Especially the scale_*_mic() functions are relevant wrappers to plot MIC values
#> Interpreting MIC values: ' cipro ' (CIP, ciprofloxacin), EUCAST 2025 ...
#> NOTE
#> • Multiple breakpoints available for ciprofloxacin (CIP) in Escherichia coli - assuming body site 'Non-meningitis'.
-
+
if ( require ( "ggplot2" ) ) {
# and now with our MIC and SIR scale functions:
plain +
scale_y_mic ( ) +
scale_colour_sir ( )
}
-
+
if ( require ( "ggplot2" ) ) {
plain +
scale_y_mic ( mic_range = c ( 0.005 , 32 ) , name = "Our MICs!" ) +
@@ -448,26 +448,26 @@ Especially the scale_*_mic() functions are relevant wrappers to plot MIC values
name = "Support in 20 languages"
)
}
-
+
# }
# Plotting using base R's plot() ---------------------------------------
plot ( some_mic_values )
-
+
# when providing the microorganism and antibiotic, colours will show interpretations:
plot ( some_mic_values , mo = "S. aureus" , ab = "ampicillin" )
-
+#> Error in rbindlist(l, use.names, fill, idcol, ignore.attr): Class attribute on column 4 of item 2 does not match with column 4 of item 1. You can deactivate this safety-check by using ignore.attr=TRUE
plot ( some_disk_values )
-
+
plot ( some_disk_values , mo = "Escherichia coli" , ab = "cipro" )
-
+#> Error in rbindlist(l, use.names, fill, idcol, ignore.attr): Class attribute on column 4 of item 2 does not match with column 4 of item 1. You can deactivate this safety-check by using ignore.attr=TRUE
plot ( some_disk_values , mo = "Escherichia coli" , ab = "cipro" , language = "nl" )
-
+#> Error in rbindlist(l, use.names, fill, idcol, ignore.attr): Class attribute on column 4 of item 2 does not match with column 4 of item 1. You can deactivate this safety-check by using ignore.attr=TRUE
plot ( some_sir_values )
-
+
On this page
diff --git a/reference/proportion.html b/reference/proportion.html
index 94b8e24d9..5e3c9a6e0 100644
--- a/reference/proportion.html
+++ b/reference/proportion.html
@@ -9,7 +9,7 @@ resistance() should be used to calculate resistance, susceptibility() should be
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/random.html b/reference/random.html
index d14e8b574..933aecc06 100644
--- a/reference/random.html
+++ b/reference/random.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/resistance_predict.html b/reference/resistance_predict.html
index 7a0bb229a..25acf2e5d 100644
--- a/reference/resistance_predict.html
+++ b/reference/resistance_predict.html
@@ -9,7 +9,7 @@ NOTE: These functions are deprecated and will be removed in a future version. Us
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/skewness.html b/reference/skewness.html
index ac512a541..1fb744f71 100644
--- a/reference/skewness.html
+++ b/reference/skewness.html
@@ -9,7 +9,7 @@ When negative ('left-skewed'): the left tail is longer; the mass of the distribu
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
diff --git a/reference/top_n_microorganisms.html b/reference/top_n_microorganisms.html
index cf502f6b4..003f0e86f 100644
--- a/reference/top_n_microorganisms.html
+++ b/reference/top_n_microorganisms.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9252
+ 2.1.1.9253
@@ -55,7 +55,7 @@
Usage
-
top_n_microorganisms ( x , n , property = "fullname" , n_for_each = NULL ,
+ top_n_microorganisms ( x , n , property = "species" , n_for_each = NULL ,
col_mo = NULL , ... )
@@ -72,7 +72,7 @@
property
-
A character string indicating the microorganism property to use for filtering. Must be one of the column names of the microorganisms data set: "mo", "fullname", "status", "kingdom", "phylum", "class", "order", "family", "genus", "species", "subspecies", "rank", "ref", "oxygen_tolerance", "source", "lpsn", "lpsn_parent", "lpsn_renamed_to", "mycobank", "mycobank_parent", "mycobank_renamed_to", "gbif", "gbif_parent", "gbif_renamed_to", "prevalence", or "snomed". If NULL
, the raw values from col_mo
will be used without transformation.
+
A character string indicating the microorganism property to use for filtering. Must be one of the column names of the microorganisms data set: "mo", "fullname", "status", "kingdom", "phylum", "class", "order", "family", "genus", "species", "subspecies", "rank", "ref", "oxygen_tolerance", "source", "lpsn", "lpsn_parent", "lpsn_renamed_to", "mycobank", "mycobank_parent", "mycobank_renamed_to", "gbif", "gbif_parent", "gbif_renamed_to", "prevalence", or "snomed". If NULL
, the raw values from col_mo
will be used without transformation. When using "species"
(default) or "subpecies"
, the genus will be added to make sure each (sub)species still belongs to the right genus.
n_for_each
diff --git a/reference/translate.html b/reference/translate.html
index 64ccca7ba..e64da9ed4 100644
--- a/reference/translate.html
+++ b/reference/translate.html
@@ -7,7 +7,7 @@
AMR (for R)
-
2.1.1.9252
+
2.1.1.9253
diff --git a/search.json b/search.json
index 62411d199..06aff0ec0 100644
--- a/search.json
+++ b/search.json
@@ -1 +1 @@
-[{"path":"https://amr-for-r.org/articles/AMR.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"How to conduct AMR data analysis","text":"Conducting AMR data analysis unfortunately requires -depth knowledge different scientific fields, makes hard right. least, requires: Good questions (always start !) reliable data thorough understanding (clinical) epidemiology, understand clinical epidemiological relevance possible bias results thorough understanding (clinical) microbiology/infectious diseases, understand microorganisms causal infections implications pharmaceutical treatment, well understanding intrinsic acquired microbial resistance Experience data analysis microbiological tests results, understand determination limitations MIC values interpretations SIR values Availability biological taxonomy microorganisms probably normalisation factors pharmaceuticals, defined daily doses (DDD) Available (inter-)national guidelines, profound methods apply course, instantly provide knowledge experience. AMR package, aimed providing (1) tools simplify antimicrobial resistance data cleaning, transformation analysis, (2) methods easily incorporate international guidelines (3) scientifically reliable reference data, including requirements mentioned . AMR package enables standardised reproducible AMR data analysis, application evidence-based rules, determination first isolates, translation various codes microorganisms antimicrobial agents, determination (multi-drug) resistant microorganisms, calculation antimicrobial resistance, prevalence future trends.","code":""},{"path":"https://amr-for-r.org/articles/AMR.html","id":"preparation","dir":"Articles","previous_headings":"","what":"Preparation","title":"How to conduct AMR data analysis","text":"tutorial, create fake demonstration data work . can skip Cleaning data already data ready. start analysis, try make structure data generally look like :","code":""},{"path":"https://amr-for-r.org/articles/AMR.html","id":"needed-r-packages","dir":"Articles","previous_headings":"Preparation","what":"Needed R packages","title":"How to conduct AMR data analysis","text":"many uses R, need additional packages AMR data analysis. package works closely together tidyverse packages dplyr ggplot2 RStudio. tidyverse tremendously improves way conduct data science - allows natural way writing syntaxes creating beautiful plots R. also use cleaner package, can used cleaning data creating frequency tables. AMR package contains data set example_isolates_unclean, might look data users extracted laboratory systems: AMR data analysis, like microorganism column contain valid, --date taxonomy, antibiotic columns cleaned SIR values well.","code":"library(dplyr) library(ggplot2) library(AMR) # (if not yet installed, install with:) # install.packages(c(\"dplyr\", \"ggplot2\", \"AMR\")) example_isolates_unclean #> # A tibble: 3,000 × 8 #> patient_id hospital date bacteria AMX AMC CIP GEN #> #> 1 J3 A 2012-11-21 E. coli R I S S #> 2 R7 A 2018-04-03 K. pneumoniae R I S S #> 3 P3 A 2014-09-19 E. coli R S S S #> 4 P10 A 2015-12-10 E. coli S I S S #> 5 B7 A 2015-03-02 E. coli S S S S #> 6 W3 A 2018-03-31 S. aureus R S R S #> 7 J8 A 2016-06-14 E. coli R S S S #> 8 M3 A 2015-10-25 E. coli R S S S #> 9 J3 A 2019-06-19 E. coli S S S S #> 10 G6 A 2015-04-27 S. aureus S S S S #> # ℹ 2,990 more rows # we will use 'our_data' as the data set name for this tutorial our_data <- example_isolates_unclean"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"taxonomy-of-microorganisms","dir":"Articles","previous_headings":"Preparation","what":"Taxonomy of microorganisms","title":"How to conduct AMR data analysis","text":".mo(), users can transform arbitrary microorganism names codes current taxonomy. AMR package contains --date taxonomic data. specific, currently included data retrieved 24 Jun 2024. codes AMR packages come .mo() short, still human readable. importantly, .mo() supports kinds input: first character codes denote taxonomic kingdom, Bacteria (B), Fungi (F), Protozoa (P). AMR package also contain functions directly retrieve taxonomic properties, name, genus, species, family, order, even Gram-stain. start mo_ use .mo() internally, still arbitrary user input can used: Now can thus clean data: Apparently, uncertainty translation taxonomic codes. Let’s check : ’s good.","code":"as.mo(\"Klebsiella pneumoniae\") #> Class 'mo' #> [1] B_KLBSL_PNMN as.mo(\"K. pneumoniae\") #> Class 'mo' #> [1] B_KLBSL_PNMN as.mo(\"KLEPNE\") #> Class 'mo' #> [1] B_KLBSL_PNMN as.mo(\"KLPN\") #> Class 'mo' #> [1] B_KLBSL_PNMN mo_family(\"K. pneumoniae\") #> [1] \"Enterobacteriaceae\" mo_genus(\"K. pneumoniae\") #> [1] \"Klebsiella\" mo_species(\"K. pneumoniae\") #> [1] \"pneumoniae\" mo_gramstain(\"Klebsiella pneumoniae\") #> [1] \"Gram-negative\" mo_ref(\"K. pneumoniae\") #> [1] \"Trevisan, 1887\" mo_snomed(\"K. pneumoniae\") #> [[1]] #> [1] \"1098101000112102\" \"446870005\" \"1098201000112108\" \"409801009\" #> [5] \"56415008\" \"714315002\" \"713926009\" our_data$bacteria <- as.mo(our_data$bacteria, info = TRUE) #> ℹ Retrieved values from the microorganisms.codes data set for \"ESCCOL\", #> \"KLEPNE\", \"STAAUR\", and \"STRPNE\". #> ℹ Microorganism translation was uncertain for four microorganisms. Run #> mo_uncertainties() to review these uncertainties, or use #> add_custom_microorganisms() to add custom entries. mo_uncertainties() #> Matching scores are based on the resemblance between the input and the full #> taxonomic name, and the pathogenicity in humans. See ?mo_matching_score. #> Colour keys: 0.000-0.549 0.550-0.649 0.650-0.749 0.750-1.000 #> #> -------------------------------------------------------------------------------- #> \"E. coli\" -> Escherichia coli (B_ESCHR_COLI, 0.688) #> Also matched: Enterococcus crotali (0.650), Escherichia coli coli #> (0.643), Escherichia coli expressing (0.611), Enterobacter cowanii #> (0.600), Enterococcus columbae (0.595), Enterococcus camelliae (0.591), #> Enterococcus casseliflavus (0.577), Enterobacter cloacae cloacae #> (0.571), Enterobacter cloacae complex (0.571), and Enterobacter cloacae #> dissolvens (0.565) #> -------------------------------------------------------------------------------- #> \"K. pneumoniae\" -> Klebsiella pneumoniae (B_KLBSL_PNMN, 0.786) #> Also matched: Klebsiella pneumoniae complex (0.707), Klebsiella #> pneumoniae ozaenae (0.707), Klebsiella pneumoniae pneumoniae (0.688), #> Klebsiella pneumoniae rhinoscleromatis (0.658), Klebsiella pasteurii #> (0.500), Klebsiella planticola (0.500), Kingella potus (0.400), #> Kluyveromyces pseudotropicale (0.386), Kluyveromyces pseudotropicalis #> (0.363), and Kosakonia pseudosacchari (0.361) #> -------------------------------------------------------------------------------- #> \"S. aureus\" -> Staphylococcus aureus (B_STPHY_AURS, 0.690) #> Also matched: Staphylococcus aureus aureus (0.643), Staphylococcus #> argenteus (0.625), Staphylococcus aureus anaerobius (0.625), #> Staphylococcus auricularis (0.615), Salmonella Aurelianis (0.595), #> Salmonella Aarhus (0.588), Salmonella Amounderness (0.587), #> Staphylococcus argensis (0.587), Streptococcus australis (0.587), and #> Salmonella choleraesuis arizonae (0.562) #> -------------------------------------------------------------------------------- #> \"S. pneumoniae\" -> Streptococcus pneumoniae (B_STRPT_PNMN, 0.750) #> Also matched: Streptococcus pseudopneumoniae (0.700), Streptococcus #> phocae salmonis (0.552), Serratia proteamaculans quinovora (0.545), #> Streptococcus pseudoporcinus (0.536), Staphylococcus piscifermentans #> (0.533), Staphylococcus pseudintermedius (0.532), Serratia #> proteamaculans proteamaculans (0.526), Streptococcus gallolyticus #> pasteurianus (0.526), Salmonella Portanigra (0.524), and Streptococcus #> periodonticum (0.519) #> #> Only the first 10 other matches of each record are shown. Run #> print(mo_uncertainties(), n = ...) to view more entries, or save #> mo_uncertainties() to an object."},{"path":"https://amr-for-r.org/articles/AMR.html","id":"antibiotic-results","dir":"Articles","previous_headings":"Preparation","what":"Antibiotic results","title":"How to conduct AMR data analysis","text":"column antibiotic test results must also cleaned. AMR package comes three new data types work test results: mic minimal inhibitory concentrations (MIC), disk disk diffusion diameters, sir SIR data interpreted already. package can also determine SIR values based MIC disk diffusion values, read .sir() page. now, just clean SIR columns data using dplyr: basically cleaning, time start data inclusion.","code":"# method 1, be explicit about the columns: our_data <- our_data %>% mutate_at(vars(AMX:GEN), as.sir) # method 2, let the AMR package determine the eligible columns our_data <- our_data %>% mutate_if(is_sir_eligible, as.sir) # result: our_data #> # A tibble: 3,000 × 8 #> patient_id hospital date bacteria AMX AMC CIP GEN #> #> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S #> 2 R7 A 2018-04-03 B_KLBSL_PNMN R I S S #> 3 P3 A 2014-09-19 B_ESCHR_COLI R S S S #> 4 P10 A 2015-12-10 B_ESCHR_COLI S I S S #> 5 B7 A 2015-03-02 B_ESCHR_COLI S S S S #> 6 W3 A 2018-03-31 B_STPHY_AURS R S R S #> 7 J8 A 2016-06-14 B_ESCHR_COLI R S S S #> 8 M3 A 2015-10-25 B_ESCHR_COLI R S S S #> 9 J3 A 2019-06-19 B_ESCHR_COLI S S S S #> 10 G6 A 2015-04-27 B_STPHY_AURS S S S S #> # ℹ 2,990 more rows"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"first-isolates","dir":"Articles","previous_headings":"Preparation","what":"First isolates","title":"How to conduct AMR data analysis","text":"need know isolates can actually use analysis without repetition bias. conduct analysis antimicrobial resistance, must include first isolate every patient per episode (Hindler et al., Clin Infect Dis. 2007). , easily get overestimate underestimate resistance antibiotic. Imagine patient admitted MRSA found 5 different blood cultures following weeks (yes, countries like Netherlands blood drawing policies). resistance percentage oxacillin isolates overestimated, included MRSA . clearly selection bias. Clinical Laboratory Standards Institute (CLSI) appoints follows: (…) preparing cumulative antibiogram guide clinical decisions empirical antimicrobial therapy initial infections, first isolate given species per patient, per analysis period (eg, one year) included, irrespective body site, antimicrobial susceptibility profile, phenotypical characteristics (eg, biotype). first isolate easily identified, cumulative antimicrobial susceptibility test data prepared using first isolate generally comparable cumulative antimicrobial susceptibility test data calculated methods, providing duplicate isolates excluded. M39-A4 Analysis Presentation Cumulative Antimicrobial Susceptibility Test Data, 4th Edition. CLSI, 2014. Chapter 6.4 AMR package includes methodology first_isolate() function able apply four different methods defined Hindler et al. 2007: phenotype-based, episode-based, patient-based, isolate-based. right method depends goals analysis, default phenotype-based method case method properly correct duplicate isolates. Read methods first_isolate() page. outcome function can easily added data: 91% suitable resistance analysis! can now filter filter() function, also dplyr package: future use, two syntaxes can shortened: end 2 724 isolates analysis. Now data looks like: Time analysis.","code":"our_data <- our_data %>% mutate(first = first_isolate(info = TRUE)) #> ℹ Determining first isolates using an episode length of 365 days #> ℹ Using column 'bacteria' as input for col_mo. #> ℹ Using column 'date' as input for col_date. #> ℹ Using column 'patient_id' as input for col_patient_id. #> ℹ Basing inclusion on all antimicrobial results, using a points threshold #> of 2 #> => Found 2,724 'phenotype-based' first