1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-21 00:53:20 +02:00

(v3.0.0.9007) allow any tidyselect language in as.sir()

This commit is contained in:
2025-07-17 14:29:35 +02:00
parent 0138e33ce9
commit 8dab0a3730
16 changed files with 123 additions and 113 deletions

View File

@ -1,6 +1,6 @@
Package: AMR Package: AMR
Version: 3.0.0.9004 Version: 3.0.0.9007
Date: 2025-06-13 Date: 2025-07-17
Title: Antimicrobial Resistance Data Analysis Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR) Description: Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by data analysis and to work with microbial and antimicrobial properties by

View File

@ -1,15 +1,18 @@
# AMR 3.0.0.9004 # AMR 3.0.0.9007
This is primarily a bugfix release, though we added one nice feature too.
### New ### New
* Integration with the **tidymodels** framework to allow seamless use of MIC and SIR data in modelling pipelines via `recipes` * Integration with the **tidymodels** framework to allow seamless use of MIC and SIR data in modelling pipelines via `recipes`
- `step_mic_log2()` to transform `<mic>` columns with log2, and `step_sir_numeric()` to convert `<sir>` columns to numeric - `step_mic_log2()` to transform `<mic>` columns with log2, and `step_sir_numeric()` to convert `<sir>` columns to numeric
- `tidyselect` helpers: `all_mic()`, `all_mic_predictors()`, `all_sir()`, `all_sir_predictors()` - New `tidyselect` helpers: `all_mic()`, `all_mic_predictors()`, `all_sir()`, `all_sir_predictors()`
- Enables seamless use of MIC and SIR data in modelling pipelines via `recipes`
### Changed ### Changed
* Fixed a bug in `antibiogram()` for when no antimicrobials are set * Fixed a bug in `antibiogram()` for when no antimicrobials are set
* Fixed a bug in `antibiogram()` to allow column names containing the `+` character (#222)
* Fixed a bug in `as.ab()` for antimicrobial codes with a number in it if they are preceded by a space * Fixed a bug in `as.ab()` for antimicrobial codes with a number in it if they are preceded by a space
* Fixed a bug in `eucast_rules()` for using specific custom rules * Fixed a bug in `eucast_rules()` for using specific custom rules
* Fixed a bug in `as.sir()` to allow any tidyselect language (#220)
* Fixed some specific Dutch translations for antimicrobials * Fixed some specific Dutch translations for antimicrobials
* Updated `random_mic()` and `random_disk()` to set skewedness of the distribution and allow multiple microorganisms * Updated `random_mic()` and `random_disk()` to set skewedness of the distribution and allow multiple microorganisms

