From 92c4fc0f943c03d66dcbf3c89704d757228c10df Mon Sep 17 00:00:00 2001 From: Matthijs Berends Date: Fri, 17 Jan 2025 12:09:39 +0100 Subject: [PATCH] (v2.1.1.9125) replace 'antibiotic selectors' with 'antimicrobial selectors' --- DESCRIPTION | 4 +- NAMESPACE | 22 +- NEWS.md | 16 +- PythonPackage/AMR/AMR.egg-info/PKG-INFO | 2 +- PythonPackage/AMR/AMR/__init__.py | 6 +- PythonPackage/AMR/AMR/functions.py | 34 +- .../AMR/dist/AMR-2.1.1.9123-py3-none-any.whl | Bin 10045 -> 0 bytes .../AMR/dist/AMR-2.1.1.9125-py3-none-any.whl | Bin 0 -> 10057 bytes PythonPackage/AMR/dist/amr-2.1.1.9123.tar.gz | Bin 9815 -> 0 bytes PythonPackage/AMR/dist/amr-2.1.1.9125.tar.gz | Bin 0 -> 9825 bytes PythonPackage/AMR/setup.py | 2 +- R/{ab_selectors.R => amr_selectors.R} | 508 ++++++----- R/antibiogram.R | 2 +- R/custom_antimicrobials.R | 2 +- R/guess_ab_col.R | 76 +- R/mean_amr_distance.R | 2 +- R/mo_source.R | 4 +- R/proportion.R | 2 +- R/vctrs.R | 16 +- R/zz_deprecated.R | 32 +- R/zzz.R | 16 +- README.md | 32 +- _pkgdown.yml | 4 +- ....txt => gpt_training_text_v2.1.1.9125.txt} | 848 ++++++++++-------- index.md | 10 +- inst/tinytest/test-ab_selectors.R | 6 +- man/AMR-deprecated.Rd | 16 + man/add_custom_antimicrobials.Rd | 2 +- man/antibiogram.Rd | 2 +- ...rs.Rd => antimicrobial_class_selectors.Rd} | 162 ++-- man/mean_amr_distance.Rd | 2 +- man/mo_source.Rd | 4 +- man/proportion.Rd | 2 +- 33 files changed, 1029 insertions(+), 807 deletions(-) delete mode 100644 PythonPackage/AMR/dist/AMR-2.1.1.9123-py3-none-any.whl create mode 100644 PythonPackage/AMR/dist/AMR-2.1.1.9125-py3-none-any.whl delete mode 100644 PythonPackage/AMR/dist/amr-2.1.1.9123.tar.gz create mode 100644 PythonPackage/AMR/dist/amr-2.1.1.9125.tar.gz rename R/{ab_selectors.R => amr_selectors.R} (59%) rename data-raw/{gpt_training_text_v2.1.1.9123.txt => gpt_training_text_v2.1.1.9125.txt} (98%) create mode 100644 man/AMR-deprecated.Rd rename man/{antibiotic_class_selectors.Rd => antimicrobial_class_selectors.Rd} (80%) diff --git a/DESCRIPTION b/DESCRIPTION index 95d941fe1..26c504a7d 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,6 +1,6 @@ Package: AMR -Version: 2.1.1.9123 -Date: 2025-01-15 +Version: 2.1.1.9125 +Date: 2025-01-17 Title: Antimicrobial Resistance Data Analysis Description: Functions to simplify and standardise antimicrobial resistance (AMR) data analysis and to work with microbial and antimicrobial properties by diff --git a/NAMESPACE b/NAMESPACE index ee9b3fdab..2dade3ccd 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -1,8 +1,8 @@ # Generated by roxygen2: do not edit by hand -S3method("!=",ab_selector) -S3method("&",ab_selector) -S3method("==",ab_selector) +S3method("!=",amr_selector) +S3method("&",amr_selector) +S3method("==",amr_selector) S3method("[",ab) S3method("[",av) S3method("[",disk) @@ -25,15 +25,15 @@ S3method("[[<-",disk) S3method("[[<-",mic) S3method("[[<-",mo) S3method("[[<-",sir) -S3method("|",ab_selector) +S3method("|",amr_selector) S3method(Complex,mic) S3method(Math,mic) S3method(Ops,mic) S3method(Summary,mic) -S3method(all,ab_selector) -S3method(all,ab_selector_any_all) -S3method(any,ab_selector) -S3method(any,ab_selector_any_all) +S3method(all,amr_selector) +S3method(all,amr_selector_any_all) +S3method(any,amr_selector) +S3method(any,amr_selector_any_all) S3method(as.data.frame,ab) S3method(as.data.frame,av) S3method(as.data.frame,mic) @@ -55,7 +55,7 @@ S3method(barplot,disk) S3method(barplot,mic) S3method(barplot,sir) S3method(c,ab) -S3method(c,ab_selector) +S3method(c,amr_selector) S3method(c,av) S3method(c,custom_eucast_rules) S3method(c,custom_mdro_guideline) @@ -84,7 +84,7 @@ S3method(plot,mic) S3method(plot,resistance_predict) S3method(plot,sir) S3method(print,ab) -S3method(print,ab_selector) +S3method(print,amr_selector) S3method(print,av) S3method(print,bug_drug_combinations) S3method(print,custom_eucast_rules) @@ -151,7 +151,9 @@ export(age_groups) export(all_antimicrobials) export(aminoglycosides) export(aminopenicillins) +export(amr_class) export(amr_distance_from_row) +export(amr_selector) export(anti_join_microorganisms) export(antibiogram) export(antifungals) diff --git a/NEWS.md b/NEWS.md index 099adfafc..dd6e175ce 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,4 +1,4 @@ -# AMR 2.1.1.9123 +# AMR 2.1.1.9125 *(this beta version will eventually become v3.0. We're happy to reach a new major milestone soon, which will be all about the new One Health support! Install this beta using [the instructions here](https://msberends.github.io/AMR/#latest-development-version).)* @@ -31,7 +31,7 @@ This package now supports not only tools for AMR data analysis in clinical setti * **Support for Python** * While using R for the heavy lifting, [our 'AMR' Python Package](https://pypi.org/project/AMR/) was developed to run the AMR R package natively in Python. The Python package will always have the same version number as the R package, as it is built automatically with every code change. * **Support for `tidymodels`** - * All antimicrobial selectors (such as `aminoglycosides()` and `betalactams()`) are now supported in `tidymodels` packages such as `recipe` and `parsnip`. See for more info [our tutorial](https://msberends.github.io/AMR/articles/AMR_with_tidymodels.html) on using AMR function for predictive modelling. + * All antimicrobial selectors (such as `aminoglycosides()` and `betalactams()`) are now supported in `tidymodels` packages such as `recipe` and `parsnip`. See for more info [our tutorial](https://msberends.github.io/AMR/articles/AMR_with_tidymodels.html) on using these AMR functions for predictive modelling. * **Other** * New function `mo_group_members()` to retrieve the member microorganisms of a microorganism group. For example, `mo_group_members("Strep group C")` returns a vector of all microorganisms that belong to that group. @@ -44,14 +44,16 @@ This package now supports not only tools for AMR data analysis in clinical setti * New argument `formatting_type` to set any of the 12 options for the formatting of all 'cells'. This defaults to `10`, changing the output of antibiograms to cells with `5% (15/300)` instead of the previous standard of just `5`. * For this reason, `add_total_n` is now `FALSE` at default since the denominators are added to the cells * The `ab_transform` argument now defaults to `"name"`, displaying antibiotic column names instead of codes +* Antimicrobial selectors (previously: *antibiotic selectors*) + * 'Antibiotic selectors' are now called 'antimicrobial selectors' since their scope is broader than just antibiotics. All documentation have been updated, and `ab_class()` and `ab_selector()` have been replaced with `amr_class()` and `amr_selector()`. The old functions are now deprecated and will be removed in a future version. + * Added selectors `nitrofurans()`, `phenicols()`, and `rifamycins()` + * When using antimicrobial selectors (such as `aminoglycosides()`) that exclude non-treatable drugs (such as gentamicin-high), the function now always returns a warning that these can be included using `only_treatable = FALSE` + * Added a new argument `return_all` to all selectors, which defaults to `TRUE` to include any match. With `FALSE`, the old behaviour, only the first hit for each unique antimicrobial is returned. + * All selectors can