isolates (90.8% of total where a #> microbial ID was available) our_data_1st <- our_data %>% filter(first == TRUE) our_data_1st <- our_data %>% filter_first_isolate() our_data_1st #> # A tibble: 2,724 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S TRUE #> 2 R7 A 2018-04-03 B_KLBSL_PNMN R I S S TRUE #> 3 P3 A 2014-09-19 B_ESCHR_COLI R S S S TRUE #> 4 P10 A 2015-12-10 B_ESCHR_COLI S I S S TRUE #> 5 B7 A 2015-03-02 B_ESCHR_COLI S S S S TRUE #> 6 W3 A 2018-03-31 B_STPHY_AURS R S R S TRUE #> 7 M3 A 2015-10-25 B_ESCHR_COLI R S S S TRUE #> 8 J3 A 2019-06-19 B_ESCHR_COLI S S S S TRUE #> 9 G6 A 2015-04-27 B_STPHY_AURS S S S S TRUE #> 10 P4 A 2011-06-21 B_ESCHR_COLI S S S S TRUE #> # ℹ 2,714 more rows"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"analysing-the-data","dir":"Articles","previous_headings":"","what":"Analysing the data","title":"How to conduct AMR data analysis","text":"base R summary() function gives good first impression, comes support new mo sir classes now data set:","code":"summary(our_data_1st) #> patient_id hospital date #> Length:2724 Length:2724 Min. :2011-01-01 #> Class :character Class :character 1st Qu.:2013-04-07 #> Mode :character Mode :character Median :2015-06-03 #> Mean :2015-06-09 #> 3rd Qu.:2017-08-11 #> Max. :2019-12-27 #> bacteria AMX AMC #> Class :mo Class:sir Class:sir #> :0 %S :41.6% (n=1133) %S :52.6% (n=1432) #> Unique:4 %SDD : 0.0% (n=0) %SDD : 0.0% (n=0) #> #1 :B_ESCHR_COLI %I :16.4% (n=446) %I :12.2% (n=333) #> #2 :B_STPHY_AURS %R :42.0% (n=1145) %R :35.2% (n=959) #> #3 :B_STRPT_PNMN %NI : 0.0% (n=0) %NI : 0.0% (n=0) #> CIP GEN first #> Class:sir Class:sir Mode:logical #> %S :52.5% (n=1431) %S :61.0% (n=1661) TRUE:2724 #> %SDD : 0.0% (n=0) %SDD : 0.0% (n=0) #> %I : 6.5% (n=176) %I : 3.0% (n=82) #> %R :41.0% (n=1117) %R :36.0% (n=981) #> %NI : 0.0% (n=0) %NI : 0.0% (n=0) glimpse(our_data_1st) #> Rows: 2,724 #> Columns: 9 #> $ patient_id \"J3\", \"R7\", \"P3\", \"P10\", \"B7\", \"W3\", \"M3\", \"J3\", \"G6\", \"P4\"… #> $ hospital \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\",… #> $ date 2012-11-21, 2018-04-03, 2014-09-19, 2015-12-10, 2015-03-02… #> $ bacteria \"B_ESCHR_COLI\", \"B_KLBSL_PNMN\", \"B_ESCHR_COLI\", \"B_ESCHR_COL… #> $ AMX R, R, R, S, S, R, R, S, S, S, S, R, S, S, R, R, R, R, S, R,… #> $ AMC I, I, S, I, S, S, S, S, S, S, S, S, S, S, S, S, S, R, S, S,… #> $ CIP S, S, S, S, S, R, S, S, S, S, S, S, S, S, S, S, S, S, S, S,… #> $ GEN S, S, S, S, S, S, S, S, S, S, S, R, S, S, S, S, S, S, S, S,… #> $ first TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,… # number of unique values per column: sapply(our_data_1st, n_distinct) #> patient_id hospital date bacteria AMX AMC CIP #> 260 3 1854 4 3 3 3 #> GEN first #> 3 1"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"availability-of-species","dir":"Articles","previous_headings":"Analysing the data","what":"Availability of species","title":"How to conduct AMR data analysis","text":"just get idea species distributed, create frequency table count() based name microorganisms:","code":"our_data %>% count(mo_name(bacteria), sort = TRUE) #> # A tibble: 4 × 2 #> `mo_name(bacteria)` n #> #> 1 Escherichia coli 1518 #> 2 Staphylococcus aureus 730 #> 3 Streptococcus pneumoniae 426 #> 4 Klebsiella pneumoniae 326 our_data_1st %>% count(mo_name(bacteria), sort = TRUE) #> # A tibble: 4 × 2 #> `mo_name(bacteria)` n #> #> 1 Escherichia coli 1321 #> 2 Staphylococcus aureus 682 #> 3 Streptococcus pneumoniae 402 #> 4 Klebsiella pneumoniae 319"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"select-and-filter-with-antibiotic-selectors","dir":"Articles","previous_headings":"Analysing the data","what":"Select and filter with antibiotic selectors","title":"How to conduct AMR data analysis","text":"Using -called antibiotic class selectors, can select filter columns based antibiotic class antibiotic results :","code":"our_data_1st %>% select(date, aminoglycosides()) #> ℹ For aminoglycosides() using column 'GEN' (gentamicin) #> # A tibble: 2,724 × 2 #> date GEN #> #> 1 2012-11-21 S #> 2 2018-04-03 S #> 3 2014-09-19 S #> 4 2015-12-10 S #> 5 2015-03-02 S #> 6 2018-03-31 S #> 7 2015-10-25 S #> 8 2019-06-19 S #> 9 2015-04-27 S #> 10 2011-06-21 S #> # ℹ 2,714 more rows our_data_1st %>% select(bacteria, betalactams()) #> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC' #> (amoxicillin/clavulanic acid) #> # A tibble: 2,724 × 3 #> bacteria AMX AMC #> #> 1 B_ESCHR_COLI R I #> 2 B_KLBSL_PNMN R I #> 3 B_ESCHR_COLI R S #> 4 B_ESCHR_COLI S I #> 5 B_ESCHR_COLI S S #> 6 B_STPHY_AURS R S #> 7 B_ESCHR_COLI R S #> 8 B_ESCHR_COLI S S #> 9 B_STPHY_AURS S S #> 10 B_ESCHR_COLI S S #> # ℹ 2,714 more rows our_data_1st %>% select(bacteria, where(is.sir)) #> # A tibble: 2,724 × 5 #> bacteria AMX AMC CIP GEN #> #> 1 B_ESCHR_COLI R I S S #> 2 B_KLBSL_PNMN R I S S #> 3 B_ESCHR_COLI R S S S #> 4 B_ESCHR_COLI S I S S #> 5 B_ESCHR_COLI S S S S #> 6 B_STPHY_AURS R S R S #> 7 B_ESCHR_COLI R S S S #> 8 B_ESCHR_COLI S S S S #> 9 B_STPHY_AURS S S S S #> 10 B_ESCHR_COLI S S S S #> # ℹ 2,714 more rows # filtering using AB selectors is also possible: our_data_1st %>% filter(any(aminoglycosides() == \"R\")) #> ℹ For aminoglycosides() using column 'GEN' (gentamicin) #> # A tibble: 981 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 J5 A 2017-12-25 B_STRPT_PNMN R S S R TRUE #> 2 X1 A 2017-07-04 B_STPHY_AURS R S S R TRUE #> 3 B3 A 2016-07-24 B_ESCHR_COLI S S S R TRUE #> 4 V7 A 2012-04-03 B_ESCHR_COLI S S S R TRUE #> 5 C9 A 2017-03-23 B_ESCHR_COLI S S S R TRUE #> 6 R1 A 2018-06-10 B_STPHY_AURS S S S R TRUE #> 7 S2 A 2013-07-19 B_STRPT_PNMN S S S R TRUE #> 8 P5 A 2019-03-09 B_STPHY_AURS S S S R TRUE #> 9 Q8 A 2019-08-10 B_STPHY_AURS S S S R TRUE #> 10 K5 A 2013-03-15 B_STRPT_PNMN S S S R TRUE #> # ℹ 971 more rows our_data_1st %>% filter(all(betalactams() == \"R\")) #> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC' #> (amoxicillin/clavulanic acid) #> # A tibble: 462 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE #> 2 R10 A 2013-12-20 B_STPHY_AURS R R S S TRUE #> 3 R7 A 2015-10-25 B_STPHY_AURS R R S S TRUE #> 4 R8 A 2019-10-25 B_STPHY_AURS R R S S TRUE #> 5 B6 A 2016-11-20 B_ESCHR_COLI R R R R TRUE #> 6 I7 A 2015-08-19 B_ESCHR_COLI R R S S TRUE #> 7 N3 A 2014-12-29 B_STRPT_PNMN R R R S TRUE #> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE #> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE #> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE #> # ℹ 452 more rows # even works in base R (since R 3.0): our_data_1st[all(betalactams() == \"R\"), ] #> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC' #> (amoxicillin/clavulanic acid) #> # A tibble: 462 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE #> 2 R10 A 2013-12-20 B_STPHY_AURS R R S S TRUE #> 3 R7 A 2015-10-25 B_STPHY_AURS R R S S TRUE #> 4 R8 A 2019-10-25 B_STPHY_AURS R R S S TRUE #> 5 B6 A 2016-11-20 B_ESCHR_COLI R R R R TRUE #> 6 I7 A 2015-08-19 B_ESCHR_COLI R R S S TRUE #> 7 N3 A 2014-12-29 B_STRPT_PNMN R R R S TRUE #> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE #> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE #> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE #> # ℹ 452 more rows"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"generate-antibiograms","dir":"Articles","previous_headings":"Analysing the data","what":"Generate antibiograms","title":"How to conduct AMR data analysis","text":"Since AMR v2.0 (March 2023), easy create different types antibiograms, support 20 different languages. four antibiogram types, proposed Klinker et al. (2021, DOI 10.1177/20499361211011373), supported new antibiogram() function: Traditional Antibiogram (TA) e.g, susceptibility Pseudomonas aeruginosa piperacillin/tazobactam (TZP) Combination Antibiogram (CA) e.g, sdditional susceptibility Pseudomonas aeruginosa TZP + tobramycin versus TZP alone Syndromic Antibiogram (SA) e.g, susceptibility Pseudomonas aeruginosa TZP among respiratory specimens (obtained among ICU patients ) Weighted-Incidence Syndromic Combination Antibiogram (WISCA) e.g, susceptibility Pseudomonas aeruginosa TZP among respiratory specimens (obtained among ICU patients ) male patients age >=65 years heart failure section, show use antibiogram() function create antibiogram types. starters, included example_isolates data set looks like:","code":"example_isolates #> # A tibble: 2,000 × 