View File

@ -63,31 +63,6 @@ pm_left_join <- function(x, y, by = NULL, suffix = c(".x", ".y")) {
merged merged
} }
# support where() like tidyverse (this function will also be used when running `antibiogram()`):
where <- function(fn) {
# based on https://github.com/nathaneastwood/poorman/blob/52eb6947e0b4430cd588976ed8820013eddf955f/R/where.R#L17-L32
if (!is.function(fn)) {
stop_("`", deparse(substitute(fn)), "()` is not a valid predicate function.")
}
df <- pm_select_env$.data
cols <- pm_select_env$get_colnames()
if (is.null(df)) {
df <- get_current_data("where", call = FALSE)
cols <- colnames(df)
}
preds <- unlist(lapply(
df,
function(x, fn) {
do.call("fn", list(x))
},
fn
))
if (!is.logical(preds)) stop_("`where()` must be used with functions that return `TRUE` or `FALSE`.")
data_cols <- cols
cols <- data_cols[preds]
which(data_cols %in% cols)
}
# copied and slightly rewritten from {poorman} under permissive license (2021-10-15) # copied and slightly rewritten from {poorman} under permissive license (2021-10-15)
# https://github.com/nathaneastwood/poorman, MIT licensed, Nathan Eastwood, 2020 # https://github.com/nathaneastwood/poorman, MIT licensed, Nathan Eastwood, 2020
case_when_AMR <- function(...) { case_when_AMR <- function(...) {
@ -1636,6 +1611,36 @@ get_n_cores <- function(max_cores = Inf) {
n_cores n_cores
} }
# Support `where()` if tidyselect not installed ----
if (!is.null(import_fn("where", "tidyselect", error_on_fail = FALSE))) {
# tidyselect::where() exists, load the namespace to make `where()`s work across the package in default arguments
loadNamespace("tidyselect")
} else {
where <- function(fn) {
# based on https://github.com/nathaneastwood/poorman/blob/52eb6947e0b4430cd588976ed8820013eddf955f/R/where.R#L17-L32
if (!is.function(fn)) {
stop_("`", deparse(substitute(fn)), "()` is not a valid predicate function.")
}
df <- pm_select_env$.data
cols <- pm_select_env$get_colnames()
if (is.null(df)) {
df <- get_current_data("where", call = FALSE)
cols <- colnames(df)
}
preds <- unlist(lapply(
df,
function(x, fn) {
do.call("fn", list(x))
},
fn
))
if (!is.logical(preds)) stop_("`where()` must be used with functions that return `TRUE` or `FALSE`.")
data_cols <- cols
cols <- data_cols[preds]
which(data_cols %in% cols)
}
}
# Faster data.table implementations ---- # Faster data.table implementations ----
match <- function(x, table, ...) { match <- function(x, table, ...) {
@ -1655,52 +1660,6 @@ match <- function(x, table, ...) {
} }
} }
# nolint start
# Register S3 methods ----
# copied from vctrs::s3_register by their permission:
# https://github.com/r-lib/vctrs/blob/05968ce8e669f73213e3e894b5f4424af4f46316/R/register-s3.R
s3_register <- function(generic, class, method = NULL) {
stopifnot(is.character(generic), length(generic) == 1)
stopifnot(is.character(class), length(class) == 1)
pieces <- strsplit(generic, "::")[[1]]
stopifnot(length(pieces) == 2)
package <- pieces[[1]]
generic <- pieces[[2]]
caller <- parent.frame()
get_method_env <- function() {
top <- topenv(caller)
if (isNamespace(top)) {
asNamespace(environmentName(top))
} else {
caller
}
}
get_method <- function(method, env) {
if (is.null(method)) {
get(paste0(generic, ".", class), envir = get_method_env())
} else {
method
}
}
method_fn <- get_method(method)
stopifnot(is.function(method_fn))
setHook(packageEvent(package, "onLoad"), function(...) {
ns <- asNamespace(package)
method_fn <- get_method(method)
registerS3method(generic, class, method_fn, envir = ns)
})
if (!isNamespaceLoaded(package)) {
return(invisible())
}
envir <- asNamespace(package)
if (exists(generic, envir)) {
registerS3method(generic, class, method_fn, envir = envir)
}
invisible()
}
# Support old R versions ---- # Support old R versions ----
# these functions were not available in previous versions of R # these functions were not available in previous versions of R
# see here for the full list: https://github.com/r-lib/backports # see here for the full list: https://github.com/r-lib/backports

View File

@ -952,7 +952,19 @@ pm_select_env$get_nrow <- function() nrow(pm_select_env$.data)
pm_select_env$get_ncol <- function() ncol(pm_select_env$.data) pm_select_env$get_ncol <- function() ncol(pm_select_env$.data)
pm_select <- function(.data, ...) { pm_select <- function(.data, ...) {
col_pos <- pm_select_positions(.data, ..., .group_pos = TRUE) # col_pos <- pm_select_positions(.data, ..., .group_pos = TRUE),
col_pos <- tryCatch(pm_select_positions(.data, ..., .group_pos = TRUE), error = function(e) NULL)
if (is.null(col_pos)) {
# try with tidyverse
select_dplyr <- import_fn("select", "dplyr", error_on_fail = FALSE)
if (!is.null(select_dplyr)) {
col_pos <- which(colnames(.data) %in% colnames(select_dplyr(.data, ...)))
} else {
# this will throw an error as it did, but dplyr is not available, so no other option
col_pos <- pm_select_positions(.data, ..., .group_pos = TRUE)
}
}
map_names <- names(col_pos) map_names <- names(col_pos)
map_names_length <- nchar(map_names) map_names_length <- nchar(map_names)
if (any(map_names_length == 0L)) { if (any(map_names_length == 0L)) {