now be run as a separate command to retrieve a vector of all possible antimicrobials that the selector can select * `antibiotics` data set - * Added "clindamycin inducible screening" as `CLI1`. Since clindamycin is a lincosamide, the antibiotic selector `lincosamides()` now contains the argument `only_treatable = TRUE` (similar to other antibiotic selectors that contain non-treatable drugs) + * Added "clindamycin inducible screening" as `CLI1`. Since clindamycin is a lincosamide, the antimicrobial selector `lincosamides()` now contains the argument `only_treatable = TRUE` (similar to other antibiotic selectors that contain non-treatable drugs) * Added Amorolfine (`AMO`, D01AE16), which is now also part of the `antifungals()` selector * Added Efflux (`EFF`), to allow mapping to AMRFinderPlus -* Antibiotic selectors - * Added selectors `nitrofurans()`, `phenicols()`, and `rifamycins()` - * When using antibiotic selectors (such as `aminoglycosides()`) that exclude non-treatable drugs (such as gentamicin-high), the function now always returns a warning that these can be included using `only_treatable = FALSE` - * All selectors can now be run as a separate command to retrieve a vector of all possible antimicrobials that the selector can select * MICs * Added as valid levels: 4096, 6 powers of 0.0625, and 5 powers of 192 (192, 384, 576, 768, 960) * Added new argument `keep_operators` to `as.mic()`. This can be `"all"` (default), `"none"`, or `"edges"`. This argument is also available in the new `rescale_mic()` and `scale_*_mic()` functions. diff --git a/PythonPackage/AMR/AMR.egg-info/PKG-INFO b/PythonPackage/AMR/AMR.egg-info/PKG-INFO index d3c027dc4..3f123a1af 100644 --- a/PythonPackage/AMR/AMR.egg-info/PKG-INFO +++ b/PythonPackage/AMR/AMR.egg-info/PKG-INFO @@ -1,6 +1,6 @@ Metadata-Version: 2.2 Name: AMR -Version: 2.1.1.9123 +Version: 2.1.1.9125 Summary: A Python wrapper for the AMR R package Home-page: https://github.com/msberends/AMR Author: Matthijs Berends diff --git a/PythonPackage/AMR/AMR/__init__.py b/PythonPackage/AMR/AMR/__init__.py index 9eaa13f79..2ca99691e 100644 --- a/PythonPackage/AMR/AMR/__init__.py +++ b/PythonPackage/AMR/AMR/__init__.py @@ -2,6 +2,8 @@ from .datasets import example_isolates from .datasets import microorganisms from .datasets import antibiotics from .datasets import clinical_breakpoints +from .functions import ab_class +from .functions import ab_selector from .functions import ab_from_text from .functions import ab_name from .functions import ab_cid @@ -24,8 +26,8 @@ from .functions import clear_custom_microorganisms from .functions import age from .functions import age_groups from .functions import antibiogram -from .functions import ab_class -from .functions import ab_selector +from .functions import amr_class +from .functions import amr_selector from .functions import aminoglycosides from .functions import aminopenicillins from .functions import antifungals diff --git a/PythonPackage/AMR/AMR/functions.py b/PythonPackage/AMR/AMR/functions.py index 5baa1d878..f16818491 100644 --- a/PythonPackage/AMR/AMR/functions.py +++ b/PythonPackage/AMR/AMR/functions.py @@ -36,6 +36,12 @@ def convert_to_python(r_output): # Fall-back return r_output +def ab_class(*args, **kwargs): + """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" + return convert_to_python(amr_r.ab_class(*args, **kwargs)) +def ab_selector(*args, **kwargs): + """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" + return convert_to_python(amr_r.ab_selector(*args, **kwargs)) def ab_from_text(*args, **kwargs): """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" return convert_to_python(amr_r.ab_from_text(*args, **kwargs)) @@ -102,15 +108,15 @@ def age_groups(x, *args, **kwargs): def antibiogram(*args, **kwargs): """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" return convert_to_python(amr_r.antibiogram(*args, **kwargs)) -def ab_class(ab_class, *args, **kwargs): +def amr_class(*args, **kwargs): """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" - return convert_to_python(amr_r.ab_class(ab_class, *args, **kwargs)) -def ab_selector(filter, *args, **kwargs): + return convert_to_python(amr_r.amr_class(*args, **kwargs)) +def amr_selector(*args, **kwargs): """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" - return convert_to_python(amr_r.ab_selector(filter, *args, **kwargs)) -def aminoglycosides(only_sir_columns = False, *args, **kwargs): + return convert_to_python(amr_r.amr_selector(*args, **kwargs)) +def aminoglycosides(*args, **kwargs): """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" - return convert_to_python(amr_r.aminoglycosides(only_sir_columns = False, *args, **kwargs)) + return convert_to_python(amr_r.aminoglycosides(*args, **kwargs)) def aminopenicillins(only_sir_columns = False, *args, **kwargs): """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" return convert_to_python(amr_r.aminopenicillins(only_sir_columns = False, *args, **kwargs)) @@ -120,15 +126,15 @@ def antifungals(only_sir_columns = False, *args, **kwargs): def antimycobacterials(only_sir_columns = False, *args, **kwargs): """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" return convert_to_python(amr_r.antimycobacterials(only_sir_columns = False, *args, **kwargs)) -def betalactams(only_sir_columns = False, *args, **kwargs): +def betalactams(*args, **kwargs): """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" - return convert_to_python(amr_r.betalactams(only_sir_columns = False, *args, **kwargs)) + return convert_to_python(amr_r.betalactams(*args, **kwargs)) def betalactams_with_inhibitor(only_sir_columns = False, *args, **kwargs): """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" return convert_to_python(amr_r.betalactams_with_inhibitor(only_sir_columns = False, *args, **kwargs)) -def carbapenems(only_sir_columns = False, *args, **kwargs): +def carbapenems(*args, **kwargs): """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" - return convert_to_python(amr_r.carbapenems(only_sir_columns = False, *args, **kwargs)) + return convert_to_python(amr_r.carbapenems(*args, **kwargs)) def cephalosporins(only_sir_columns = False, *args, **kwargs): """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" return convert_to_python(amr_r.cephalosporins(only_sir_columns = False, *args, **kwargs)) @@ -153,9 +159,9 @@ def fluoroquinolones(only_sir_columns = False, *args, **kwargs): def glycopeptides(only_sir_columns = False, *args, **kwargs): """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" return convert_to_python(amr_r.glycopeptides(only_sir_columns = False, *args, **kwargs)) -def lincosamides(only_sir_columns = False, *args, **kwargs): +def lincosamides(*args, **kwargs): """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" - return convert_to_python(amr_r.lincosamides(only_sir_columns = False, *args, **kwargs)) + return convert_to_python(amr_r.lincosamides(*args, **kwargs)) def lipoglycopeptides(only_sir_columns = False, *args, **kwargs): """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" return convert_to_python(amr_r.lipoglycopeptides(only_sir_columns = False, *args, **kwargs)) @@ -174,9 +180,9 @@ def penicillins(only_sir_columns = False, *args, **kwargs): def phenicols(only_sir_columns = False, *args, **kwargs): """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" return convert_to_python(amr_r.phenicols(only_sir_columns = False, *args, **kwargs)) -def polymyxins(only_sir_columns = False, *args, **kwargs): +def polymyxins(*args, **kwargs): """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" - return convert_to_python(amr_r.polymyxins(only_sir_columns = False, *args, **kwargs)) + return convert_to_python(amr_r.polymyxins(*args, **kwargs)) def quinolones(only_sir_columns = False, *args, **kwargs): """See our website of the R package for the manual: https://msberends.github.io/AMR/index.html""" return convert_to_python(amr_r.quinolones(only_sir_columns = False, *args, **kwargs)) diff --git a/PythonPackage/AMR/dist/AMR-2.1.1.9123-py3-none-any.whl b/PythonPackage/AMR/dist/AMR-2.1.1.9123-py3-none-any.whl deleted file mode 100644 index 5e9120ae5bade516cb8fb23bb2b930fa0e328144..