46 #> date patient age gender ward mo PEN OXA FLC AMX #> #> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA #> # ℹ 1,990 more rows #> # ℹ 36 more variables: AMC , AMP , TZP , CZO , FEP , #> # CXM , FOX , CTX , CAZ , CRO , GEN , #> # TOB , AMK , KAN , TMP , SXT , NIT , #> # FOS , LNZ , CIP , MFX , VAN , TEC , #> # TCY , TGC , DOX , ERY , CLI , AZM , #> # IPM , MEM , MTR , CHL , COL , MUP , …"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"traditional-antibiogram","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Traditional Antibiogram","title":"How to conduct AMR data analysis","text":"create traditional antibiogram, simply state antibiotics used. antibiotics argument antibiogram() function supports (combination) previously mentioned antibiotic class selectors: Notice antibiogram() function automatically prints right format using Quarto R Markdown (page), even applies italics taxonomic names (using italicise_taxonomy() internally). also uses language OS either English, Chinese, Czech, Danish, Dutch, Finnish, French, German, Greek, Italian, Japanese, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish, Swedish, Turkish, Ukrainian. next example, force language Spanish using language argument:","code":"antibiogram(example_isolates, antibiotics = c(aminoglycosides(), carbapenems())) #> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin) #> ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem) antibiogram(example_isolates, mo_transform = \"gramstain\", antibiotics = aminoglycosides(), ab_transform = \"name\", language = \"es\") #> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"combined-antibiogram","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Combined Antibiogram","title":"How to conduct AMR data analysis","text":"create combined antibiogram, use antibiotic codes names plus + character like :","code":"combined_ab <- antibiogram(example_isolates, antibiotics = c(\"TZP\", \"TZP+TOB\", \"TZP+GEN\"), ab_transform = NULL) combined_ab"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"syndromic-antibiogram","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Syndromic Antibiogram","title":"How to conduct AMR data analysis","text":"create syndromic antibiogram, syndromic_group argument must used. can column data, e.g. ifelse() calculations based certain columns:","code":"antibiogram(example_isolates, antibiotics = c(aminoglycosides(), carbapenems()), syndromic_group = \"ward\") #> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin) #> ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"weighted-incidence-syndromic-combination-antibiogram-wisca","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Weighted-Incidence Syndromic Combination Antibiogram (WISCA)","title":"How to conduct AMR data analysis","text":"create Weighted-Incidence Syndromic Combination Antibiogram (WISCA), simply set wisca = TRUE antibiogram() function, use dedicated wisca() function. Unlike traditional antibiograms, WISCA provides syndrome-based susceptibility estimates, weighted pathogen incidence antimicrobial susceptibility patterns. WISCA uses Bayesian decision model integrate data multiple pathogens, improving empirical therapy guidance, especially low-incidence infections. pathogen-agnostic, meaning results syndrome-based rather stratified microorganism. reliable results, ensure data includes first isolates (use first_isolate()) consider filtering top n species (use top_n_microorganisms()), WISCA outcomes meaningful based robust incidence estimates. patient- syndrome-specific WISCA, run function grouped tibble, .e., using group_by() first:","code":"example_isolates %>% wisca(antibiotics = c(\"TZP\", \"TZP+TOB\", \"TZP+GEN\"), minimum = 10) # Recommended threshold: ≥30 example_isolates %>% top_n_microorganisms(n = 10) %>% group_by(age_group = age_groups(age, c(25, 50, 75)), gender) %>% wisca(antibiotics = c(\"TZP\", \"TZP+TOB\", \"TZP+GEN\"))"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"plotting-antibiograms","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Plotting antibiograms","title":"How to conduct AMR data analysis","text":"Antibiograms can plotted using autoplot() ggplot2 packages, since AMR package provides extension function: calculate antimicrobial resistance sensible way, also correcting results, use resistance() susceptibility() functions.","code":"autoplot(combined_ab)"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"resistance-percentages","dir":"Articles","previous_headings":"Analysing the data","what":"Resistance percentages","title":"How to conduct AMR data analysis","text":"functions resistance() susceptibility() can used calculate antimicrobial resistance susceptibility. specific analyses, functions proportion_S(), proportion_SI(), proportion_I(), proportion_IR() proportion_R() can used determine proportion specific antimicrobial outcome. functions contain minimum argument, denoting minimum required number test results returning value. functions otherwise return NA. default minimum = 30, following CLSI M39-A4 guideline applying microbial epidemiology. per EUCAST guideline 2019, calculate resistance proportion R (proportion_R(), equal resistance()) susceptibility proportion S (proportion_SI(), equal susceptibility()). functions can used : can used conjunction group_by() summarise(), dplyr package:","code":"our_data_1st %>% resistance(AMX) #> [1] 0.4203377 our_data_1st %>% group_by(hospital) %>% summarise(amoxicillin = resistance(AMX)) #> # A tibble: 3 × 2 #> hospital amoxicillin #> #> 1 A 0.340 #> 2 B 0.551 #> 3 C 0.370"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"interpreting-mic-and-disk-diffusion-values","dir":"Articles","previous_headings":"Analysing the data","what":"Interpreting MIC and Disk Diffusion Values","title":"How to conduct AMR data analysis","text":"Minimal inhibitory concentration (MIC) values disk diffusion diameters can interpreted clinical breakpoints (SIR) using .sir(). ’s example randomly generated MIC values Klebsiella pneumoniae ciprofloxacin: allows direct interpretation according EUCAST CLSI breakpoints, facilitating automated AMR data processing.","code":"set.seed(123) mic_values <- random_mic(100) sir_values <- as.sir(mic_values, mo = \"K. pneumoniae\", ab = \"cipro\", guideline = \"EUCAST 2024\") #> #> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with #> all the details of the breakpoint interpretations. #> #> Interpreting MIC values: 'cipro' (CIP, ciprofloxacin), EUCAST 2024... NOTE #> • Multiple breakpoints available for ciprofloxacin (CIP) in Klebsiella pneumoniae - assuming body site 'Non-meningitis'. my_data <- tibble(MIC = mic_values, SIR = sir_values) my_data #> # A tibble: 100 × 2 #> MIC SIR #> #> 1 16.000 R #> 2 0.005 S #> 3 1.000 R #> 4 >=256.000 R #> 5 2.000 R #> 6 0.025 S #> 7 16.000 R #> 8 0.025 S #> 9 0.500 I #> 10 0.005 S #> # ℹ 90 more rows"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"plotting-mic-and-sir-interpretations","dir":"Articles","previous_headings":"Analysing the data","what":"Plotting MIC and SIR Interpretations","title":"How to conduct AMR data analysis","text":"can visualise MIC distributions SIR interpretations using ggplot2, using new scale_y_mic() y-axis scale_colour_sir() colour-code SIR categories. plot provides intuitive way assess susceptibility patterns across different groups incorporating clinical breakpoints. straightforward less manual approach, ggplot2’s function autoplot() extended package directly plot MIC disk diffusion values: Author: Dr. Matthijs Berends, 23rd Feb 2025","code":"# add a group my_data$group <- rep(c(\"A\", \"B\", \"C\", \"D\"), each = 25) ggplot(my_data, aes(x = group, y = MIC, colour = SIR)) + geom_jitter(width = 0.2, size = 2) + geom_boxplot(fill = NA, colour = \"grey40\") + scale_y_mic() + scale_colour_sir() + labs(title = \"MIC Distribution and SIR Interpretation\", x = \"Sample Groups\", y = \"MIC (mg/L)\") autoplot(mic_values) # by providing `mo` and `ab`, colours will indicate the SIR interpretation: autoplot(mic_values, mo = \"K. pneumoniae\", ab = \"cipro\", guideline = \"EUCAST 2024\")"},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"AMR for Python","text":"AMR package R powerful tool antimicrobial resistance (AMR) analysis. provides extensive features handling microbial antimicrobial data. However, work primarily Python, now intuitive