3
R/ab.R
View File

@ -184,7 +184,8 @@ as.ab <- function(x, flag_multiple_results = TRUE, language = get_AMR_locale(),
x_new[known_codes_cid] <- AMR_env$AB_lookup$ab[match(x[known_codes_cid], AMR_env$AB_lookup$cid)] x_new[known_codes_cid] <- AMR_env$AB_lookup$ab[match(x[known_codes_cid], AMR_env$AB_lookup$cid)]
previously_coerced <- x %in% AMR_env$ab_previously_coerced$x previously_coerced <- x %in% AMR_env$ab_previously_coerced$x
x_new[previously_coerced & is.na(x_new)] <- AMR_env$ab_previously_coerced$ab[match(x[is.na(x_new) & x %in% AMR_env$ab_previously_coerced$x], AMR_env$ab_previously_coerced$x)] x_new[previously_coerced & is.na(x_new)] <- AMR_env$ab_previously_coerced$ab[match(x[is.na(x_new) & x %in% AMR_env$ab_previously_coerced$x], AMR_env$ab_previously_coerced$x)]
if (any(previously_coerced) && isTRUE(info) && message_not_thrown_before("as.ab", entire_session = TRUE)) { previously_coerced_mention <- x %in% AMR_env$ab_previously_coerced$x & !x %in% AMR_env$AB_lookup$ab & !x %in% AMR_env$AB_lookup$generalised_name
if (any(previously_coerced_mention) && isTRUE(info) && message_not_thrown_before("as.ab", entire_session = TRUE)) {
message_( message_(
"Returning previously coerced ", "Returning previously coerced ",
ifelse(length(unique(which(x[which(previously_coerced)] %in% x_bak_clean))) > 1, "value for an antimicrobial", "values for various antimicrobials"), ifelse(length(unique(which(x[which(previously_coerced)] %in% x_bak_clean))) > 1, "value for an antimicrobial", "values for various antimicrobials"),

View File

@ -576,6 +576,15 @@ antibiogram.default <- function(x,
} }
antimicrobials <- unlist(antimicrobials) antimicrobials <- unlist(antimicrobials)
} else { } else {
existing_ab_combined_cols <- ab_trycatch[ab_trycatch %like% "[+]" & ab_trycatch %in% colnames(x)]
if (length(existing_ab_combined_cols) > 0 && !is.null(ab_transform)) {
ab_transform <- NULL
warning_(
"Detected column name(s) containing the '+' character, which conflicts with the expected syntax in `antibiogram()`: the '+' is used to combine separate antimicrobial agent columns (e.g., \"AMP+GEN\").\n\n",
"To avoid incorrectly guessing which antimicrobials this represents, `ab_transform` was automatically set to `NULL`.\n\n",
"If this is unintended, please rename the column(s) to avoid using '+' in the name, or set `ab_transform = NULL` explicitly to suppress this message."
)
}
antimicrobials <- ab_trycatch antimicrobials <- ab_trycatch
} }

View File

@ -31,7 +31,7 @@
#' #'
#' Calculates a normalised mean for antimicrobial resistance between multiple observations, to help to identify similar isolates without comparing antibiograms by hand. #' Calculates a normalised mean for antimicrobial resistance between multiple observations, to help to identify similar isolates without comparing antibiograms by hand.
#' @param x A vector of class [sir][as.sir()], [mic][as.mic()] or [disk][as.disk()], or a [data.frame] containing columns of any of these classes. #' @param x A vector of class [sir][as.sir()], [mic][as.mic()] or [disk][as.disk()], or a [data.frame] containing columns of any of these classes.
#' @param ... Variables to select. Supports [tidyselect language][tidyselect::language] (such as `column1:column4` and `where(is.mic)`), and can thus also be [antimicrobial selectors][amr_selector()]. #' @param ... Variables to select. Supports [tidyselect language][tidyselect::starts_with()] such as `where(is.mic)`, `starts_with(...)`, or `column1:column4`, and can thus also be [antimicrobial selectors][amr_selector()].
#' @param combine_SI A [logical] to indicate whether all values of S, SDD, and I must be merged into one, so the input only consists of S+I vs. R (susceptible vs. resistant) - the default is `TRUE`. #' @param combine_SI A [logical] to indicate whether all values of S, SDD, and I must be merged into one, so the input only consists of S+I vs. R (susceptible vs. resistant) - the default is `TRUE`.
#' @details The mean AMR distance is effectively [the Z-score](https://en.wikipedia.org/wiki/Standard_score); a normalised numeric value to compare AMR test results which can help to identify similar isolates, without comparing antibiograms by hand. #' @details The mean AMR distance is effectively [the Z-score](https://en.wikipedia.org/wiki/Standard_score); a normalised numeric value to compare AMR test results which can help to identify similar isolates, without comparing antibiograms by hand.
#' #'