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 10045 zcmaKS18`=|)^2RuwrxyoV`5uxl8G^~Z5wZF+jcUsJ<%i+YjX4b=l*rh`Rd+pcXjQ( zyX$$X*WUef^;*4@<-j2@KtMoXKps7rb&{N>jBp@9K#mDOK#)IMMHEz-4GpawtX&KZ znH)V+wB_6mxKK7{X?+5_R%MXl&9TN;f`m)e=a*nn2@6auN*i zoLA2)B1YU%LY+_YyHspr;J=MJ1leF|oa#VCuh7Fh)4qLmV zGUJD9-!e*2ZdxvI8x}i=Ydn0yA`$@1l`1ESawyLu(M)?kAr%_fYsaU-cTsiK&0EiT zprer~IL$Me`Jfuyv&#xvw(!6E``p;wy!*c~=1BZ8NKG0O_BcGWk>1mlDAT|8VcT4w zRAo>dA(4w$8^cFMA1t5NjB);k26jmoQcg7u&7gPx*aB;y$5+y`{3FO zr+b%^eNn7JH9*u((RR5^0-;VS&(zo&F)3U{(W$B}Iz$a$5pm&B0UON|KYVisA{n4q zJ0MfFwfYnqxX#2FQmqofww#|-w_#BNJ!3^_sym)LAS+o#VBZ5{OUbTjS_TsZNxuoo zCV^ILKZ|5XkGlfGX2ep%`34BVLxhndm$sV)Gg(+BjXPB6!(eT74i)KZ_PnUht2ZjG zyxv}G80^cfqjPp^8B=UQ3J9>J84k8ylD83Y3mv+}cWm3$m3SzhgKiST7V<~yd<{OU z>$-%v**4qnju`SjNB?z+aI?)f>5d|5W)ZkU={+2-q96*%b%%8ZW=EYw_k!o6wf5pA_FXvOj;Q7h zoAIPL(uE^M>Uw-;QVhQIY?J&+zS0+B2V;l)3I5VjLICMI+B0m)sqPQEC1y^{F=LSy zz11oG(IKvv$4>AsOL_$s>jW0~ZfG>xnVuFLR2o`t8&wv~%)LU5D^dW)(3;j7qAs@z z*j(iYnrkjc){>Pa8YaomJ=}i6<9uw|E;t6j@Sy?TW3 z5^rLHwIeZWQf(sP!Yp4)5D3bGw4G&Vg6WhzWHp9T^kxIg~@BY44)u z0ar2LDkA-ALTg!`YMFOD5&5JB|U$W{{$hhp{s9ny(Z|)q#V6c)|XA5j8V*G5%)m^6hgGZPru(Z1A9T-+rx|5JB6m z5NSx`Tn=kei2~c=a1^Th!i8dGjnSAY%_vjCh4Ar6s7jowL7g>;2PKYZx!sk)UHpEt zp)YT_^znN4_O|!9Bb(=wF?yo`;1d>G6zGWncrViGz%bL7Bcx;=%BHGoWU;TWC+ofW zFCn-U&MdX7%bUsP(S9GIuF&c*QJUlDM&>Ng`&NKR4>vXjiZTrNv5_g&kF5e5YCgr% zxl;|xTVU9y+z1iPC1+EtEBwveMpGH3EwK>7c#OS=V#Yc&MN-LV4&~|5@TAopdnfVf zY#W(YuwVt8AQkVA4*?Rpq38_c9Iu2|WVwRa9yPZd6CNJU7xlo6pdmNR_jo-B!6MlE z<7GK-(t#1t6*z)E7`$b@A`BSS223-(pGI*))-CAmnOhZj3=0YynWzX2QFBJ{Kg{|$ zNa{7y`dWW|Kb=xp@I+h)ZuzYwC;c_~1nGT$me<}~Qp1|La+;m`l%g1Sg767vFHBAJ zMh)NK)cCvQ7qEAWB`B&b8qOQ^iu^>cW9FFhySu?KRpu`NV=l$pD`4hoS|U)hr_V~$ z{Z0BJ4=ebM$%Q9&g1kMGo2jDF>l{mTC#iL+lsS`Cd0l0k&BG{KK;?}02Uqa#l+%{l zQ4E^06<>{fchItWhh$ZOxBwh-UMu9H^&T-F!o_xfr) z*ye#pZTpzuYp~?CHnFnT&By(*a-p@UdAcfS2Yt;K*t+yAvn+8uBWh0{O1m|1<&kh` zjv=s6qwN|Zi+Dv2%oL1pd*Rr%5}(Jp4>nkRMfk>@rfY8&QLSW6CjmSGn^FRqj}`GI zHzYf@9G0Cc?!6#iHi1OKU9PHvlWt3e#N))pSFZG}dXFjN>Nkq^6#&&%{O|xor7QXc zO#Tj&>eQ{PpyLurHMMV+t_JJpE7qk3QMBwEM#JFd(^9g+^N=R2L*BlB%&PUn?VLzx zQ|EcnPktxJE^sZnixmxUKiIb3N*`ykD<><5^#wjAw~a(;WL={Y!lYt^_TKIFx9-2j zwGeBYnVA?OGLw3YFW$EvmM5wTvi7@{kMEuP-7h!av6y{%8@tL!(*;KlWo{c%@zkvd z_~4l}vQ4I7Y}=)!PYeNTsknw-=wjTc?{iu=6)JkGCFrPr#c%FR1}i+EelYxRar03+ z;tRrqfEZSRfS~-}9g>BsgQ<%(z~L`-Z{>)@W%FS9|9YoaK8`=5QCqvaFd#c(S=T5g zaN{_W_LhLsO9sYFua6I!T0cw!b^Jd;BWLP%+G^mAFg>m@;#`p-<~czS^mH? zMSL6y55)r_)mdi)UBx`5>;;H%cY5uz*_Py7(l9&Fa|5AiFcl-0TH@CkGCE6y?c!tf#bhEe1l!v z>$VbPOX!~Yg6(gKdcGq^VYr--$lI9dv|2C^OO`aSx|&|~Zc<*Kq#f>fX9`o=rLo)+ z<&UIOWsOqophM!QQ~DnM>I|_no(|>`KU}K4IcO`>ZGSH+vrd-gS+v-6YuzGZWJTk8 zv4mbpkv(LZmt<8rbD#vBvi8+oAjEy9K}J%eo)HyxNmtKeF@!&l%DRId4j?Kr$j zhW^BFoiq-WiKa1UM5G^mpE+dF@~~8T#sgdCkArF%H*R%-nkU z{Ze*tebF(vRnpD=u*;rChbz0x8b6~Y6cBuC$bK4dWwE^ODo7z`Pn?D4#gT<9p7LV) zdv9>D@jVaR>+xy}Sr&b*>@dS3Q{;p8HUD{=aZSXuDNkLTBiK*oVPxrL5~!3iQ&w0w zw~?6Pn`EEy20^$(O$Fz*d8IIHe5uxUTT^$=(;Aii7!>J$wneaqzeGkVTbs}b)++(B zAa|-MJ+Fz^JC0Vq!WxOOw5$gqI$32Xi5#HFKdCDU};quUz8Co`WkQ+a=BEDbnDxKcEqLbV~FG?s=gLi6;n3YS1v?nkc$9@IpnfGFU zgLeN>wHUhsP4kN>+`%mxzoO2&dY`X85?1>+S6U_}%b(Q1)^dxvBc*c0b?gs z3A~^Uh?&Dh%Rc}91EN^Z7U~#5tk%~ycGE&OFhYcwX8ld7-9zhcYP~a^3adC2ZvLqd zlJ}}1+I=$B603l)SquS$vp>UP&5x+NYZ9!b!=%Kk$W z5*uWg4$ii6&$0@%O{D<&OA!tIesARiUd-M&&T0_Og%ZU9M|HWZd2zi*$+#ZR>K$aMk1B@fa1bDgA(SCshJ58LEw?9+1FV6Qr`lCp{okXQ&gS9VVwhdI(bA;?7^Jtlm`ITt$4;j++C-7nlq6 zYtmCvGoF3*?b1Hg5-%gF<4vf%$>fgLmKgVHbCp#FGOp-I@P}-la;PVd9z=okE`eaB zzAq@3;rzkX3hA6>u32kFJdQ1&tlU#9b*M;R*HaWiiu7Ad5@*4^ZR;^TU2qYDwIn-* z3mWRTzu}kjnkZ4)EF|$Cb&@7VCo+#Lp~)3nF4M?KOLUbR4a*?reae_4|P33N7 zgf*#wWCQZQ8l{<0Ll(ei8YG|!NH5Ybp8kw0yaUdfW3A{x@vu8H=iz%InOq7uz^pe#v7Y;!lKE6 z3JGFzi$Ez-vnp#r25i8Bm2sx>Y#{+)EO{3>I1gz;s@4@gI#4&g{~Rq*X9^cBbp@|m z!+}aw_EMl*(mFXs84O-JE6?Rb%-!K#82`3!kDI@vb8vTCbtEeI$+>#)mt zie5r^HE0dyrO5Rf5TZdO?I?!`5f$vTPW^RwR>PQ(ib!APn~dH#Y2J4g+tJWiY;wA$ zDXq`0RuV2|8M5??vwWNkRmYSt<#(ju+rh1vfWdhmH8<{Qy|>R7xB;~+XW4c4*g_%Z z4y4T=6qIDmQP@-6(U^~*XJp%Z=5VIvf1cea^SBq4RI;`Me_6h13>|v&M<|}C7St}v zd35VM`U^W`X%9J-G9a{($HSO-p?0TDh#R3D6KG`0uW*bCm-~RaBu5OIDHIhK_A{~0 z@?>Bbvc`H5S>P;wUx%z|mLQb^KFOG9(FgdAG8XG7O5B&%zhukoRb6@t>Ue2ZKV{ z*%EhPUCXPp_7ZPd70X_4V7z}ckDX5VRNqqN=gexM~sUx`ee1vQ=T|o_)MLV9vKxTc?`<(435kl}4^|Qjd19z{; zoU~N}M+-fZaNjPg8agUr=Yp)VmPfE83`8oc9^F5n|Gm|I{tQOi!a@=pA%cK>dJQ0? z|JrIZvN5rK7G731b|y3HZ!V114i*4r1qpQ#aS?TqZk==I4W5QSv%o&S&LcUQCH)3< zPPKC$w?zG&2}QQX@lvz!V2Ws&Kso=G<{R~#6`or6+(RG4#6p@$B1>Bf&J@-)t2@Fi zM1SCbV;;W22L&3V28W4#>t*(ha`bBd&yq$khrM3o$}Ojw1(w5cFqjJy<6}A#ci1@7 zgt~Is^bGjSaVG7lZhRs18Gg)2uV^4@7C!p9N)c<4MXsWrQb>%lk~kTeA$RzW2wdQJ zc#gB_@o(&D1IwW2FZ#iHP~=!0>(jt@PQ>mEe8`!IJMrTF!^>egLN>Kyvvo-@c^> z;ScoaSdohk@bsGeA~zh`B_})3i}WjDL+!|&$EhdwJ8knliJ3DXGX<|)LDn$y*ZHUm zFGxduECrq1c{*dF1NJ7YM{A)mubZVJYr9PKW(kWLvC34sQ+{F0d< zT$_b+#Vpg&Jx66rL$p)-EU6eRgfYid2qUe|Sg@u;Fs9MCkcm_>5;t6-^wZe{z2auV zCfCd#Z^^w$t-s>Pk{Eh4*8b>-@J9+9k*oLkzB%gc7!qfVOZ#+26w62!l?3zHJc zTEaOR2rIpoNJ3)EKoiz+K?u=af{{ci3TeAJjoGO-j<_nlssRO`E`%I}*NM)c>TU#D znjJ!iio;pXK_PLhI|8Ujdk!v4b3RX-Lh#&gAFDPNyF6D+Sl^dm&`+7ddlqf5wqK#- zA24~|97tRam4H)HhdY{D*qr2WuurkU8Aej=q0Ip;kN_)!f=?q27+!#h!h!`gp;JTI zj@%6;LHS-C4+?=kEkLBr4^uP#W!b=eY^EhX-Z~==^9naQgO?(EI_g=AcVK#8IMFRT zb+U${J@W}L*HlLZo~^v(LMQ0Fm-aDK%-Nz`p7N2Vj-OgQKUNP5rXsNC<&bBJi(Ro% zm>I{fxFJ!{i8`k4D1fTdnly>>6oKgjU{;m$##-WfvIf+Sv{@|l1@@(fC*mEsVHPrY zE~{nakHY*w$1QophwvK~QdAuxx9zJ8za0~GJ)<8nZA>OBHw_)LB!D-h^iel?nRkis z%pfNuW6U<>WZEIjNe++V&=aE|pWi9TCw)|wa9340zk%n(N)q2pQ7q*CI_vH(b=0L1 zV%3G=%^sI$7K~A8d!cEgHDA*{I2pt)8Nsc*X{p{Nn`DwZ_P1jY9X?qj zeiKeU+vo(SSlqFt3>=$(G7=*|SmZV+5oT)2!F*0VZFDR(yeo2oMKfZ&6B4d$mDvbm zU~Zo-DJ&Iex^jwqk;S>c{Ih)T6io3H4p@pD)_s4W^M8(qET>~vuewFwwxn{J z3l=#VD8+lH#7UmbU+;YESX+Ao1;X13@T5{Z2$wbt-5H6-J445*DX9?A>54_pF`<2o z74ookpdm@wzD&_?gM*uEz7gR}Gv&eu;OL6c^drxR`QATX58WnxK{09{bcR}9dTzYe zB9Tg1ztxEvWhnp`4W}4DG|6@5=%7DN5qer=x1tptbw{gnKi3 zFy>pLXJo;rN<=Ur`ysmA6*=_!V-}RO(pb^bG865d6)8kT7y~sBc)RSbUt6sFoU_4g z;xyM&st&_iOc4(iauXuV%jUq$WY9*&@URsq3Qj_0^-Wh&;^$ZV<1wjK3nVwbBIi)2 zoU_tl_kQX{*0Ev0)c|z_jZp{_ERb4TOxukYrdWJRwXJrpKa#V=uAClshpHn|K*9tr zO>UtE*JT|PH%0K>o8&f2ePa|KgU~SKjwfr(IzVLhAbq26Z08!G;|~s#&zC_42Tzi+ z6kR2U&mc5AuEVYA`_JTdP|>xc`=`sJ{-4?f14u36Ebc?w1KIb|Q#_nkUack(V9;^3 z?O{T=@Ry(}SP`Edw}IaziG6Fkk2aiBy>_^k_45wu{_e%@X~TE7yB0Et-=+B&yMhhl z#56;YnFE%=TJ__^)I;R%$)fVkLY;DGy`3mE=QXjK2HYQ-@m#_+37+yzVB-uo&%{8W zzc1Hb@;?4z_tLe3x#O8#cX5Xqw?s z?!z>&sI%trHV;e4<2I<}R;WS;vBvImw)d|)v_nt(*Nf&F;pxEKu3;qF3b;Eo(jI;m zc2cIexY-I(3WBU{m`W3cc;PSMrZAsF0LZz&d9w~~kDx2P6gBY0E?QBoXbaYf0DA9D zNSAFkWkVR@2=eAAlwRm5xHNf|%Ee1=)B*=H`&S>|_gP~oDn7uIT6r;$c^PW0dNl%a z!G(3#C(<+^PQ4txKtwv;uj=Yhx6cHMJ$3``u%5y+XnpflrCP7m6M6%GNL%-hOm9+E za`7Bk+8WgBAuEBNxqDAr(0@ZR%4LZnN$$DkSsk+@9#rJ@iuYGM#IyP?AdR_x(5`W2 zYv7l7{sYpQo8SUD^OCBbvF%KYigIx$<9rFKje2PHeV_P(%4!fNbZl2*tjy`h32Cg@6Iy* zUJdF`lklprQufU;LG^^YfmQ1^h|q%uz_jQ4BzcR|6n0>$iLmY7uiJCrw|zdVd)@bv z5Mf%o9OZ*Q)q!lfX7tdV#klF59zBsXdv#N_TP9w^wf=y*>)BeyuSgv!TU+pp%@eWG1iOQshX*W$*ZTUx4)%#dgD3yD*i%Lv$lqh zEO3!