option available: AMR Python package. Python package wrapper around AMR R package. uses rpy2 package internally. Despite need R installed, Python users can now easily work AMR data directly Python code.","code":""},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"prerequisites","dir":"Articles","previous_headings":"","what":"Prerequisites","title":"AMR for Python","text":"package tested virtual environment (venv). can set environment running: can activate environment, venv ready work .","code":"# linux and macOS: python -m venv /path/to/new/virtual/environment # Windows: python -m venv C:\\path\\to\\new\\virtual\\environment"},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"install-amr","dir":"Articles","previous_headings":"","what":"Install AMR","title":"AMR for Python","text":"Since Python package available official Python Package Index, can just run: Make sure R installed. need install AMR R package, installed automatically. Linux: macOS (using Homebrew): Windows, visit CRAN download page download install R.","code":"pip install AMR # Ubuntu / Debian sudo apt install r-base # Fedora: sudo dnf install R # CentOS/RHEL sudo yum install R brew install r"},{"path":[]},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"cleaning-taxonomy","dir":"Articles","previous_headings":"Examples of Usage","what":"Cleaning Taxonomy","title":"AMR for Python","text":"’s example demonstrates clean microorganism drug names using AMR Python package:","code":"import pandas as pd import AMR # Sample data data = { \"MOs\": ['E. coli', 'ESCCOL', 'esco', 'Esche coli'], \"Drug\": ['Cipro', 'CIP', 'J01MA02', 'Ciproxin'] } df = pd.DataFrame(data) # Use AMR functions to clean microorganism and drug names df['MO_clean'] = AMR.mo_name(df['MOs']) df['Drug_clean'] = AMR.ab_name(df['Drug']) # Display the results print(df)"},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"explanation","dir":"Articles","previous_headings":"Examples of Usage > Cleaning Taxonomy","what":"Explanation","title":"AMR for Python","text":"mo_name: function standardises microorganism names. , different variations Escherichia coli (“E. coli”, “ESCCOL”, “esco”, “Esche coli”) converted correct, standardised form, “Escherichia coli”. ab_name: Similarly, function standardises antimicrobial names. different representations ciprofloxacin (e.g., “Cipro”, “CIP”, “J01MA02”, “Ciproxin”) converted standard name, “Ciprofloxacin”.","code":""},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"calculating-amr","dir":"Articles","previous_headings":"Examples of Usage","what":"Calculating AMR","title":"AMR for Python","text":"","code":"import AMR import pandas as pd df = AMR.example_isolates result = AMR.resistance(df[\"AMX\"]) print(result) [0.59555556]"},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"generating-antibiograms","dir":"Articles","previous_headings":"Examples of Usage","what":"Generating Antibiograms","title":"AMR for Python","text":"One core functions AMR package generating antibiogram, table summarises antimicrobial susceptibility bacterial isolates. ’s can generate antibiogram Python: example, generate antibiogram selecting various antibiotics.","code":"result2a = AMR.antibiogram(df[[\"mo\", \"AMX\", \"CIP\", \"TZP\"]]) print(result2a) result2b = AMR.antibiogram(df[[\"mo\", \"AMX\", \"CIP\", \"TZP\"]], mo_transform = \"gramstain\") print(result2b)"},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"taxonomic-data-sets-now-in-python","dir":"Articles","previous_headings":"Examples of Usage","what":"Taxonomic Data Sets Now in Python!","title":"AMR for Python","text":"Python user, might like important data sets AMR R package, microorganisms, antimicrobials, clinical_breakpoints, example_isolates, now available regular Python data frames:","code":"AMR.microorganisms AMR.antimicrobials"},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"conclusion","dir":"Articles","previous_headings":"","what":"Conclusion","title":"AMR for Python","text":"AMR Python package, Python users can now effortlessly call R functions AMR R package. eliminates need complex rpy2 configurations provides clean, easy--use interface antimicrobial resistance analysis. examples provided demonstrate can applied typical workflows, standardising microorganism antimicrobial names calculating resistance. just running import AMR, users can seamlessly integrate robust features R AMR package Python workflows. Whether ’re cleaning data analysing resistance patterns, AMR Python package makes easy work AMR data Python.","code":""},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"example-1-using-antimicrobial-selectors","dir":"Articles","previous_headings":"","what":"Example 1: Using Antimicrobial Selectors","title":"AMR with tidymodels","text":"leveraging power tidymodels AMR package, ’ll build reproducible machine learning workflow predict Gramstain microorganism two important antibiotic classes: aminoglycosides beta-lactams.","code":""},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"objective","dir":"Articles","previous_headings":"Example 1: Using Antimicrobial Selectors","what":"Objective","title":"AMR with tidymodels","text":"goal build predictive model using tidymodels framework determine Gramstain microorganism based microbial data. : Preprocess data using selector functions aminoglycosides() betalactams(). Define logistic regression model prediction. Use structured tidymodels workflow preprocess, train, evaluate model.","code":""},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"data-preparation","dir":"Articles","previous_headings":"Example 1: Using Antimicrobial Selectors","what":"Data Preparation","title":"AMR with tidymodels","text":"begin loading required libraries preparing example_isolates dataset AMR package. Prepare data: Explanation: aminoglycosides() betalactams() dynamically select columns antimicrobials classes. drop_na() ensures model receives complete cases training.","code":"# Load required libraries library(AMR) # For AMR data analysis library(tidymodels) # For machine learning workflows, and data manipulation (dplyr, tidyr, ...) # Your data could look like this: example_isolates #> # A tibble: 2,000 × 46 #> date patient age gender ward mo PEN OXA FLC AMX #> #> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA #> # ℹ 1,990 more rows #> # ℹ 36 more variables: AMC , AMP , TZP , CZO , FEP , #> # CXM , FOX , CTX , CAZ , CRO , GEN , #> # TOB , AMK , KAN , TMP , SXT , NIT , #> # FOS , LNZ , CIP , MFX , VAN , TEC , #> # TCY , TGC , DOX , ERY , CLI , AZM , #> # IPM , MEM , MTR , CHL , COL , MUP , … # Select relevant columns for prediction data <- example_isolates %>% # select AB results dynamically select(mo, aminoglycosides(), betalactams()) %>% # replace NAs with NI (not-interpretable) mutate(across(where(is.sir), ~replace_na(.x, \"NI\")), # make factors of SIR columns across(where(is.sir), as.integer), # get Gramstain of microorganisms mo = as.factor(mo_gramstain(mo))) %>% # drop NAs - the ones without a Gramstain (fungi, etc.) drop_na() #> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin) #> ℹ For betalactams() using columns 'PEN' (benzylpenicillin), 'OXA' #> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC' #> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), 'TZP' #> (piperacillin/tazobactam), 'CZO' (cefazolin), 'FEP' (cefepime), 'CXM' #> (cefuroxime), 'FOX' (cefoxitin), 'CTX' (cefotaxime), 'CAZ' (ceftazidime), #> 'CRO' (ceftriaxone), 'IPM' (imipenem), and 'MEM' (meropenem)"},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"defining-the-workflow","dir":"Articles","previous_headings":"Example 1: Using Antimicrobial Selectors","what":"Defining the Workflow","title":"AMR with tidymodels","text":"now define tidymodels workflow, consists three steps: preprocessing, model specification, fitting.","code":""},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"preprocessing-with-a-recipe","dir":"Articles","previous_headings":"Example 1: Using Antimicrobial Selectors > Defining the Workflow","what":"1. Preprocessing with a Recipe","title":"AMR with tidymodels","text":"create recipe preprocess data modelling. recipe includes least one preprocessing operation, like step_corr(), necessary parameters can estimated training set using prep(): Explanation: recipe(mo ~ ., data = data) take mo column outcome columns predictors. step_corr() removes