27
R/sir.R
View File

@ -69,7 +69,9 @@
#' @param reference_data A [data.frame] to be used for interpretation, which defaults to the [clinical_breakpoints] data set. Changing this argument allows for using own interpretation guidelines. This argument must contain a data set that is equal in structure to the [clinical_breakpoints] data set (same column names and column types). Please note that the `guideline` argument will be ignored when `reference_data` is manually set. #' @param reference_data A [data.frame] to be used for interpretation, which defaults to the [clinical_breakpoints] data set. Changing this argument allows for using own interpretation guidelines. This argument must contain a data set that is equal in structure to the [clinical_breakpoints] data set (same column names and column types). Please note that the `guideline` argument will be ignored when `reference_data` is manually set.
#' @param threshold Maximum fraction of invalid antimicrobial interpretations of `x`, see *Examples*. #' @param threshold Maximum fraction of invalid antimicrobial interpretations of `x`, see *Examples*.
#' @param conserve_capped_values Deprecated, use `capped_mic_handling` instead. #' @param conserve_capped_values Deprecated, use `capped_mic_handling` instead.
#' @param ... For using on a [data.frame]: names of columns to apply [as.sir()] on (supports tidy selection such as `column1:column4`). Otherwise: arguments passed on to methods. #' @param ... For using on a [data.frame]: selection of columns to apply `as.sir()` to. Supports [tidyselect language][tidyselect::starts_with()] such as `where(is.mic)`, `starts_with(...)`, or `column1:column4`, and can thus also be [antimicrobial selectors][amr_selector()] such as `as.sir(df, penicillins())`.
#'
#' Otherwise: arguments passed on to methods.
#' @details #' @details
#' *Note: The clinical breakpoints in this package were validated through, and imported from, [WHONET](https://whonet.org). The public use of this `AMR` package has been endorsed by both CLSI and EUCAST. See [clinical_breakpoints] for more information.* #' *Note: The clinical breakpoints in this package were validated through, and imported from, [WHONET](https://whonet.org). The public use of this `AMR` package has been endorsed by both CLSI and EUCAST. See [clinical_breakpoints] for more information.*
#' #'
@ -225,9 +227,12 @@
#' df_wide %>% mutate_if(is.mic, as.sir) #' df_wide %>% mutate_if(is.mic, as.sir)
#' df_wide %>% mutate_if(function(x) is.mic(x) | is.disk(x), as.sir) #' df_wide %>% mutate_if(function(x) is.mic(x) | is.disk(x), as.sir)
#' df_wide %>% mutate(across(where(is.mic), as.sir)) #' df_wide %>% mutate(across(where(is.mic), as.sir))
#'
#' df_wide %>% mutate_at(vars(amoxicillin:tobra), as.sir) #' df_wide %>% mutate_at(vars(amoxicillin:tobra), as.sir)
#' df_wide %>% mutate(across(amoxicillin:tobra, as.sir)) #' df_wide %>% mutate(across(amoxicillin:tobra, as.sir))
#' #'
#' df_wide %>% mutate(across(aminopenicillins(), as.sir))
#'
#' # approaches that all work with additional arguments: #' # approaches that all work with additional arguments:
#' df_long %>% #' df_long %>%
#' # given a certain data type, e.g. MIC values #' # given a certain data type, e.g. MIC values
@ -722,8 +727,17 @@ as.sir.data.frame <- function(x,
meet_criteria(info, allow_class = "logical", has_length = 1) meet_criteria(info, allow_class = "logical", has_length = 1)
meet_criteria(parallel, allow_class = "logical", has_length = 1) meet_criteria(parallel, allow_class = "logical", has_length = 1)
meet_criteria(max_cores, allow_class = c("numeric", "integer"), has_length = 1) meet_criteria(max_cores, allow_class = c("numeric", "integer"), has_length = 1)
x.bak <- x x.bak <- x
if (tryCatch(length(list(...)) > 0, error = function(e) TRUE)) {
sel <- colnames(pm_select(x, ...))
} else {
sel <- colnames(x)
}
if (!is.null(col_mo)) {
sel <- sel[sel != col_mo]
}
for (i in seq_len(ncol(x))) { for (i in seq_len(ncol(x))) {
# don't keep factors, overwriting them is hard # don't keep factors, overwriting them is hard
if (is.factor(x[, i, drop = TRUE])) { if (is.factor(x[, i, drop = TRUE])) {
@ -803,15 +817,6 @@ as.sir.data.frame <- function(x,
} }
i <- 0 i <- 0
if (tryCatch(length(list(...)) > 0, error = function(e) TRUE)) {
sel <- colnames(pm_select(x, ...))
} else {
sel <- colnames(x)
}
if (!is.null(col_mo)) {
sel <- sel[sel != col_mo]
}
ab_cols <- colnames(x)[vapply(FUN.VALUE = logical(1), x, function(y) { ab_cols <- colnames(x)[vapply(FUN.VALUE = logical(1), x, function(y) {
i <<- i + 1 i <<- i + 1
check <- is.mic(y) | is.disk(y) check <- is.mic(y) | is.disk(y)