<5t1Xg?d5_ZIj3N0vWAQCBjx@wJ&Ew{u;_>oA_vi)F#Au}y(_mc_yo%BHEemY>HX8K#-m!D^&`LSjf=MSD)P}iy3)?iHAlkmdy%D)RkEf7h*C~ zS&)EiETq_b3!&V&?kwv5+A6H0-mVuym3BGo?4km1J*c-XN3(JMti>H(I_%49j%25$ zF%8%>LiwWh7R0fw-F-AO`CQ}a;P)c-DcFl&;0w4&_*(|TK?t2#3)U{W?^~{ke(u@? z5g6S)O@czIxOG`E+uz#{a34U=T=BXMNFV>8#9!slZ%`bCOxAhJTDH(@ldf5(Qs^oK zx~BG7CW}{Dvh6pSgu%Sv9NP#s-gy~^N@3LC^ zkfbWhE?t#SELe7U#D7;L`YINg{JrzX=`Z)&wmSIsm0z4MTgye}y1e-H8~(BSN`m4d z)a1N4tIyLT`P~%O&#En_56jYgGp{uKq%*b!-MioE)|9a1qrP~wAk5dd$#UwhWv^8> zh)L|wT6v>=pl`tlyL#R)#r(!dFaj%ZtuxB)4%97=YuUEzI&T?$Bm2@GbwRlCn=Q-X zK~Q313p;K1^rO@{mFl^GD`%Rimv(n8M=hqN1>3dg428LqG0#~^;G!bUuz{qvhXY~pe?G{{#{ zQ|o7jZ24aEO4N~gTlZ`ilWy7hdZb^|uJILa!`M`X5nya7_?WqOU~D6O@?J9ZiaU~d z4z9WH1K3{2NZS!(-y~+>RBMCWQ{7*!Pj3=bR-lCAaybrTO4^J1V3Ok_!?kstGw^%A z&-D-SfBT3vu}=qjpT42)XC?Y4AMvZSgoHd~KP%iI3j*YvK5%Xofep5x=?SbvmzFd` z|EUR-98#Oe`L(C@-Jg!W>#{Th$guzp$84P2PWpms(R_2{rtrvtbjJnn$>r%PwI!S} z$ZtivGd0Q^l_?sTEB+s6z<>F!#550RP@m(0_^ed_G%go_qoJL-o4Fm6i-*g%JH&l3 zkpH%@EYq>i6!bGe2Mh#+_@9_mCB&3e#a-tVz7?{7jNEt&%hjQXW?;om?{PSZ$*a;8r1)LkL->PD9x zd?tS%6ZI-Mp>VVPoOQYkiBML*ENx&i^z|ZR<&;f&K$F!?XDA)eR2E0^W6#_M^p4{-j(NFxa7m zQ%KMGY|il~J-m^1oQmf=iM=QDMh3y5dmKmz;keAE;H=qkm3M| z&pfQZ!2gjt@OSXv4N0a}F{(r?+{*8|LH0~4q&(W5@)BRnF|E8-a z`vF=C>7t;T7HU%X86X(BVr7Q>emz+VMKg->x8rdoT Gdiy^h`+@iX diff --git a/PythonPackage/AMR/dist/AMR-2.1.1.9125-py3-none-any.whl b/PythonPackage/AMR/dist/AMR-2.1.1.9125-py3-none-any.whl new file mode 100644 index 0000000000000000000000000000000000000000..d2fe813130ce72b83a94936dacceb33d02fc2832 GIT binary patch literal 10057 zcmaKS1yCK!)-LYu65QRLjcwfB*|2eUNq}I%-5r8E1b26WOK|r9A-EHM&VS#ld+(|D z&UAH6&s2TitgfkVb+6S+RRJ0X2Lb{D0m533LqE@gS&keQ0)mMI0s{U0t+scJzk9UX$Ie*&Sg2YcniE0MYI6;ASEPB1e1&WA%V|GMI__bCBzHE z_3N-0XHK}n#kIn(oF@fbDKF+}1nQp(vOon?7H-b%s((0Nahi3LBxD=zc-cP4KAXZ5 zNAi5==Rd8URYr}t;ek6H7jm!I#36neas0xmY&DiUmcT%P7;mW-;waVou`AvkNl4ym z+4o|NlB9tepzae6lc`arR(on{ep)whO*j(;;ffG>Q{IFS$qe6)XYNj2Pp3O+(z#gSK!hhtoYEdE5cCB9I} zf^U8Z>xT_mKIXRWL`1AB`8dmJ?u!Y!<&pEd~Cy( zBV|Lyei)4Da~Su;Zax+gSdlAK394 z@|IP@x|n##+O5#h(bTeQxg;yvoUD-Uy(T7h4_in)L>Q^k3Cp>#gGJRq(y^=nM^ncG zlrI5x*eeF2W_^l$J6#PHVSxa!*8Z7&LXJHN6!em6B;tHo#scgLA=b2W?{1J2?g|}{ zYz7Vd03rW!j$JWuy@^$DyD;`|1;8bZSRBM_My$i8 zuT)GG^5~0tq+APnF^Hmyx^SoW+y~`KW!*PfXOQDOS-jmLNCE+G?i2oFce#(1_P^7c z%&4}DNnNT)=@$Ly;VPu9S{nsLV#s=NF(4_k_ zTMGf3cTr78(z8b!9+us^*$-`h*TrIe~2(j0Wx17)+)Z9WcZQRlwmgVxyZ4NVL(>1{>4h@+@-7ilQ zAo8vzg7#lVfRDd4v4!*P)wUhBO)EC|qMt|Eg{fKxKHN}-=mZ|Hq_3w9U)3W<+fFP*x~a*8Hbzz;UTH_J*N87jjEfa?P_xVo@_vKWS95O+5X<-; zf|p2u$qmy6ygqN#Zgo6%e|+N!ER&0ce?&~GRr+EC{Pv>j_$_w2w|my?_7lWhwtl{CV0Yxx|BLehmKEym57KyOfzWh z%b+LjYrG*0pb+u)a8bdBqJLOo3F$*G0@0#jAr69iJ+8UoPm?$in`Z2`%#8{n<~gOc zOiYyes2LOFALf1BPIA#5 zQx_3_CwU;)3Dc0c)F1{OgZ-?;pk6H(;Al7Kc`mUl@)Erd*<#9XZU(~C*~9`z-HSGt zpe!_W#o?xpA5|v%8jZy7mWUgY3y$mo0^Q^5sS?qv+zX6HskQ1fIpbAdJIi>QhA?zX zRWn}iJfQt(Cav_Mn6>3AbWA>PVP*9U%Ehcd?-d8FTM5diDehDSA?XJ^r{;vsZVrAY z!{r>3b?QiSJqpPu6Ui14l(W#|u&{zv*+FKR)1Cyf{k`z`;DCTE&J@ zs`LnILIq+rR@{fmnDWqSNPecM=ZtF66c&wev8oD5wlx)&h=-6^weoY-YfKq$pGov* zVMsmYw~tOy>B|0r<5yua9R{@(jJ)EhW)4lV)lhwcMFw;b%2vHYSU7xwx+>O0A7x2u z(Km1Jv%dKgc6?80)#QINN`C#2o$pb26DtwuwYO=rkv_(1Urt$$___2xxpg>7E9(N2 z1R)hCwC850uVwc+u9-~F+}zX{m5t)#*!*qFetDugfTPc&d~D~`|8}wIhTUB3W%N7` z%K#cXl&y78?UO-8;2Zz6iCr=^OY1fRQ(_2IbHxSxTqny~U9ZcknMmQww-4>r&%{j~ z$xsD*ba%%8E$;NFtKX8y5D+6(5D*yuXQyQ8;b`V=UkPtc0t#Sp@bni8SHr&o)~G2^b`l+!Y-eP5a`mQ<@(D6070(CUsc=#oNuWGF%{ zzl&?9U#?iP`sYr1Y*$5}C8)p#X+`+$sf6YLP+mT@+Zw?4YX1wQa#SE}n~K6nOC#+$)~wRAqb2nrLLE zazr$j!{KN2XOdY?DsZVkit~Va#=6xiJ*_Rko;sk7*-4?Dj*IMoqW?hO3aIR^NT3g# zwd`;yB`ifxK0QUKNw+hH^T+q#ToczSKw_N8iK^R7T&`X^KV6dE@PYiX>By%KVFq|@ zN>)O??b^Q4yWLc^t|Z>ViK{C;ICK0x9B02rycTK9wuV_lU;b2{I?u@T)b{8Y!U4tJ zBEAM}e5DNKD5y-!ua8MVwClGY_4}PEnm4Z+c>_EZT?P$l-Enx9IN3BtMBKsM*|azV z?4kUu^u44kmTty3Pn9Q{EFh5#9pd{IkVuYa)D}_fKj|euNSgK2_euD2a=uTBkGZhUN|L?VzgCY zh0N!#)Tu~0(|_R=S7eh=j4-BxXiFy05~bV00t2+$m1J#FelWR=NkXNtg#VPPU<@=< zgm7g@@CwR+dD^G1z&ABzyX*+2?~*R%_ltrkO0!O}2mc`b>kB`{elZC-Y@=i%3=nBE z>aq9d^A@;9n8Z@jluE*;iW|xvnUJL{*H&rrU@G!`R5(L$D;@+fC&@=Rm~>!O&c*?j z5CMNaLIwXZA%gYboEb!-wUZ*6NMR2BDQP0`f z`>2j6(!V?5eZUcFIxSSbZ%mTSg8CsJn|n~&+0dMRu-kskY8DqCSSkcJq2brtc_=<;QgeTDSZ zG>ijg%y`6mlBVj;L?^Wz)Y%5J6``=n_nH(#XxYPlP?qqtvdlC!fU}lV!j|OFjDHz- zvP#cCgWeL5_@ieTj1rhHolwt~zogJ~Zd|bqm8S~?+p)YT@<8Cf8+MFiq4ngI4=UsU z+(NR1i~CT*mVQ#uV#SUbVp3Y{?<3umpr5LD9w4%Dr9CqzpZsp9HhFeNws6g(EaiDn z<)&`pe?~pX&sckDr#Of`_hBy##kSVz-R~tNYAp5%1lGcjki+rn zw;lOU;KWsP50?I90hHH_yz6L|K`9TU^Mv%Qbg(FcMaWD01mUtwfv2slZK}&5j})H; zkNB*TYw2^m?4KlpQXM&pH@WmVJL>p1YJ{IO>SO*`bhm;(_eEDsZ{_9oMI%hS6JV~s z!ccTcVrB49rh}*hCy2yHizSINcz9L2RFN`x`jbIaf4!7tOOUsW;s03#B%p)cLrLX? zm2qr@J*7qW^Z+qDlqM_n4YC&vZDMCnoY8(6RZizVFLugj4RJ43c;0U9Y7PQ1z;z@) z1sWd^TxRs%!=S_xrXe8`*dwgdm^e?gYRdMKvx@PLe5-}~nL9wl+DV0{3vZYz)-*Cf zX6}w;#!I`JA~^tAx7YgHA~#4Vve?wUU7n_Cl2;08;V62oR{3PCTZ{tVqVFnbB_f>V z{JL^JV8hU)gd9#$!EuW|P?r%+aLgH~l^Z{g*y&jB>R84*Dgy?~`nTxMjAS=&>w|lA z>QGPROB~y{KN(<6Xt78L1GwZWTm;Cz$MqkHIwZXW=d%D}Q zMM626M z$Lkl?r;WPERT%+}j%>KI^D-tO1;&tEhc63STv}1w?!2;}E60=)!e{VKt2BAf?wr0l z&0ns<`FSPg4OY7bh5z84A>LD=IxApBd z8XMWT(pV@-+kPhWN98!^Q!bb<);u1+!2x~a72b|pv&41DWk7~LhoOF7MI_0JI1$r> z1*}qPW>{D*RT$#}rZ{cV?QIq`-Ir+=3GtJ5iHFsu2T*|Ch~xSd?h=8IR#lCdw{gIB~59as!kiqLC{ouy;xTzLK<*D z8`_2=$INu}bLP7IKm+|1(LO?h$8e&rx+S8689<59)Y2lqudcT6Xu?GOhuQ*iRLYiZ z0UHM@nDncAZEe5b@Lw)r<`PV%Ttn#%xoLZL#9JAD{bOf`r(~D3O%lURBQ->r6vnH!rHL=xnt!AN35+XLeBU zNCTJ^0^KskxSRb&C*QB0S&ZMq2QK$eKbE5ZB>x%LWq4)%|JxVx%?JC1k?^fTylIv*7&&sPF> zH+57!2Q|99a97guZDn{YctEP$kc9!PS4B4eah)O~>l$M#cG#f!Q7lo5RKN_$Yed=E z{9)C)&0SK-h3xP0(P@~lv=?g2*2x#e+1w^t%hrgOD;!*DnMPBZlk0PA>!TVf$gc#4 z<2dLH57}a;-;Z)dkSgk?MWet^cR(dH;_0@=-}U{5f>~APwn3jWx|Hn9@TEXvSyf9q zZ_xkVaofD-CUYF(-wseAAl`!q2#SC0xLG(^Io_K92PY4!xs97Ui;bhD6PuEhrnscI zrg)eBsp}el{h#U5Ucrt71-S*IdQBdUQ-04xqpk1CoDE|o=HbEA(Q-iw0nJU9nmJ4S z-@J17eNht&=*LN|>@0awI99B0NH$OdO8cF^5`*5Tu~@XYO&wZ(WnZdBFZcZ{Zh&&! z=>b=6xYf+D?~g$toSA|T8BM(qq*=CDG5{WBQxQcyODFa?dc*znBxVJ$II% zj?DkK_485842aSUx^f9!%RE5;tu{PA4fDPPa(wIIgq5+hCt)>O7mIE6w3Z%qZ%B~+ zFk!ms+7k0p)thR#8oac{1x!U^It8(I2R_gYcOryg;h5JjLAsoGa_c2f zFyLI~kHR_I|I$S}W>zLC1$`5e&V=AyFPJG}pN#H4C|ek0nAl}c#c3vqIiy7yZgIs! zG#f-Pizb9kq?MDpK|LX)bDd!S?o&+>_MuJB~7mxm#=HkG{B2r0@ZiX7}e8 zXTvRHvaB&#-;RhPIqAaU;2y#LG-(<$3zq8Ymrdaq$KebKGczC@=?o*rBGlCF?QKi2 z4S23~*nA(hoNXEX>|uNVqzsPhgqxixz+pFWc&$fJz<_<$OyPApy$f2~OE`kQHELzh z2o^GqNA1P=kpn)2;st$lv68F>fis2cUirxqZMpXsZeCk_gTT&hwh`963kY1EF8Nq) zH8B1dQ00nB1;W=G(!WlWo8*uBkt17T1M#h_7wuwHc2KNYE5;t&8GEFV!83{s^T}dP-w_~OcYd<4_X)DG_qLF~LTc5=3 z&=^BqmR;6@Lrxb#|3cJ(&8+Ta0$GwB!iY)0Q_f8-b!af`REPB#T#)8^nl^#*X}4{( z8Vvk(s+_R8E5&S-GC}kxQE%h0L?hI1`ncYoxELyhq@sy*Ffq42&h6-sVoNZDrrynv z1DP)cRS1WiMiDqPhY*E_2x-cwfw3969ZHVjR~-)tgFPusswad{GbXkO@*16Lj*qv= zh{HW6jLs0C&Yp~V)D`HT>>o<>%uXGzp>E53aGGhXrG?H`U2tavxbCFA4Hoet!XSMb4G z;C--h`ZnBZIoBK1n;xD>bl{0w!2D@ZBO`AF;RiNh@jWq&|B#5X`XH5E@4F)(mGC%W z8a8W4rYtuL9ku#^Y)s>;Y5Fwl9`PxIiiDCS+n9%SizFvGJc`>8NKG}nRh&n0uPWuG zu5@~d%!8LCxt^k2z^60qmwRTVY{#dz>5Q5|C0G&Q_4@;keB#8?L`QrR+_2~PjaE@M(yYN^@MG5T2+&+g*SwoRfswlx`6E!Z|A zvo#r=u&^V#o8UiUdf|8EVI*(*nzx$9{pdnP2wA1$75eC;_}dV++*Tl0xzQrk%u z){MPaNXI%t$LMHiQL!0|#7}YIeZfj!