predictors (.e., antibiotic columns) higher correlation 90%. Notice recipe contains just antimicrobial selector functions - need define columns specifically. preparation (retrieved prep()) can see columns variables ‘AMX’ ‘CTX’ removed correlate much existing, variables.","code":"# Define the recipe for data preprocessing resistance_recipe <- recipe(mo ~ ., data = data) %>% step_corr(c(aminoglycosides(), betalactams()), threshold = 0.9) resistance_recipe #> #> ── Recipe ────────────────────────────────────────────────────────────────────── #> #> ── Inputs #> Number of variables by role #> outcome: 1 #> predictor: 20 #> #> ── Operations #> • Correlation filter on: c(aminoglycosides(), betalactams()) prep(resistance_recipe) #> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin) #> ℹ For betalactams() using columns 'PEN' (benzylpenicillin), 'OXA' #> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC' #> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), 'TZP' #> (piperacillin/tazobactam), 'CZO' (cefazolin), 'FEP' (cefepime), 'CXM' #> (cefuroxime), 'FOX' (cefoxitin), 'CTX' (cefotaxime), 'CAZ' (ceftazidime), #> 'CRO' (ceftriaxone), 'IPM' (imipenem), and 'MEM' (meropenem) #> #> ── Recipe ────────────────────────────────────────────────────────────────────── #> #> ── Inputs #> Number of variables by role #> outcome: 1 #> predictor: 20 #> #> ── Training information #> Training data contained 1968 data points and no incomplete rows. #> #> ── Operations #> • Correlation filter on: AMX CTX | Trained"},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"specifying-the-model","dir":"Articles","previous_headings":"Example 1: Using Antimicrobial Selectors > Defining the Workflow","what":"2. Specifying the Model","title":"AMR with tidymodels","text":"define logistic regression model since resistance prediction binary classification task. Explanation: logistic_reg() sets logistic regression model. set_engine(\"glm\") specifies use R’s built-GLM engine.","code":"# Specify a logistic regression model logistic_model <- logistic_reg() %>% set_engine(\"glm\") # Use the Generalised Linear Model engine logistic_model #> Logistic Regression Model Specification (classification) #> #> Computational engine: glm"},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"building-the-workflow","dir":"Articles","previous_headings":"Example 1: Using Antimicrobial Selectors > Defining the Workflow","what":"3. Building the Workflow","title":"AMR with tidymodels","text":"bundle recipe model together workflow, organises entire modelling process.","code":"# Combine the recipe and model into a workflow resistance_workflow <- workflow() %>% add_recipe(resistance_recipe) %>% # Add the preprocessing recipe add_model(logistic_model) # Add the logistic regression model resistance_workflow #> ══ Workflow ════════════════════════════════════════════════════════════════════ #> Preprocessor: Recipe #> Model: logistic_reg() #> #> ── Preprocessor ──────────────────────────────────────────────────────────────── #> 1 Recipe Step #> #> • step_corr() #> #> ── Model ─────────────────────────────────────────────────────────────────────── #> Logistic Regression Model Specification (classification) #> #> Computational engine: glm"},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"training-and-evaluating-the-model","dir":"Articles","previous_headings":"Example 1: Using Antimicrobial Selectors","what":"Training and Evaluating the Model","title":"AMR with tidymodels","text":"train model, split data training testing sets. , fit workflow training set evaluate performance. Explanation: initial_split() splits data training testing sets. fit() trains workflow training set. Notice fit(), antimicrobial selector functions internally called . training, functions called since stored recipe. Next, evaluate model testing data. Explanation: predict() generates predictions testing set. metrics() computes evaluation metrics like accuracy kappa. appears can predict Gram stain 99.5% accuracy based AMR results aminoglycosides beta-lactam antibiotics. ROC curve looks like :","code":"# Split data into training and testing sets set.seed(123) # For reproducibility data_split <- initial_split(data, prop = 0.8) # 80% training, 20% testing training_data <- training(data_split) # Training set testing_data <- testing(data_split) # Testing set # Fit the workflow to the training data fitted_workflow <- resistance_workflow %>% fit(training_data) # Train the model # Make predictions on the testing set predictions <- fitted_workflow %>% predict(testing_data) # Generate predictions probabilities <- fitted_workflow %>% predict(testing_data, type = \"prob\") # Generate probabilities predictions <- predictions %>% bind_cols(probabilities) %>% bind_cols(testing_data) # Combine with true labels predictions #> # A tibble: 394 × 24 #> .pred_class `.pred_Gram-negative` `.pred_Gram-positive` mo GEN TOB #> #> 1 Gram-positive 1.07e- 1 8.93e- 1 Gram-p… 5 5 #> 2 Gram-positive 3.17e- 8 1.00e+ 0 Gram-p… 5 1 #> 3 Gram-negative 9.99e- 1 1.42e- 3 Gram-n… 5 5 #> 4 Gram-positive 2.22e-16 1 e+ 0 Gram-p… 5 5 #> 5 Gram-negative 9.46e- 1 5.42e- 2 Gram-n… 5 5 #> 6 Gram-positive 1.07e- 1 8.93e- 1 Gram-p… 5 5 #> 7 Gram-positive 2.22e-16 1 e+ 0 Gram-p… 1 5 #> 8 Gram-positive 2.22e-16 1 e+ 0 Gram-p… 4 4 #> 9 Gram-negative 1 e+ 0 2.22e-16 Gram-n… 1 1 #> 10 Gram-positive 6.05e-11 1.00e+ 0 Gram-p… 4 4 #> # ℹ 384 more rows #> # ℹ 18 more variables: AMK , KAN , PEN , OXA , FLC , #> # AMX , AMC , AMP , TZP , CZO , FEP , #> # CXM , FOX , CTX , CAZ , CRO , IPM , MEM # Evaluate model performance metrics <- predictions %>% metrics(truth = mo, estimate = .pred_class) # Calculate performance metrics metrics #> # A tibble: 2 × 3 #> .metric .estimator .estimate #> #> 1 accuracy binary 0.995 #> 2 kap binary 0.989 # To assess some other model properties, you can make our own `metrics()` function our_metrics <- metric_set(accuracy, kap, ppv, npv) # add Positive Predictive Value and Negative Predictive Value metrics2 <- predictions %>% our_metrics(truth = mo, estimate = .pred_class) # run again on our `our_metrics()` function metrics2 #> # A tibble: 4 × 3 #> .metric .estimator .estimate #> #> 1 accuracy binary 0.995 #> 2 kap binary 0.989 #> 3 ppv binary 0.987 #> 4 npv binary 1 predictions %>% roc_curve(mo, `.pred_Gram-negative`) %>% autoplot()"},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"conclusion","dir":"Articles","previous_headings":"Example 1: Using Antimicrobial Selectors","what":"Conclusion","title":"AMR with tidymodels","text":"post, demonstrated build machine learning pipeline tidymodels framework AMR package. combining selector functions like aminoglycosides() betalactams() tidymodels, efficiently prepared data, trained model, evaluated performance. workflow extensible antimicrobial classes resistance patterns, empowering users analyse AMR data systematically reproducibly.","code":""},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"example-2-predicting-amr-over-time","dir":"Articles","previous_headings":"","what":"Example 2: Predicting AMR Over Time","title":"AMR with tidymodels","text":"second example, aim predict antimicrobial resistance (AMR) trends time using tidymodels. model resistance three antibiotics (amoxicillin AMX, amoxicillin-clavulanic acid AMC, ciprofloxacin CIP), based historical data grouped year hospital ward.","code":""},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"objective-1","dir":"Articles","previous_headings":"Example 2: Predicting AMR Over Time","what":"Objective","title":"AMR with tidymodels","text":"goal : Prepare dataset aggregating resistance data time. Define regression model predict AMR trends. Use tidymodels preprocess, train, evaluate model.","code":""},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"data-preparation-1","dir":"Articles","previous_headings":"Example 2: Predicting AMR Over Time","what":"Data Preparation","title":"AMR with tidymodels","text":"start transforming example_isolates dataset structured time-series format. Explanation: mo_name(mo): Converts microbial codes proper species names. resistance(): Converts AMR results numeric values (proportion resistant isolates). group_by(year, ward, species): Aggregates resistance rates year ward.","code":"# Load required libraries library(AMR) library(tidymodels) # Transform dataset data_time <- example_isolates %>% top_n_microorganisms(n = 10) %>% # Filter on the top #10 species mutate(year = as.integer(format(date, \"%Y\")), # Extract year from date gramstain = mo_gramstain(mo)) %>% # Get taxonomic names group_by(year, gramstain) %>% summarise(across(c(AMX, AMC, CIP), function(x) resistance(x, minimum = 0), .names = \"res_{.col}\"), .groups = \"drop\") %>% filter(!is.na(res_AMX) & !is.na(res_AMC) & !is.na(res_CIP)) # Drop missing values #> ℹ Using column 'mo' as input for col_mo. data_time #> # A tibble: 32 × 5 #> year gramstain res_AMX res_AMC res_CIP #> #> 1 2002 Gram-negative 1 0.105 0.0606 #> 2 2002 Gram-positive 0.838 0.182 0.162 #> 3 2003 Gram-negative 1 0.0714 0 #> 4 2003 Gram-positive 0.714 0.244 0.154 #> 5 2004 Gram-negative 0.464 0.0938 0 #> 6 2004 Gram-positive 0.849 0.299 0.244 #> 7 2005 Gram-negative 0.412 0.132 0.0588 #> 8 2005 Gram-positive 0.882 0.382 0.154 #> 9 2006 Gram-negative 0.379 0 0.1 #> 10 2006 Gram-positive 0.778 0.333 0.353 #> # ℹ 22 more rows"},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"defining-the-workflow-1","dir":"Articles","previous_headings":"Example 2: Predicting AMR Over Time","what":"Defining the Workflow","title":"AMR with tidymodels","text":"now define modelling workflow, consists preprocessing step, model specification, fitting process.","code":""},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"preprocessing-with-a-recipe-1","dir":"Articles","previous_headings":"Example 2: Predicting AMR Over Time > Defining the Workflow","what":"1. Preprocessing with a Recipe","title":"AMR with tidymodels","text":"Explanation: step_dummy(): Encodes categorical variables (ward, species) numerical indicators. step_normalize(): Normalises year variable. step_nzv(): Removes near-zero variance predictors.","code":"# Define the recipe resistance_recipe_time <- recipe(res_AMX ~ year + gramstain, data = data_time) %>% step_dummy(gramstain, one_hot = TRUE) %>% # Convert categorical to numerical step_normalize(year) %>% # Normalise year for better model performance step_nzv(all_predictors()) # Remove near-zero variance predictors resistance_recipe_time #> #> ── Recipe ────────────────────────────────────────────────────────────────────── #> #> ── Inputs #> Number of variables by role #> outcome: 1 #> predictor: 2 #> #> ── Operations #> • Dummy variables from: gramstain #> • Centering and scaling for: year #> • Sparse, unbalanced variable filter on: all_predictors()"},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"specifying-the-model-1","dir":"Articles","previous_headings":"Example 2: Predicting AMR Over Time > Defining the Workflow","what":"2. Specifying the Model","title":"AMR with tidymodels","text":"use linear regression model predict resistance trends. Explanation: linear_reg(): Defines linear regression model. set_engine(\"lm\"): Uses R’s built-linear regression engine.","code":"# Define the linear regression model lm_model <- linear_reg() %>% set_engine(\"lm\") # Use linear regression lm_model #> Linear Regression Model Specification (regression) #> #> Computational engine: lm"},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"building-the-workflow-1","dir":"Articles","previous_headings":"Example 2: Predicting AMR Over Time > Defining the Workflow","what":"3. Building the Workflow","title":"AMR with tidymodels","text":"combine preprocessing recipe model workflow.","code":"# Create workflow resistance_workflow_time <- workflow() %>% add_recipe(resistance_recipe_time) %>% add_model(lm_model) resistance_workflow_time #> ══ Workflow ════════════════════════════════════════════════════════════════════ #> Preprocessor: Recipe #> Model: linear_reg() #> #> ── Preprocessor ──────────────────────────────────────────────────────────────── #> 3 Recipe Steps #> #> • step_dummy() #> • step_normalize() #> • step_nzv() #> #> ── Model ─────────────────────────────────────────────────────────────────────── #> Linear Regression Model Specification (regression) #> #> Computational engine: lm"},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"training-and-evaluating-the-model-1","dir":"Articles","previous_headings":"Example 2: Predicting AMR Over Time","what":"Training and Evaluating the Model","title":"AMR with tidymodels","text":"split data training testing sets, fit model, evaluate performance. Explanation: initial_split(): Splits data training testing sets. fit(): Trains workflow. predict(): Generates resistance predictions. metrics(): Evaluates model performance.","code":"# Split the data set.seed(123) data_split_time <- initial_split(data_time, prop = 0.8) train_time <- training(data_split_time) test_time <- testing(data_split_time) # Train the model fitted_workflow_time <- resistance_workflow_time %>% fit(train_time) # Make predictions predictions_time <- fitted_workflow_time %>% predict(test_time) %>% bind_cols(test_time) # Evaluate model metrics_time <- predictions_time %>% metrics(truth = res_AMX, estimate = .pred) metrics_time #> # A tibble: 3 × 3 #> .metric .estimator .estimate #> #> 1 rmse standard 0.0774 #> 2 rsq standard 0.711 #> 3 mae standard 0.0704"},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"visualising-predictions","dir":"Articles","previous_headings":"Example 2: Predicting AMR Over Time","what":"Visualising Predictions","title":"AMR with tidymodels","text":"plot resistance trends time amoxicillin. Additionally, can visualise resistance trends ggplot2 directly add linear models :","code":"library(ggplot2) # Plot actual vs predicted resistance over time ggplot(predictions_time, aes(x = year)) + geom_point(aes(y = res_AMX, color = \"Actual\")) + geom_line(aes(y = .pred, color = \"Predicted\")) + labs(title = \"Predicted vs Actual AMX Resistance Over Time\", x = \"Year\", y = \"Resistance Proportion\") + theme_minimal() ggplot(data_time, aes(x = year, y = res_AMX, color = gramstain)) + geom_line() + labs(title = \"AMX Resistance Trends\", x = \"Year\", y = \"Resistance Proportion\") + # add a linear model directly in ggplot2: geom_smooth(method = \"lm\", formula = y ~ x, alpha = 0.25) + theme_minimal()"},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"conclusion-1","dir":"Articles","previous_headings":"Example 2: Predicting AMR Over Time","what":"Conclusion","title":"AMR with tidymodels","text":"example, demonstrated analyze AMR trends time using tidymodels. aggregating resistance rates year hospital ward, built predictive model track changes resistance amoxicillin (AMX), amoxicillin-clavulanic acid (AMC), ciprofloxacin (CIP). method can extended antibiotics resistance patterns, providing valuable insights AMR dynamics healthcare settings.","code":""},{"path":"https://amr-for-r.org/articles/EUCAST.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"How to apply EUCAST rules","text":"EUCAST rules? European Committee Antimicrobial Susceptibility Testing (EUCAST) states website: EUCAST expert rules (see ) tabulated collection expert knowledge interpretive rules, expected resistant phenotypes expected susceptible phenotypes applied antimicrobial susceptibility testing order reduce testing, reduce errors make appropriate recommendations reporting particular resistances. Europe, lot medical microbiological laboratories already apply rules (Brown et al., 2015). package features latest insights expected resistant phenotypes (v1.2, 2023).","code":""},{"path":"https://amr-for-r.org/articles/EUCAST.html","id":"examples","dir":"Articles","previous_headings":"","what":"Examples","title":"How to apply EUCAST rules","text":"rules can used discard improbable bug-drug combinations data. example, Klebsiella produces beta-lactamase prevents ampicillin (amoxicillin) working . words, practically every strain Klebsiella resistant ampicillin. Sometimes, laboratory data can still contain strains Klebsiella susceptible ampicillin. antibiogram available identification available, antibiogram re-interpreted based identification. eucast_rules() function resolves , applying latest ‘EUCAST Expected Resistant Phenotypes’ guideline: convenient function mo_is_intrinsic_resistant() uses guideline, allows check one specific microorganisms antimicrobials: EUCAST rules can used correction, can also used filling known resistance susceptibility based results antimicrobials drugs. process called interpretive reading, basically form imputation:","code":"oops <- tibble::tibble( mo = c( \"Klebsiella