Binary file not shown.

View File

@ -30,7 +30,6 @@
# These are all S3 implementations for the vctrs package, # These are all S3 implementations for the vctrs package,
# that is used internally by tidyverse packages such as dplyr. # that is used internally by tidyverse packages such as dplyr.
# They are to convert AMR-specific classes to bare characters and integers. # They are to convert AMR-specific classes to bare characters and integers.
# All of them will be exported using s3_register() in R/zzz.R when loading the package.
# see https://github.com/tidyverse/dplyr/issues/5955 why this is required # see https://github.com/tidyverse/dplyr/issues/5955 why this is required

View File

@ -108,3 +108,18 @@ writeLines(contents, "R/aa_helper_pm_functions.R")
# note: pm_left_join() will be overwritten by aaa_helper_functions.R, which contains a faster implementation # note: pm_left_join() will be overwritten by aaa_helper_functions.R, which contains a faster implementation
# replace `res <- as.data.frame(res)` with `res <- as.data.frame(res, stringsAsFactors = FALSE)` # replace `res <- as.data.frame(res)` with `res <- as.data.frame(res, stringsAsFactors = FALSE)`
# after running, pm_select must be altered. The line:
# col_pos <- pm_select_positions(.data, ..., .group_pos = TRUE)
# ... must be replaced with this to support tidyselect functionality such as `starts_with()`:
# col_pos <- tryCatch(pm_select_positions(.data, ..., .group_pos = TRUE), error = function(e) NULL)
# if (is.null(col_pos)) {
# # try with tidyverse
# select_dplyr <- import_fn("select", "dplyr", error_on_fail = FALSE)
# if (!is.null(select_dplyr)) {
# col_pos <- which(colnames(.data) %in% colnames(select_dplyr(.data, ...)))
# } else {
# # this will throw an error as it did, but dplyr is not available, so no other option
# col_pos <- pm_select_positions(.data, ..., .group_pos = TRUE)
# }
# }

Binary file not shown.