@%7X2{b+35kzR48M>ORo#;r z5B=U)5mUiUA7mOk(;@IEt5x`!cJ+?x!X~nw{To|G>>*i#BGq(uu3=Cav~_rD?D_L) zda-KqeU(ZZ``FL$01(qqSe5=xMrDBJLJcQnWJjj^VQtj7#hM#QxPIfv)oS%6mK$z* z>}1oKt9)3FphPr@P2K3=3M&UK!>``SwW-*82`1x{?o(8soScHai3%)f`wHM(RVs`f z!d-96otRQoB%_ZrkTn(Z7DkNbF;MIrxI!kkHgcyg!IOK*uYt$xC ze0nc^t#@?m0;T;A0jsar0JGyK^0E{I7035nG#8=cwb|>>b&Z)GR=dCt9COe3J+gtcfGYF_`Hz!3w6yu^A-UA)h3ncp zZei|jpKTx4`+43pQ^H)8c`0F2Vpb&t%7yy#>nUfsl1XU6kSC+6tH?aFltU~ zVzohhZ`$#^qBRMh6dR$&m@gm6N=vQwqORwG(SD#{BnQUZ*kzB8L84Ox=+Qp8;S3Hs z%(J#=?Hi7EU)cqJc~-93_AFp&hevr0(Ia9`Tg2PmEufFtVwPKDitNRLy=LrgpSKtW zA9gS1EwsYZOLIGi&=@L^Zm=l2h1j_$SmWZRD934il`spbswb0euU+Q0KE7d4^qfDqri|&0&L{)exyB4^RhN4}iRjanB@B^UIw8z^d zMa$z9uF_OfQM;Yr*Qcd!yMorY2Cu~-q73#qs(XK`gE$S$nczE$2-A5!c1P0h)J}Zc zF!dh#7T{ESG5w82XQB5z@pRg?AW;_9PWpw!M@L9rHNDg4r+Z{uCM#;)_g%IaQ%I&Z8B$Au` z!UGbR98?FA>_45i9(8g>5$^;=~cKm4o5OqBr#+7Z`yLo|hQ+Xx zvkIcsFFmz6+6}WO&0ff|VPelY(j8V{dZ?lnHtq(m8y<=NUV0xQaJsr10V3*zwOKKnerkXr21-F5sl8T-63U#Cv!%{IvSyKaI%1T2;;-})b>cad zB=rx4=3IMbPZ~YbsH;8TtEKIhS3hIQVN%V~T8qjmm&sid4``Qv{93e57NGP-6ZvJ| zFn?dc2;*bbgNWS9DIeTq8e{k2rWw$HNN~N# z$0~~wwY0F`mNs2D1rd~p(9MP2X}$6$O-cf}+v~cu z7P)QdH_y|?VxfhB0CC+~K&+7pKvJBJN`PSbadJ4Xi`wQ|-;^Y+b87kHJdzN@YDzYKy_z2kQ-c13}c|)9pgc6;6T)RK7>8Np4q= zL3v#BrhVsW^T-ROSXiY(M+V=5ViEAqDV?J-rBx?`D_DYUMOieSs zN8t$uTL;TmR~6y6YKg}bsGNeR-8uHsUuH`c+bt=Ty=S!X)O5FWc^D&s6LEw1963~L z9UhXL8%}ums0R#xu9(8U|5^_H@>yD2_h*KD`A*YP)PY57*K{YVLD}hQq<`Z!_?)nQ zbfUt=j@kgcbGbS-`SRyy>YFOqErsj2s^w5^tfp*_Z-5eRbmW{cik-B)eIWcsBn zUxmQ^*BF8sMGxkkX^yWP@5V(=|J81<#~-r)juC5OANCC2V?%@YPWn$VqK>STlp<^& z2hspL3hazg>C7?;Ct`l%15~jA14V|>Ln9;=tRAWBb9c*Y03%c9uab;X?m1{AHgIkm z#S^Aw)8&Du(mglY4KMO1-cKGf8=@HlLe>mh6C(mqnG%t?lK%f~7a9E>7Tmi%Fz=oA zpX_pXayGWN@U*aJb^qw@c7wVL1@YfZ8unZ#CXny-I#3W0WdFpZE(KIkm;5|E?i$1n z5wi37D~*1QIG$0Sq)`ZU!C1OZ?xxTni-*^ulsFuWT!84*j=EKq^@)%5Ckbr}#pB)P z+)_KPU~|lY9Lp5M;$QN1MN>UQXt8lrP>IyxFD=}dB`-^wp!m`v{suWUvP>&t*vuN( zRW?Ald`Tf!58GZDI_i?Cr%uDXOw_x{`r-nXN{5=G-~D1umkc z&~BU$O&Tn}%P9~m&>5395K4y>3WO^fX%53PP=Vk6iLI&t355gw|1Y3=|3m+K6$Sov z`&&8H-@$(`82A?y0-`8T>AfcFFYteq5Bwec_XEj)gBjoJ5B>uG=ker!qW@pXm4BnN z-zWEu{^wN7-|7CY!++EDQvL(o|EluuTz}Wjzqxd&{(;NRQLyA(xf{(AZ!;UQ-N literal 0 HcmV?d00001 diff --git a/PythonPackage/AMR/dist/amr-2.1.1.9123.tar.gz b/PythonPackage/AMR/dist/amr-2.1.1.9123.tar.gz deleted file mode 100644 index 7d977d7a396589f11ee82918ed6c4428dec02894..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 9815 zcmcI}^-~*YU%}j14cal&iprJ8>Vr&s$U!6TTcsM`)E5aXncsaekdcd6ree+!JY<7h% zRqR~%8h`)PUc0F(UL=w`k~=AGXyWtT^J2eT2oGJE)RQ7LqfYsgH(>0||1!PT1<#}v zFGD;oAwRVx2O)2ufkLW`0*Rtv`1h_P=fwGJMoxz03zNQJ_YKsiC*rGr%HKX0z;ejX zO$q-{wmZb3k{8A8qd$^MXQ8WiwZ43$MTyaUyUMn6qJOcIQz%kSPPszf{h+=R6@NPV zxlBzN+;SblM=l>S4%&7JaRxRd!k~8C{y&qbJRs}PNRN}8V4U}<>J=e<50{HCfF&5k z3(PK%ulgS5TL~-b?G}SDfnhE$A#)Vij&HEdV;Iy=2ZrnL2BUca0P11m1uk{Z0Nb~Q zQ{dOIdf(oIWeOO0ms=6`I2N({@npw6V-AI*n zj6ASc^KQ2(NxhBv@cba#@P1Ad0(RWS#u7B5dm`HGYm*Xt2}KyZMCy2)cLC8Y=IxJ3 z;XMmlTjP?2{iR$Hk&|SdswV_;swVEUlTX>5iK0V?z2Y(}V{JCD#pNZ?vAkV$Wn4*0 z`@<&?;;J2Z)O8AKVv6x}^LcDfSes>CSUkip{4-FeP4MB&2e_m3#`_sWHY4A$k)(dr z9=d!`Do?H}Fftu?Nl7L9Y$ZRF19Rhxx5;0r4t9QL_D4gat@2%`SoVlbvS>?I^eL|n zs3Q$n#%-62Y^jeR{eiw88tg&yKZ<@0!cU^GXd zLAjbhV#k=f>+YfFFy3!(pcq)eX~g7}Jz9*hl}g_yK0USio;|6X`?N1}zb|wBa}we> z+EVT0N6thvIvj6;hf1oWD<3}EQ$6p=>r9dek67-AaAO<)@kFMjILwNbxjfQvE@d$) z^cUJ~)}?H8IL?t}j4-dCxq>TE;A>*v1f4hL(Bm_m2bVy`A;DelZ#-EYrw#K(d`AJ)j269bJ&y{cthy-uWAY=X&nXT#CA zd6nR!O08`O_v@!{zs7?=Q68Q@3d4Nimy$K_LpQpU9l0=>VJl(t?ot_mu&Gs0LhCVK zC#JY<%X0x$PIQ(xiGR`B8Ry;c^=1?_kJHzC5B@1RgH2cDO`M^tF8KWo+{V|ab&rB| zPv`U=Mle^=0Use5x*)L z*9V9f;$}c2Q7pp~9cVm!Y2OAnDWWoMhk@dXY_ozU8bpz-yhzxZ$6#azD5Xoh-B8@6 zwyZM>i4L%m;6;UZ)n@6F^o~cm$1nF<1LE*N*Zx)+V`(>R9zjzg~ruBi2TGkKB-uTg=9GrnB9m~sI0{~UdqZ)E0VO0LFdt|K2wBQ z{~e=@8kA4E0`6$?1vZsP*ez-EEMTwd2}W8zM16k338_CM9JBiT>aE1bCN)NWL%L{P zFMmtX$>eo+qIY63ggZOJnyJHaOV<|*wSIN#_QQ#+Klj7o#3PtVedR&+bkNC^N0LBl zqbt(SX^TIIM&KxVLQ*MWsGi6jQj2W~yDA}hUf^lQ2>}86H^L4_HRMF+OwQ$65!L&% zL%&bVMnRnwE-5jXbx&2l%Yh*FEiznXOuPt08wlSQCAiqn^0tKdLfYe(A_{xEkp$oC zcik*=$AQZ%!&~ozqy1r;eXxoxn2uS`87!{DR%{Mhbm8W;XtoWDFb+R?lf-p>c9W|u?l&1d9Iot4in@QPJ$$rFD`#^4{&ss9KbaT>m5sgQ< zK#1jI!~ldQxTuAL?|lmCvX#ODBhPirr6Uk^oP{O}89J>ZO%6F_vk)(quG4jujqBz*tW7*G2=mwT3lRN^$OBpN%GNk2w^)d0 zW7BwS(5!FNF^PekiUjyNhe8d5+k?~K;JyQs1GQ3mKHWhi3{rN+i};VEcb+R^VkUDg zuOjBcY`_Cy$|O?H0TXsKzYvbOvUVOs&~1JqIqG;;OsLTBOrzy}m>8MYSM$ia>rGbs z4&*E4Z{vHVV}-O)h@pl|iydto#9RDONAk&yiEBvvFr3g)uD<7+D7j=VmLjZXucfMyzC;lPTfr{pWfZBDD*%?8YN73)5Nde1UYxYlzmqgM}xdf z891=ybxCki$rXBXm#!se*6K@zmMGkEKV>CRTx3)tnLR_2U2!J3U43cZ)m$MpU4Z^EM+zteq{131|>ryp^J# zT)ytC(fG?EYKpteqGP)-ds_*nl0TDWJm)7ow#GGI;u-3xX7n~qdWplYu?7(zp}DS3 zd4ZV{;XJF~wh^uN?!3x`JYRO{4~<4{YptjA5nSihoi^LsG)v)&ecN+*EAo+pPkqdI zjRN2b!YLm(w@mt;d_#S8!hakVpN?zpw(&%}lx0CnwK2UcRlFz|1^ZhWb>Z3?-expu zKT;FcP`64VNFy3JbO`QWmBb}&Lt<~ZMZ;>qntW@<-!f$S9UJuZLWn2zV!iIuu&y|| z$TU)8fc4u2)l+i~%juIwHCF3my9EyG4?F&C>vl^g`dHnXLy0dpKyN$S*Vwu@*czn3d=$!B-~6Y(#^hSHvx4_=p5r_Q^I zk+_Ojx&J*y*LZz9XnR@9TN9{Z)8{Tv={V-wa~CJY!1-WX?{$elJaDNLy~lKxgHzL&_}%TQ z?pwG~f`PfpkLk{A9i1QS3%kY)3do`A36g0g7}}PmxHkI6Q==(~oZm^5TSEj_&0cJ@G zVVV}T2`&KJU;@G^lj<8r)1rPeg9HJqq+k~}fr45Kf~OkJ1Umu9RzK66k=kJh?*fxU zlIt5Yfq;xlW>ErVDmuZn!1|46sSNAtWI{Qpn}di8Bj+7`JTtYmkJ$x6K-s9CSyyKJ zsDQbPeG`9Pb*llq)2cT6G|@^eI@~GO9g-f~YWJzT&{q?7?s=0G2*Qmz^H^=DJEjUOpWgt>6me=-K&NLS2*IYf*PtldL`e_H29m(-NA zUyO%Z1v4_3%0C0RaM$HRL5MI6i%xoKV|kD-5D>|HF*dHJjrC+EOXv%>tYMBGgmBTu z_gpu9CM*NQGAlgdjrzyVJ7DZ-y1k40%4p}nZ|!DAOb2gOHm#Qq3-G{e0T2syRP%I7 zQl!z$4-EXt80foFthJ@1(ocVU{fPGwKtA1-2ig7+qlA=cX8FoH?Wl})5#Jn)`}F;q zq18`b7=R0ny{|S73K`l`jTqEVzYo|=F)&N=FjIfHoRMV+&%}fNa~foriZDT?sih6S zkshT4N1@22tAiF2o#bZ=JOtqr1$EpV39T~Wv_G-M?rE4P>D#^T(pYc3HL+Q({wA&L zJu~*a;Z|U8WbRRmwN$D~Bq2(@mf--)KU?)qOp#hjYPBF}>Qnpen8zYgZ#?YWe1vb7t>!XC35XFRP)WQ`y!~QmqCU&N-6T$T0iH zD$M)e_SqYrRQavQ2~-QPO4ecvs;O*bVy`QF(DNw77+{JgHp#!4ofW1bh+?}@EqA9^ zGmM>N31%dD!m&H(w!5f`-~hd;v_TCcKPSh|SiVzrjy;3(jrjO{jZscoZ+PRKD>|@c zPAIuuN1p8fTsO!ly4Onu$?SjMl$W;{VUM>QVP}0uZ=+544^gBa6T<&tY9!Y14F4Zd z@^7&DPgVV&g7p7VILJ{O5-Ly|>e9YUl+yfz2uP7wRQ?}9_iw=b4;cRlJPKRG(*aay;xh84w z(sAZ`{~C590DV(XI;I}g6g3AWkgtdsOO6=Qj#TJZ63h)_jiv z)Da7m+bXJ5<7M}AYc>&=pBwZczKd*5P;F%a*h+!=c-SfiuFDo$oUx0-Ww`NJaq&WN zc>Wf$59IpX>5II^Wu&oDOo{d9)P|(ee35e|qH?+SW=*MdL(>EES=e?*9xJt>DN{sJIyTjV%I_$6Pa>^tEkwtFiq`@y zS-)Tm!E6(e=-EFqvh!okNqMOUz^g{qu!|syu}I|qt~x#YV*8Vtr_D1WUt$)9<`#n7sV_A8OC&{nk1ej8E(zX2}~#}%J+3lsDNH|Z2MYyi2LRg3aQ=Oa$S$A-pOJ;zZY_Q+nB(r{lnbsMBV+@C!`<<(^fkV^CV z7{5vcNzvlWb5C_w%9Cv9tsXMa3Nj}ZGvqxz+ES|`;lF4A9(IlcTN+R>aC}1~vTzop z`lH{~@cZl06*bBJgRP3%6hQs`=JC|)`Z-SYU-9zC?zb+@Z9CyPEq=okkDJHnBO+2Pec1xj>)hx z5c7*@GSuhQ(K6T?f;&EZP49e{3YN?z@;nZ85~;g~34&m6*X2;^#TS_LT}X%y%-3@;K!MgoKU-5EVSa_t{`qQ;F8egR05Vxu^ML%jG-#OJ$lg`ohQH&{H%2m`#ZpQdnO zmw)xW=-Zg1#expDh%9|NrSJE#&vxsPTwzi@c+g^>;kYC1!p{6FtCLuPU>|4yok7!+ z2$k6dxAVpKqraE^=md-l9U7GIfUBFS(79!QuBc?PZ&o*w=wqHDTV-rhRD5}aZ_N#!W z&6?^SQ0A^tQ_~WDVADJbiX9t)q!iS4hv+~*`h)Ep`Duk}QMRDiT{#4otO6>nJ684Z z*dlGa;inK3!TauVXQ%2ENy`7q=P$gOU*0CI5_HYWHUI9~7Kp3Cf5Gv3YOi4zFnuqV zBE)n}F`I?cl+y(jnGlkFvMwAPm~fXlB_88ae+K&-=5pGC4!WzTpJI<51f z9X(J1j7rK1?>jSxw^?&d+&a}jGh(Kn)xpVs=qPu)K`~WPf?T&}L}$rJu5VLd>L^X- zJn?Vxd6BgQxYxCC>5f0u(%7)6HRJADj8U0k*FMd%k5cl)q?E8GAi;|sz;&{O zn@0L`uPb#P&-C1qP0x92-tv9+EY5)xzC+!nv~c*yeoGTW6qY5??@hcMOnmnb4ki<< zchbys1o!G|q!v0zXn%}+__WNaIF;yfWmyOh6|iI+h3Bxcg zlqOD5T3d3Iv|97f={L}5xN;DOR>gv;G}+GOHsuL7?e0X@h=$9@UOL>!Rdph~7~Cs# zY|IIQJ5!V%+kR1CKmcKkCD(Jp&S=Q+eSR{KuFl6Ck`_*;&$-)nccR=NQ=K{8xhsRY z?tBq)uRzXF$>6ijI5F^id+P#t{FVHgpEwjL%tB^iUaO-=KutB;t_tng^SGKTmte~U z9vboBf-e)Yh*R>pq)3$R53agC{g>3@9n>qNOii(h^65!?6?