pneumoniae\", \"Escherichia coli\" ), ampicillin = as.sir(\"S\") ) oops #> # A tibble: 2 × 2 #> mo ampicillin #> #> 1 Klebsiella pneumoniae S #> 2 Escherichia coli S eucast_rules(oops, info = FALSE, overwrite = TRUE) #> # A tibble: 2 × 2 #> mo ampicillin #> #> 1 Klebsiella pneumoniae R #> 2 Escherichia coli S mo_is_intrinsic_resistant( c(\"Klebsiella pneumoniae\", \"Escherichia coli\"), \"ampicillin\" ) #> [1] TRUE FALSE mo_is_intrinsic_resistant( \"Klebsiella pneumoniae\", c(\"ampicillin\", \"kanamycin\") ) #> [1] TRUE FALSE data <- tibble::tibble( mo = c( \"Staphylococcus aureus\", \"Enterococcus faecalis\", \"Escherichia coli\", \"Klebsiella pneumoniae\", \"Pseudomonas aeruginosa\" ), VAN = \"-\", # Vancomycin AMX = \"-\", # Amoxicillin COL = \"-\", # Colistin CAZ = \"-\", # Ceftazidime CXM = \"-\", # Cefuroxime PEN = \"S\", # Benzylenicillin FOX = \"S\" # Cefoxitin ) data eucast_rules(data, overwrite = TRUE)"},{"path":"https://amr-for-r.org/articles/MDR.html","id":"type-of-input","dir":"Articles","previous_headings":"","what":"Type of input","title":"How to determine multi-drug resistance (MDR)","text":"mdro() function takes data set input, regular data.frame. tries automatically determine right columns info isolates, name species columns results antimicrobial agents. See help page info set right settings data command ?mdro. WHONET data (data), settings automatically set correctly.","code":""},{"path":"https://amr-for-r.org/articles/MDR.html","id":"guidelines","dir":"Articles","previous_headings":"","what":"Guidelines","title":"How to determine multi-drug resistance (MDR)","text":"mdro() function support multiple guidelines. can select guideline guideline parameter. Currently supported guidelines (case-insensitive): guideline = \"CMI2012\" (default) Magiorakos AP, Srinivasan et al. “Multidrug-resistant, extensively drug-resistant pandrug-resistant bacteria: international expert proposal interim standard definitions acquired resistance.” Clinical Microbiology Infection (2012) (link) guideline = \"EUCAST3.2\" (simply guideline = \"EUCAST\") European international guideline - EUCAST Expert Rules Version 3.2 “Intrinsic Resistance Unusual Phenotypes” (link) guideline = \"EUCAST3.1\" European international guideline - EUCAST Expert Rules Version 3.1 “Intrinsic Resistance Exceptional Phenotypes Tables” (link) guideline = \"TB\" international guideline multi-drug resistant tuberculosis - World Health Organization “Companion handbook guidelines programmatic management drug-resistant tuberculosis” (link) guideline = \"MRGN\" German national guideline - Mueller et al. (2015) Antimicrobial Resistance Infection Control 4:7. DOI: 10.1186/s13756-015-0047-6 guideline = \"BRMO\" Dutch national guideline - Rijksinstituut voor Volksgezondheid en Milieu “WIP-richtlijn BRMO (Bijzonder Resistente Micro-Organismen) (ZKH)” (link) Please suggest (country-specific) guidelines letting us know: https://github.com/msberends/AMR/issues/new.","code":""},{"path":"https://amr-for-r.org/articles/MDR.html","id":"custom-guidelines","dir":"Articles","previous_headings":"Guidelines","what":"Custom Guidelines","title":"How to determine multi-drug resistance (MDR)","text":"can also use custom guideline. Custom guidelines can set custom_mdro_guideline() function. great importance custom rules determine MDROs hospital, e.g., rules dependent ward, state contact isolation variables data. familiar case_when() dplyr package, recognise input method set rules. Rules must set using R considers ‘formula notation’: row/isolate matches first rule, value first ~ (case ‘Elderly Type ’) set MDRO value. Otherwise, second rule tried . maximum number rules unlimited. can print rules set console overview. Colours help reading console supports colours. outcome function can used guideline argument mdro() function: rules set (custom object case) exported shared file location using saveRDS() collaborate multiple users. custom rules set imported using readRDS().","code":"custom <- custom_mdro_guideline( CIP == \"R\" & age > 60 ~ \"Elderly Type A\", ERY == \"R\" & age > 60 ~ \"Elderly Type B\" ) custom #> A set of custom MDRO rules: #> 1. If CIP is R and age is higher than 60 then: Elderly Type A #> 2. If ERY is R and age is higher than 60 then: Elderly Type B #> 3. Otherwise: Negative #> #> Unmatched rows will return NA. #> Results will be of class 'factor', with ordered levels: Negative < Elderly Type A < Elderly Type B x <- mdro(example_isolates, guideline = custom) table(x) #> x #> Negative Elderly Type A Elderly Type B #> 1070 198 732"},{"path":"https://amr-for-r.org/articles/MDR.html","id":"examples","dir":"Articles","previous_headings":"","what":"Examples","title":"How to determine multi-drug resistance (MDR)","text":"mdro() function always returns ordered factor predefined guidelines. example, output default guideline Magiorakos et al. returns factor levels ‘Negative’, ‘MDR’, ‘XDR’ ‘PDR’ order. next example uses example_isolates data set. data set included package contains full antibiograms 2,000 microbial isolates. reflects reality can used practise AMR data analysis. test MDR/XDR/PDR guideline data set, get: Frequency table Class: factor > ordered (numeric) Length: 2,000 Levels: 4: Negative < Multi-drug-resistant (MDR) < Extensively drug-resistant … Available: 1,745 (87.25%, NA: 255 = 12.75%) Unique: 2 another example, create data set determine multi-drug resistant TB: column names automatically verified valid drug names codes, worked exactly way: data set now looks like : can now add interpretation MDR-TB data set. can use: shortcut mdr_tb(): Create frequency table results: Frequency table Class: factor > ordered (numeric) Length: 5,000 Levels: 5: Negative < Mono-resistant < Poly-resistant < Multi-drug-resistant <… Available: 5,000 (100%, NA: 0 = 0%) Unique: 5","code":"library(dplyr) # to support pipes: %>% library(cleaner) # to create frequency tables example_isolates %>% mdro() %>% freq() # show frequency table of the result #> Warning: in mdro(): NA introduced for isolates where the available percentage of #> antimicrobial classes was below 50% (set with pct_required_classes) # random_sir() is a helper function to generate # a random vector with values S, I and R my_TB_data <- data.frame( rifampicin = random_sir(5000), isoniazid = random_sir(5000), gatifloxacin = random_sir(5000), ethambutol = random_sir(5000), pyrazinamide = random_sir(5000), moxifloxacin = random_sir(5000), kanamycin = random_sir(5000) ) my_TB_data <- data.frame( RIF = random_sir(5000), INH = random_sir(5000), GAT = random_sir(5000), ETH = random_sir(5000), PZA = random_sir(5000), MFX = random_sir(5000), KAN = random_sir(5000) ) head(my_TB_data) #> rifampicin isoniazid gatifloxacin ethambutol pyrazinamide moxifloxacin #> 1 I R S S S S #> 2 S S I R R S #> 3 R I I I R I #> 4 I S S S S S #> 5 I I I S I S #> 6 R S R S I I #> kanamycin #> 1 R #> 2 I #> 3 S #> 4 I #> 5 I #> 6 I mdro(my_TB_data, guideline = \"TB\") my_TB_data$mdr <- mdr_tb(my_TB_data) #> ℹ No column found as input for col_mo, assuming all rows contain #> Mycobacterium tuberculosis. freq(my_TB_data$mdr)"},{"path":[]},{"path":"https://amr-for-r.org/articles/PCA.html","id":"transforming","dir":"Articles","previous_headings":"","what":"Transforming","title":"How to conduct principal component analysis (PCA) for AMR","text":"PCA, need transform AMR data first. example_isolates data set package looks like: Now transform data set resistance percentages per taxonomic order genus:","code":"library(AMR) library(dplyr) glimpse(example_isolates) #> Rows: 2,000 #> Columns: 46 #> $ date 2002-01-02, 2002-01-03, 2002-01-07, 2002-01-07, 2002-01-13, 2… #> $ patient \"A77334\", \"A77334\", \"067927\", \"067927\", \"067927\", \"067927\", \"4… #> $ age 65, 65, 45, 45, 45, 45, 78, 78, 45, 79, 67, 67, 71, 71, 75, 50… #> $ gender \"F\", \"F\", \"F\", \"F\", \"F\", \"F\", \"M\", \"M\", \"F\", \"F\", \"M\", \"M\", \"M… #> $ ward \"Clinical\", \"Clinical\", \"ICU\", \"ICU\", \"ICU\", \"ICU\", \"Clinical\"… #> $ mo \"B_ESCHR_COLI\", \"B_ESCHR_COLI\", \"B_STPHY_EPDR\", \"B_STPHY_EPDR\",… #> $ PEN R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, S,… #> $ OXA NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA… #> $ FLC NA, NA, R, R, R, R, S, S, R, S, S, S, NA, NA, NA, NA, NA, R, R… #> $ AMX NA, NA, NA, NA, NA, NA, R, R, NA, NA, NA, NA, NA, NA, R, NA, N… #> $ AMC