View File

@ -27,12 +27,12 @@
<p style="text-align:left; width: 50%;"> <p style="text-align:left; width: 50%;">
<small><a href="https://amr-for-r.org/">https://amr-for-r.org</a></small> <small><a href="https://amr-for-r.org/">amr-for-r.org</a></small>
</p> </p>
<p style="text-align:right; width: 50%;"> <p style="text-align:right; width: 50%;">
<small><a href="https://doi.org/10.18637/jss.v104.i03" target="_blank">https://doi.org/10.18637/jss.v104.i03</a></small> <small><a href="https://doi.org/10.18637/jss.v104.i03" target="_blank">doi.org/10.18637/jss.v104.i03</a></small>
</p> </p>
</div> </div>
@ -321,9 +321,9 @@ example_isolates %>%
#> # A tibble: 3 × 5 #> # A tibble: 3 × 5
#> ward GEN_total_R GEN_conf_int TOB_total_R TOB_conf_int #> ward GEN_total_R GEN_conf_int TOB_total_R TOB_conf_int
#> <chr> <dbl> <chr> <dbl> <chr> #> <chr> <dbl> <chr> <dbl> <chr>
#> 1 Clinical 0.2289362 0.205-0.254 0.3147503 0.284-0.347 #> 1 Clinical 0.229 0.205-0.254 0.315 0.284-0.347
#> 2 ICU 0.2902655 0.253-0.33 0.4004739 0.353-0.449 #> 2 ICU 0.290 0.253-0.33 0.400 0.353-0.449
#> 3 Outpatient 0.2 0.131-0.285 0.3676471 0.254-0.493 #> 3 Outpatient 0.2 0.131-0.285 0.368 0.254-0.493
``` ```
Or use [antimicrobial Or use [antimicrobial
@ -351,33 +351,33 @@ out <- example_isolates %>%
#> "Outpatient" (minimum = 30). #> "Outpatient" (minimum = 30).
out out
#> # A tibble: 3 × 6 #> # A tibble: 3 × 6
#> ward GEN TOB AMK KAN COL #> ward GEN TOB AMK KAN COL
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Clinical 0.2289362 0.3147503 0.6258993 1 0.7802956 #> 1 Clinical 0.229 0.315 0.626 1 0.780
#> 2 ICU 0.2902655 0.4004739 0.6624473 1 0.8574144 #> 2 ICU 0.290 0.400 0.662 1 0.857
#> 3 Outpatient 0.2 0.3676471 0.6052632 NA 0.8888889 #> 3 Outpatient 0.2 0.368 0.605 NA 0.889
``` ```
``` r ``` r
# transform the antibiotic columns to names: # transform the antibiotic columns to names:
out %>% set_ab_names() out %>% set_ab_names()
#> # A tibble: 3 × 6 #> # A tibble: 3 × 6
#> ward gentamicin tobramycin amikacin kanamycin colistin #> ward gentamicin tobramycin amikacin kanamycin colistin
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Clinical 0.2289362 0.3147503 0.6258993 1 0.7802956 #> 1 Clinical 0.229 0.315 0.626 1 0.780
#> 2 ICU 0.2902655 0.4004739 0.6624473 1 0.8574144 #> 2 ICU 0.290 0.400 0.662 1 0.857
#> 3 Outpatient 0.2 0.3676471 0.6052632 NA 0.8888889 #> 3 Outpatient 0.2 0.368 0.605 NA 0.889
``` ```
``` r ``` r
# transform the antibiotic column to ATC codes: # transform the antibiotic column to ATC codes:
out %>% set_ab_names(property = "atc") out %>% set_ab_names(property = "atc")
#> # A tibble: 3 × 6 #> # A tibble: 3 × 6
#> ward J01GB03 J01GB01 J01GB06 J01GB04 J01XB01 #> ward J01GB03 J01GB01 J01GB06 J01GB04 J01XB01
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Clinical 0.2289362 0.3147503 0.6258993 1 0.7802956 #> 1 Clinical 0.229 0.315 0.626 1 0.780
#> 2 ICU 0.2902655 0.4004739 0.6624473 1 0.8574144 #> 2 ICU 0.290 0.400 0.662 1 0.857
#> 3 Outpatient 0.2 0.3676471 0.6052632 NA 0.8888889 #> 3 Outpatient 0.2 0.368 0.605 NA 0.889
``` ```
## What else can you do with this package? ## What else can you do with this package?