>6|$eU02;>c}RhbLDz zN4ME5yF9JSXxd6og76Lmh&CX-W3V42G`N z37C-EqRp+E51ai;gSEzoe3AnFd_Wf6liUJZtvAnPcx^l-3Q*rIJ+BwJhy}*AFTp#) z=aT1>Bu?fZ)FpmiaeH_|+U47j6=JX15qJl-46E;-ECjwIkaPEmC9p>wAIPnTq7R~n zYW?;r;%7EYXqY9Jc)vX!%IBO!qYmA83QX;jINCU3l7Y{2;x-J!YwIPc8_oS_%fOU| zq%+;ehyt`Pg#!UU%GmWGohKukUn&`9oCkkEQtnW>Dd{*ffy0ucESfU_<@zO!SV$gJ6E|7cJ`! zV#X*@HwvAS`hq%%JVr$c@gSpLda`f2Q3bHo2r4c1*G1x0P`d+Zn1y~9z8ZEitua6J zvol1PHxOL22i$f z86WjaS+@3 z&A;t=)eQsX>%~dd2p6<508?bN5@_;2Zzqb?>L`zu@_)@LOQk~Z_Vl8u2aO?q?BxRioAjlY6J{p)vd$-Skwt^%<(L+`h3nV{ z?WSccd>comgkamYWV!R3GU&oVx_*NtvC$5GSm*om4|qq?l)naC8*ry2Zge%j6 zr=w4IMYSjs{)9(hsQJ3iuUN4#c~}ntQk0^D9@g6|1TamN;~1`|L;C#hjR1bPCoKEW z=2lZ~9gq)F!*Fq=3%oQI#13xpA)dj1vuxLGMN}bP8n8|A@X{lQ8ru0J{97JxE8noB z;gcRnF*g2Ch>R-9AAJ2@`j|v>+pIqPO3AJC_DKS($0AyLy-V@T4ALeSQB?%DbDFc5y2Cn#jE@~?Sxx3opIeMDdL??X^;u(y= zvayL@5g8s7i=vi4gh#di_x$f4$cAGSL+wPXv#U@(Np^nAxv+NBGwYE{U8G;p_@SW? zE_IjG>~6F(26bc%8hW(OzAH(Z2}JtTdORX{s;$}BEdC3X=Rzgd%K9p=_lqNu_UVFt zDj!vH_vV*Hp;VhWbNf}`Pn0l+9QuOy2m-NDY#uS@5K=$NB7?%|tp25wuC_0xG`=4c z#}zk&NotZD@5RR!Q~(}zTn#jTpRD-Q7$GA(pz|Me1($j3t@1Y%+?Zv5rm)FEmbwcD zrPfV{8lZ7gH^+8?>@`t*KTOke##=)_tgP^28ZD)K+h7igSpH($*9QJpVOPjpnC`(; ze5aTN=MV%#Xme=r_3+{$Pb~Ebntj4@I;hmvSy4gXt~1>R3>u~QgSUjzt^!C*KIDL* zZX9`;+>5AR=CN2s89WF}hSJVO&RiVzmA2`2LtxAfQNnIHi!ZJM?pc5rXMO%$~EdUAuHN+dM1Bi;}3~whqh;?yb7@JsDniNLt#8wGK^T__7jr zP?r?Nt+v_DL|i8w_ju@dVL)$moYs|#D?al#rtd=owC}NrV>y&grVA$$_BwZ-sG;DO zBsuj+D`_XG{UNyGi6L)DZlFT}oRoeB9W`IbWo#e<@V1~ys3y=QE6mRiL@Xlg3Sv|U z_(zQG$-_S5hTI2e*0R}$aAZlhLTR(O-7|TU_@2U~@)&7hhdhT*p}u)kLT$9~9}ZnZjJ;_()rq6~@-c z&2$HpQi~FCQ9m??f-RNE^7AQi6v6GSA@Wl@ZYvZW%Lx!$#al}9@VeQ^B;0DO%AS}q z@FG~4Om^PRO^AH7Gewie+Rsa9E&8UkEbNi+cjV{qEFN>}31{9Pol_ZDGs4;Dqm`+9 zYKm+H6`XKzQNiu)vT6FEJo|iV_wPNv1+GxsttqF;bSw4^Zz(tQ>7*?p%1;kMr1A%t zBtrb=RmrI7r@-`;HXB>m2OCi=MbFPDw;xL>lWnl@=b2Z0H7iEf)6*HD8LwZuOu-#T zTy4;3tVn$A8@|5Qdcgdcst5+{`mL;!wzE0X4`GwWUh{>2;f{?L6TzSL#Z7rpPAmPg zNIVQON=q8U{9r_z@etc6zl6WIqekK;@UZ};S9kyK|;-m zGU0RpuQ@eWgvwp!KV1KLxS?^wh5K^X9;kv6MnPxH4Y)g&_zL|e#GW%AYtmfF`kL!eJFCxj+gT@;lr|F^o=uZFW!<15)zEZforWc6FaX-eyB!3;zd}4FcA}r z0fjnuOyW~twZRiH0*Qxd7K?D^L`_4+Emrex6xxL(l6K%c#3`n^lVBubO=Dl%b=B8us6KrgXeVHhTo#?t9Y+6 zqFeaO6S&^*H=?AL!P`O|yFbpJd@W=qBWF@j$iJD|^V4tPIJ0|m|7>_ukM|3>w9(k{ z@0KT7d|42`d+j@U1{A_h|1%vkuywE7jvQFeX4^AhTl@t3^chB5?_arm8zK(-pMkwV zitc;+|NW_)KQ52Kv_n?vj$kpJBeugJ-=Uk~9e=gO|EYt5E^lGWMrIrjuw^jpJ$CZT zJp_hF;^J7VDE-gfwIpESIV1ow3%+&-EMabMLtt$({hME*+r%(u?)o=aOxMYit2d-W z1Zw;qR+kLZ8xN@g1O8lZ|9_<~0oBmAhLp*MCjC9z-ID}g<5IkapqBZ=E+b5+kDbcF_SDoA@VS4}Qw^Df zQ1@cu6vlIxoENK$|Hb<<5mj#0B009!5KyY^pZo%DyySux)1a}P(Y;bqC02AD0aDuzdEc?|y><`$j z?sL2Esq@sgs;kcJCW}QzUgVFlgo7H}yD+gcv%L>KHg+y%H)9u=GkXe0|WR`2*@Z_XRptrU0_0%g7L72a%uhOR=kV&5)+Yf$HMJv|873gndE zRlD$%#PR8F1nR{*RS)gHa^ln`f|kI(f;t}fAc4v+!uz!~?(#T*0>qvXyP5r9DaYtD z9d*kd+vK3<_%kzZj<(b5&(4{ShuGLOMz{xvQ)4Bpj7Lt0^|vVHd#kQlxI?9Lvutn& z{MPok8+B2@j&rqG!r)0fDlbW_Bm2Ta=O_gY+RWbrb#D5W)>TG`#1{H?5|W%?hatd5vTiq?->-_CtfktX$VV2t`?kZMdl zKfZYkM5UpP)zR*Fc7B~3S#&OPFm2Tvi=$_jw3+JVBaGru{HKqTLx9dgPD^aa?Yf@T z%&A|H6|)&{MjDf_>M33pY4BvLADrV?YLTZWM#BaQg^*2g*4ZYfw ztDY|>ZK;*L6oFj26A?69rycHQUaGL!i2&+Z>St-*R2TO8#+J7H=6T(|MhlfPzWUy$r_E$VPB zYMV2IH18TLn70v?;SK+ZsUpX`9IJ?dukzGrJ~U|h;e>>qS%)%KKsQo>W+O^4uC6SP z(pX6Ln*r7n_kd|D5)G9nO!+kQMC%@066+ z_X6H62v;qP&4d5#mPsHR>8-LZjn7&+7N)~kV1YC3mNE!MU&?2dcAN8C8o|gb zTpp7$3pgU;^=FWhk?_)RddhnC0qx7(-GxjJO)LbJG+=`^4mcltKC;cuk_$y~HeGjK zkyy!JR$rH(`NRggjb^fvm>?T6V(sz!$BBo#oRJrd!M&7SNC;lS(%8JZ4!Z*vgJJG&L`FR%gmQDT`^n&T3+(%7Qgd%^hT?C4g zittt=>(#pY*4n$Y_TiI93!zbD_j~g$8M%hbjaVkY1(C|DYhmQvb#?~?M;EmYRCZ$4 zyP+> zq6{#KRQZnLXZ{Ny2#0+vAC?m=i~kAcC72LRUO)!Xbp~C(0AV9|{sXSEd`Br&U_-3T zIiRK3!ZD+-k+cnezcTpaf&#G^sO&Sn=%8IG`UGzteeF-ce4j=P+~1NqM+%mDT1y2HnG1}q~R(NUkF^VpX)Hi?$V596ljDGl63kRK%x0T8QOhNT7F*6{IJ-KgM3&?PGGzczjt6 zKCq!FCb7CMflrlyXdG=>+|CyTi8c37egAl(w1CeCVU4e@PR6ILuneJG@JR(N-u#OgCLbaQ|L^^ zCe)Rsz%aj;Z)v*eAkY&j)RRWMbH&TYI{?B?M|fLwbp3kr>aIE;{!{7|Mt!<|UGF|+ zWg+iXF`nG@7cRk9QgkoOp$pfR@G>wqID5*fqvI>&(m(zQa05ToKz^(JTP8HHyOi&)`(iy9Ui>%f{WNz-elVwQNb9LBcuKn6DaxX;fT6};xTCsr z$r9)-Q(wkFm)&dw^8*PrNu`$!_6DY})Ie9^b;B-pH-S{mJlmS`F!5l%ZE;zB9@9c9 z#Rjp)CR(>XZxRu}=a8h~S%u=sxmJ#WA!OXgD7@A~3j;GgoY19`*s1CU72*v5gcNWc zif%uZM@EikUR;LG!Ztf^_m!d*zEYZTCaJ>S639hq=fQKRhLlvatC{`6zBGsbgKK88 zKu^sl=VKs^|J{NR1S_&l=xR&BN;T~a8fIJ)5NevCn{>(fbvFz z)0tKACd*k5v-N?#X3^USL{X3G859f$T6Z&^B>X3~`KPd0>FVhE3xJN6+)r|cT=OkRQ54gc09c#ss40! z`W{3te4$t#Z}pn#yz zk@80r4+73aRZuV9*Oyh?9kt=!d_GZ^ewXjpl+Ki%y7J15sJumIO!Z?|nq8}KiJH}< z^5JATcMcrG?dNBWd)Qe{4Jjfu!75lYBNQsU%dE%hA;@k{*TtVu2CR6{yI7O@9jTKn zL~%uau`lRm=tu><0RbSL~buBN=a#9T8%H<;YW%N{Z={< zG&ed5;xJVI`GKR#QG)Pko?WEj8ennJ!7=uULb%-np}DLdS0-nB zU`qP=bYeil(p6sse5nNLDI~duh=CvMO)%_L5MC{M$Q0$fIEqfA3PK2NmTtbHg9?r) zbNoZ+bgZ!R&nQ!~V5vu^9cz zxSZVI4kkPn)J$y37&kg|Ov7_HUvbl_L}9tAdW=jx&K4;(ym-96bi$l8q5It5yVF!P zN>A;|FlkezpQB{ED~p2YK1bhBrDezKC(+@iX)~+s#OdgK=hJX-m{;aNH^1I((jV2G zSgNR=^>E6W#LX^Qkh=T`PCnBGWMO0xm1p$0UZ8sx?{`Z9PSitf2*T1ESu@bn{U*TK&Y zZ#XEBthkMcOiz*x{a`Dc_IzYiQzfnk_Z=c1Pghi{=%RZ2B&j0OUTYRo`!gBaCpW-4Y?Lp5c=Q!e{IDTWck*BMZLT5a=n_-FvZz{WsNs}2RmcR; z^eydcHC3ahqz)AB@#htlsdrX6E5bxne5J2xU_X}J&9GL=9m@b&eNQ%WZ}z`HHmqc1 z&4yPkH8{hGkdGqw@S!oN+h{sb@O94o;#}dETFX(M{&x97Dj-X?!1xsVU8C3w(T|?H zVi8RM*B$*Tf2A;8Q{{ z!WBoOP<%Q(Buki5eFT{7UeMX|>;Bb>1Jw1bUNghUkQ8Bt-p5!Ie9U z`Um3~%JyV}nEt6&=h{6>pl{RYqoG0#VTR4rnszF%S~CeGw)b;GQu4ZhG3KU#kv7HkatY%3G4j(`A!tQCmZjo%Kuhm{x5}%*`oGGi$!g9ipG&*@^|oOap4P? zzY|~H6WVv6z7q)VNE@%NU;f%Cb?|zv$yzTvt%9xnbiLj3VM(sGCXa10LsT;{n&mDw z2tm0K-5j%tMOco$PN%GPVrC*OJJ=F$dpqlAII5F!U!OSwZ<~69GA!miI$)As7;Q~t z!e85Dr+cciwgqm=rY|?$5LS;>7Qfg|o|7{Q3)jRd?M3H+*@<$basYH*omrc>QZ`mP zFJ#K5JwDGwT39GB5_XIm!Scmt{~qY^fpH7Lg4m24>zUnuLgD%S?c26#Z2|RAub1<#4EH|xuhq>h! ztP(SdQXz-U5dwJGKM|PcPLPp_8gkuoqzH}V9uaJahxY-1HqGe(nhRyP8ddKB}I*3H!Y82 zFZi^vA(0<%iZ^=ReI@j-VAQn+TuR3CSy|1arlx1ISV8zyX0B4%O0(y#= zlmpKFxTLO*#(?Y}STGFTD(E1$G4x3=PlaIzo?jQj$}q~ou9)oWq0+0`%< zW0o^jXcz@>*Vrr!Vp_AB8Q&PL^hBxU+ty3F_5|%lGreJZ_9FH7P2{yN59An{iZ~hTA@w$31FjN#j)9G+rE-&`Um!uRa@QX zFoQY2M=E#|1CK-+Eb{@xPdyEhDS8yt=-T;)9$W9{;^wYRYx|z=5svy&BA*Tgd#jdP z+kV;V-?mXYyt3yw4xyO`+xwa;92YKf^}DLU|DxzKueB>(dNEU>qySFaxrScR6fD*A zJxW}gr|Z=Cx^-i3ibX11->#D4b)DrK<%#ZN=fy-?427)LlB(pgXq%!CIu1IA57^#D z1pAvSoeXByqkU8D`ew~c?r^AIr!h41HNrD2J6YB63}STJD^Xdr{%23;xeMT$ombAt zi6stmxu;2p?);Mlx?U-0Le=x}4DT8!TKZ<%cbCo-l z2gM2s(g=?#{rXB*$_N1-A`Ew~3Xa4l8IU_ogekMvS&_&I_sQYLYFQzld2R5ZeKgoq zmxzj~Jp{GBg-CdzfaS#vQy>!BM&8=1YN86UUp%I-h8S@*fTjR4B6xjAi^OZz%8DC&?XTxpN)Gi-D6?n2rTWMez z`oLXiMS|Mdg=Oe;+g0W>;`>G0-%q)O5_G$L_xD53Woo;4(rfeaChzfCVisAh&AY{3 zn#`TOPd^POb(Y`dA!Q*k;Q*`0w&c}96X5gG2~ixav$DQy=z1B+JU;TP%CaSPitCz5 zR?49X{_aY$WWCJ9_Dc+ub8fOqGPo=WShXT1Cgz00*CrqQ_Ah%`fwJg=Yn}B{3?L^y z=f$`-r>37bOJH{}OI`?4mDv_cgT=Cbl|#}%bXE5gt9T<}hKvUGruC|-@_c+E?fLPQDWE-s$!_`VC5cCUh?@5f+FT#6No*mK@13tA=!3X<9S`9DeFuW%oc$=(M*UP#mBSE^kHr;ISorSnwu zImdTZ znHEfg2rlktF@jQO4$o$y3`21a^u3AduTcgbq5fwPHVM8T6hulS8hZFF_0~7(q^E6u9<)e5S#8fSC$OogFXF$_nSIJ}I*;hn zPl^&?1B+=EVToZAfHq4f06BOf6^jie!LT<@MSyW)*&=ox6F}2`5Ful1_6r+gMbb;Q zC@}?+tl!6^q$Lb(OSa@fD=u8AHtfD;BTQt=o5uh_$tGNP0u}cX(5aOcx<>q&;|^zf z8REXou44I=2wu+%PV%{}9M8wcKqMtGaFOdO01?jTD(unqYQxlEsv}c<|4yo8D>(W* zJLDJKu&Ly!