View File

@ -75,7 +75,9 @@ sir_interpretation_history(clean = FALSE)
\arguments{ \arguments{
\item{x}{Vector of values (for class \code{\link{mic}}: MIC values in mg/L, for class \code{\link{disk}}: a disk diffusion radius in millimetres).} \item{x}{Vector of values (for class \code{\link{mic}}: MIC values in mg/L, for class \code{\link{disk}}: a disk diffusion radius in millimetres).}
\item{...}{For using on a \link{data.frame}: names of columns to apply \code{\link[=as.sir]{as.sir()}} on (supports tidy selection such as \code{column1:column4}). Otherwise: arguments passed on to methods.} \item{...}{For using on a \link{data.frame}: selection of columns to apply \code{as.sir()} to. Supports \link[tidyselect:starts_with]{tidyselect language} such as \code{where(is.mic)}, \code{starts_with(...)}, or \code{column1:column4}, and can thus also be \link[=amr_selector]{antimicrobial selectors} such as \code{as.sir(df, penicillins())}.
Otherwise: arguments passed on to methods.}
\item{threshold}{Maximum fraction of invalid antimicrobial interpretations of \code{x}, see \emph{Examples}.} \item{threshold}{Maximum fraction of invalid antimicrobial interpretations of \code{x}, see \emph{Examples}.}
@ -314,9 +316,12 @@ if (require("dplyr")) {
df_wide \%>\% mutate_if(is.mic, as.sir) df_wide \%>\% mutate_if(is.mic, as.sir)
df_wide \%>\% mutate_if(function(x) is.mic(x) | is.disk(x), as.sir) df_wide \%>\% mutate_if(function(x) is.mic(x) | is.disk(x), as.sir)
df_wide \%>\% mutate(across(where(is.mic), as.sir)) df_wide \%>\% mutate(across(where(is.mic), as.sir))
df_wide \%>\% mutate_at(vars(amoxicillin:tobra), as.sir) df_wide \%>\% mutate_at(vars(amoxicillin:tobra), as.sir)
df_wide \%>\% mutate(across(amoxicillin:tobra, as.sir)) df_wide \%>\% mutate(across(amoxicillin:tobra, as.sir))
df_wide \%>\% mutate(across(aminopenicillins(), as.sir))
# approaches that all work with additional arguments: # approaches that all work with additional arguments:
df_long \%>\% df_long \%>\%
# given a certain data type, e.g. MIC values # given a certain data type, e.g. MIC values

View File

@ -18,7 +18,7 @@ amr_distance_from_row(amr_distance, row)
\arguments{ \arguments{
\item{x}{A vector of class \link[=as.sir]{sir}, \link[=as.mic]{mic} or \link[=as.disk]{disk}, or a \link{data.frame} containing columns of any of these classes.} \item{x}{A vector of class \link[=as.sir]{sir}, \link[=as.mic]{mic} or \link[=as.disk]{disk}, or a \link{data.frame} containing columns of any of these classes.}
\item{...}{Variables to select. Supports \link[tidyselect:language]{tidyselect language} (such as \code{column1:column4} and \code{where(is.mic)}), and can thus also be \link[=amr_selector]{antimicrobial selectors}.} \item{...}{Variables to select. Supports \link[tidyselect:starts_with]{tidyselect language} such as \code{where(is.mic)}, \code{starts_with(...)}, or \code{column1:column4}, and can thus also be \link[=amr_selector]{antimicrobial selectors}.}
\item{combine_SI}{A \link{logical} to indicate whether all values of S, SDD, and I must be merged into one, so the input only consists of S+I vs. R (susceptible vs. resistant) - the default is \code{TRUE}.} \item{combine_SI}{A \link{logical} to indicate whether all values of S, SDD, and I must be merged into one, so the input only consists of S+I vs. R (susceptible vs. resistant) - the default is \code{TRUE}.}

View File

@ -63,10 +63,12 @@ test_that("test-zzz.R", {
"progress_bar" = "progress", "progress_bar" = "progress",
"read_html" = "xml2", "read_html" = "xml2",
"right_join" = "dplyr", "right_join" = "dplyr",
"select" = "dplyr",
"semi_join" = "dplyr", "semi_join" = "dplyr",
"showQuestion" = "rstudioapi", "showQuestion" = "rstudioapi",
"symbol" = "cli", "symbol" = "cli",
"tibble" = "tibble", "tibble" = "tibble",
"where" = "tidyselect",
"write.xlsx" = "openxlsx" "write.xlsx" = "openxlsx"
) )