%Zb(ORXYr1I~YuT9cQ~%T#kfw&$VmI2!jGQ99Gs`WbbL8nT}rc8~F(L zsB$I?chdnD(s*xyBNjN1DOxo+ zqa)aG3KsYD!WQiy^y6@*uiMk*uZV~xm+0R+duc7!PP=Z8!T<1=C08qo!wBOg2hxwK z4qLz6^d{OKJ6k=KcnxZ4(hD z*H3)2g}n2+dgJg*?8i-4Xd|5Mx$U2uD(OUnZ=;UeWNpPmJTQ@MkO1M13pVoi z?t}@s0+rA0KRD>CW$VMPaVv}L}*RuGg?iLc0|@kg7F$wd4Z zBy8c2ozcjZeoKB=vIMDr9+baDNI2VM9~E!;ZQ;8m4)XBf`KLpge&l9@D*`LP*)OD_ zxbcKA9?8i27et9naCQiu(32jc8#TqrNygZ%=AHqR*Y`Duq6=$o$t?y}s*tGR&Mn%9@FhfMA<3# z+e4$1!mY|bf1U4${RT9Sc=9%&BoJvi!Nl9ljea76hHr!Y^Af${EnQV$sj31CBHN>d%G+xA?K< zSFg!cc#&Q|E)n(G4>m#P5C$gb&G*=Ao+uzY6LP?CMu!RNYpt(@8~Rgh>`jpZiTWc7 zu|)?t{(1NYtHT;o_P~Ju>M(17>Y7XwbMKK73t5lX=f>HPB;=tpD<#ofBYm%b5VMs}N)e!6|>HU{=~^1}=b z1FtmTcm8DIJ=2@wbrV-8kB(nj%@ZYFAdB^S-QK(4g-MHrGU>1Xb+H6^o@Zi5P0}bC z)P`)shZrD94HG6g!tA01J)ZUEmz_Mi@`Wys6bAJ0vzLIsA5AU$s1-DofSesI0k*FC z77_6@yzKos=oS{0%lw1=g5fL-2e3%ix?b1buNuTbn8M3q=>r5h)Rs+3o$|H?=R%X_ z0e-r91Ef7($RZKoo$rj4kM1IN|FFEyr*I&lD&z9xl8K64a-?_g3~OpWNpLw}ibq!7Yq8z-Q9AU~4h*N%~d+?Z~&d7F4M>%C+z zy6Sazh@2}XBqVmcF>@2Op7_R<#|P|d78r_xuEwo0Wgm;oO_q5i`M0=qtYUYyw(+H^ z(umk0rS1Zu!7ZI(hOfBs`ykMxHaD6%cPBMlqBR1R$_fV>=jo`R!+cM_EwHin%xjY_ znTE%|GZ=9Z9n)#_;;ab6r^i44&3b3rhWn2syFCiQaT_W2&K#b=)AVI(?i zs{_E_PyA4B3#tw)`WE%mVs@D#xda&_Vg9tPQvs;lBRK$tNH(FmZnIk7ZQ1R*j5aTZ zJ>q%4ovoPK-5q^GA6Axq$D-OM<|4`1aDfDuL}>X^)(VuUB*zWH*rSeU3&8_P3E<7+Zx-<8oh|$3`N#d zg+kE;D}VKrGcWG#>NSJd6*ABbpdR%P0SZI@KN(wojOF_2R2^-yhw5mu(^NBK8jm9k z9(G`ZjA2TINU?~pZJY&lIGe#iUVA-Vx@W7>(4uCajls>jtpqtlZ8t&Qe~A*G<>5A> ztXQpp@o~*uJryCz>WD zPY61{Fj9m(w1j6IjQ;6HoxwX|kzY((@SFG5k4PZAoWB+)OO zk}Qj3+OPsvJXjW`zz4>HMtWOjKOV_pDcRiW>wO;YM+K1p)hBvdk&zv zqp)?Vr0?iE`4{PX8s*SK9eL(xmT&sf_%n+|G~k;*kD}roF$Mozw7vOT%#97j>CF7f zK5|)|Wtd;H>I=@iCUq#2-E%x&(bfO5Q2xTvAL1o;pm+%}BaphD0A*8#&hYG#Sh4BN zLV6F>+e)|XIr~Z2cMmH~cJz?-$J`OP)d{!p5d(!=BdxjH%Xa(uPjJjT%nQV>w+q$c z6`JlK7d}wWZfNHwwA&u~uu#R5kvI+H@3+6icnI|D3^j1He@&ErEAfFo`1>)>kO>7i zZ`S{bSSDD#N^g@2s5k{M!*`HEN7^w8%tm{031so@dN^mtPGzeIcF$%fPEmniAvw*PoH}8 zq5l&C{UI|_23zcqi~AQ_FtkGW-_i}#-*3ov5ac^>J-qEBKYtVW4Z3s_`1S-kgaVs; zbcvx@ONY>YP+dOs0vx(Vc&eg219gYYkhwv&@}aJ7oYj8@uy~|<-!&DF9=sOK18^M6fWIN93eL7z6S zg|T=Zp!cV5y$=o02QOR5A-E(3?2`)ddI>BM4~jqj2e}poUttlw1R{ZbpcmbKo1hi> z(K(?_9ysGjbmEi!oY19?~0oMti zEc~aS?1{7dJ>jRtZE0D9dTE0QsSvCLlI{BC%m>|c3W}Wv@FH0U#7FIEq`k5 zuFYuD+cuX}xjeLz(p(AqE=3Xi$!-gyV!-Ylc1BzYIkHY+OcwZ60!Ew8K1Gt@Y|LE7o)v3~9|Z_Sm$bDDjI89C04-^bt1jHLi@q|4*d zn)XX#3L`EgAThy~6JGTJ4t|5IjHocw(|T0)$wa_hiQX_`7cxJrknr( literal 0 HcmV?d00001 diff --git a/PythonPackage/AMR/setup.py b/PythonPackage/AMR/setup.py index 5a549771f..cdea4ad54 100644 --- a/PythonPackage/AMR/setup.py +++ b/PythonPackage/AMR/setup.py @@ -2,7 +2,7 @@ from setuptools import setup, find_packages setup( name='AMR', - version='2.1.1.9123', + version='2.1.1.9125', packages=find_packages(), install_requires=[ 'rpy2', diff --git a/R/ab_selectors.R b/R/amr_selectors.R similarity index 59% rename from R/ab_selectors.R rename to R/amr_selectors.R index da9efba2d..15099d248 100755 --- a/R/ab_selectors.R +++ b/R/amr_selectors.R @@ -27,28 +27,37 @@ # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # -#' Antibiotic Selectors +#' Antimicrobial Selectors #' -#' @description These functions allow for filtering rows and selecting columns based on antibiotic test results that are of a specific antibiotic class or group (according to the [antibiotics] data set), without the need to define the columns or antibiotic abbreviations. +#' @description These functions allow for filtering rows and selecting columns based on antimicrobial test results that are of a specific antimicrobial class or group, without the need to define the columns or antimicrobial abbreviations. #' -#' In short, if you have a column name that resembles an antimicrobial drug, it will be picked up by any of these functions that matches its pharmaceutical class: "cefazolin", "kefzol", "CZO" and "J01DB04" will all be picked up by [cephalosporins()]. -#' @param ab_class an antimicrobial class or a part of it, such as `"carba"` and `"carbapenems"`. The columns `group`, `atc_group1` and `atc_group2` of the [antibiotics] data set will be searched (case-insensitive) for this value. +#' In short, if you have a column name that resembles an antimicrobial drug, it will be picked up by any of these functions that matches its pharmaceutical class: "cefazolin", "kefzol", "CZO" and "J01DB04" will all be picked up using: +#' +#' ```r +#' library(dplyr) +#' my_data_with_all_these_columns %>% +#' select(cephalosporins()) +#' ``` +#' @param amr_class an antimicrobial class or a part of it, such as `"carba"` and `"carbapenems"`. The columns `group`, `atc_group1` and `atc_group2` of the [antibiotics] data set will be searched (case-insensitive) for this value. #' @param filter an [expression] to be evaluated in the [antibiotics] data set, such as `name %like% "trim"` #' @param only_sir_columns a [logical] to indicate whether only columns of class `sir` must be selected (default is `FALSE`), see [as.sir()] #' @param only_treatable a [logical] to indicate whether antimicrobial drugs should be excluded that are only for laboratory tests (default is `TRUE`), such as gentamicin-high (`GEH`) and imipenem/EDTA (`IPE`) +#' @param return_all a [logical] to indicate whether all matched columns must be returned (default is `TRUE`). With `FALSE`, only the first of each unique antimicrobial will be returned, e.g. if both columns `"genta"` and `"gentamicin"` exist in the data, only the first hit for gentamicin will be returned. #' @param ... ignored, only in place to allow future extensions #' @details #' These functions can be used in data set calls for selecting columns and filtering rows. They work with base \R, the Tidyverse, and `data.table`. They are heavily inspired by the [Tidyverse selection helpers][tidyselect::language] such as [`everything()`][tidyselect::everything()], but are not limited to `dplyr` verbs. Nonetheless, they are very convenient to use with `dplyr` functions such as [`select()`][dplyr::select()], [`filter()`][dplyr::filter()] and [`summarise()`][dplyr::summarise()], see *Examples*. +#' +#' All selectors can also be used in `tidymodels` packages such as `recipe` and `parsnip`. See for more info [our tutorial](https://msberends.github.io/AMR/articles/AMR_with_tidymodels.html) on using these AMR functions for predictive modelling. #' -#' All columns in the data in which these functions are called will be searched for known antibiotic names, abbreviations, brand names, and codes (ATC, EARS-Net, WHO, etc.) according to the [antibiotics] data set. This means that a selector such as [aminoglycosides()] will pick up column names like 'gen', 'genta', 'J01GB03', 'tobra', 'Tobracin', etc. +#' All columns in the data in which these functions are called will be searched for known antimicrobial names, abbreviations, brand names, and codes (ATC, EARS-Net, WHO, etc.) according to the [antibiotics] data set. This means that a selector such as [aminoglycosides()] will pick up column names like 'gen', 'genta', 'J01GB03', 'tobra', 'Tobracin', etc. #' -#' The [ab_class()] function can be used to filter/select on a manually defined antibiotic class. It searches for results in the [antibiotics] data set within the columns `group`, `atc_group1` and `atc_group2`. -#' @section Full list of supported (antibiotic) classes: +#' The [amr_class()] function can be used to filter/select on a manually defined antimicrobial class. It searches for results in the [antibiotics] data set within the columns `group`, `atc_group1` and `atc_group2`. +#' @section Full list of supported (antimicrobial) classes: #' #' `r paste0(" * ", na.omit(sapply(DEFINED_AB_GROUPS, function(ab) ifelse(tolower(gsub("^AB_", "", ab)) %in% ls(envir = asNamespace("AMR")), paste0("[", tolower(gsub("^AB_", "", ab)), "()] can select: \\cr ", vector_and(paste0(ab_name(eval(parse(text = ab), envir = asNamespace("AMR")), language = NULL, tolower = TRUE), " (", eval(parse(text = ab), envir = asNamespace("AMR")), ")"), quotes = FALSE, sort = TRUE)), character(0)), USE.NAMES = FALSE)), "\n", collapse = "")` -#' @rdname antibiotic_class_selectors -#' @name antibiotic_class_selectors -#' @return When used inside selecting or filtering, this returns a [character] vector of column names, with additional class `"ab_selector"`. When used individually, this returns an ['ab' vector][as.ab()] with all possible antimicrobials that the function would be able to select or filter. +#' @rdname antimicrobial_class_selectors +#' @name antimicrobial_class_selectors +#' @return When used inside selecting or filtering, this returns a [character] vector of column names, with additional class `"amr_selector"`. When used individually, this returns an ['ab' vector][as.ab()] with all possible antimicrobials that the function would be able to select or filter. #' @export #' @inheritSection AMR Reference Data Publicly Available #' @examples @@ -79,7 +88,7 @@ #' # e.g., for betalactams, but not the ones with an enzyme inhibitor: #' example_isolates %>% select(betalactams(), -betalactams_with_inhibitor()) #' -#' # select only antibiotic columns with DDDs for oral treatment +#' # select only antimicrobials with DDDs for oral treatment #' example_isolates %>% select(administrable_per_os()) #' #' # get AMR for all aminoglycosides e.g., per ward: @@ -99,11 +108,11 @@ #' summarise_at(not_intrinsic_resistant(), #' resistance) #' -#' # get susceptibility for antibiotics whose name contains "trim": +#' # get susceptibility for antimicrobials whose name contains "trim": #' example_isolates %>% #' filter(first_isolate()) %>% #' group_by(ward) %>% -#' summarise(across(ab_selector(name %like% "trim"), susceptibility)) +#' summarise(across(amr_selector(name %like% "trim"), susceptibility)) #' #' # this will select columns 'IPM' (imipenem) and 'MEM' (meropenem): #' example_isolates %>% @@ -130,7 +139,7 @@ #' #' # this will select columns 'mo' and all antimycobacterial drugs ('RIF'): #' example_isolates %>% -#' select(mo, ab_class("mycobact")) +#' select(mo, amr_class("mycobact")) #' #' # get bug/drug combinations for only glycopeptides in Gram-positives: #' example_isolates %>% @@ -160,7 +169,7 @@ #' # select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB' #' example_isolates[, c("mo", aminoglycosides())] #' -#' # select only antibiotic columns with DDDs for oral treatment +#' # select only antimicrobials with DDDs for oral treatment #' example_isolates[, administrable_per_os()] #' #' # filter using any() or all() @@ -171,7 +180,7 @@ #' example_isolates[any(carbapenems()), ] #' example_isolates[all(carbapenems()), ] #' -#' # filter with multiple antibiotic selectors using c() +#' # filter with multiple antimicrobial selectors using c() #' example_isolates[all(c(carbapenems(), aminoglycosides()) == "R"), ] #' #' # filter + select in one go: get penicillins in carbapenem-resistant strains @@ -184,10 +193,10 @@ #' # and erythromycin is not a penicillin: #' example_isolates[, penicillins() & administrable_per_os()] #' -#' # ab_selector() applies a filter in the `antibiotics` data set and is thus -#' # very flexible. For instance, to select antibiotic columns with an oral DDD +#' # amr_selector() applies a filter in the `antibiotics` data set and is thus +#' # very flexible. For instance, to select antimicrobials with an oral DDD #' # of at least 1 gram: -#' example_isolates[, ab_selector(oral_ddd > 1 & oral_units == "g")] +#' example_isolates[, amr_selector(oral_ddd > 1 & oral_units == "g")] #' #' #' # data.table -------------------------------------------------------------- @@ -222,271 +231,305 @@ #' dt[any(carbapenems() == "S"), penicillins(), with = FALSE] #' } #' } -ab_class <- function(ab_class, - only_sir_columns = FALSE, - only_treatable = TRUE, - ...) { - meet_criteria(ab_class, allow_class = "character", has_length = 1, allow_NULL = TRUE) +amr_class <- function(amr_class, + only_sir_columns = FALSE, + only_treatable = TRUE, + return_all = TRUE, + ...) { + meet_criteria(amr_class, allow_class = "character", has_length = 1, allow_NULL = TRUE) meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) meet_criteria(only_treatable, allow_class = "logical", has_length = 1) - ab_select_exec(NULL, only_sir_columns = only_sir_columns, ab_class_args = ab_class, only_treatable = only_treatable) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec(NULL, only_sir_columns = only_sir_columns, amr_class_args = amr_class, only_treatable = only_treatable, return_all = return_all) } -#' @rdname antibiotic_class_selectors -#' @details The [ab_selector()] function can be used to internally filter the [antibiotics] data set on any results, see *Examples*. It allows for filtering on a (part of) a certain name, and/or a group name or even a minimum of DDDs for oral treatment. This function yields the highest flexibility, but is also the least user-friendly, since it requires a hard-coded filter to set. +#' @rdname antimicrobial_class_selectors +#' @details The [amr_selector()] function can be used to internally filter the [antibiotics] data set on any results, see *Examples*. It allows for filtering on a (part of) a certain name, and/or a group name or even a minimum of DDDs for oral treatment. This function yields the highest flexibility, but is also the least user-friendly, since it requires a hard-coded filter to set. #' @export -ab_selector <- function(filter, - only_sir_columns = FALSE, - only_treatable = TRUE, - ...) { +amr_selector <- function(filter, + only_sir_columns = FALSE, + only_treatable = TRUE, + return_all = TRUE, + ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) meet_criteria(only_treatable, allow_class = "logical", has_length = 1) - + meet_criteria(return_all, allow_class = "logical", has_length = 1) + # get_current_data() has to run each time, for cases where e.g., filter() and select() are used in same call # but it only takes a couple of milliseconds vars_df <- get_current_data(arg_name = NA, call = -2) # to improve speed, get_column_abx() will only run once when e.g. in a select or group call ab_in_data <- get_column_abx(vars_df, - info = FALSE, only_sir_columns = only_sir_columns, - sort = FALSE, fn = "ab_selector" + info = FALSE, only_sir_columns = only_sir_columns, + sort = FALSE, fn = "amr_selector", return_all = return_all ) call <- substitute(filter) agents <- tryCatch(AMR_env$AB_lookup[which(eval(call, envir = AMR_env$AB_lookup)), "ab", drop = TRUE], - error = function(e) stop_(e$message, call = -5) + error = function(e) stop_(e$message, call = -5) ) agents <- ab_in_data[ab_in_data %in% agents] message_agent_names( - function_name = "ab_selector", + function_name = "amr_selector", agents = agents, ab_group = NULL, examples = "", call = call ) structure(unname(agents), - class = c("ab_selector", "character") + class = c("amr_selector", "character") ) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -aminoglycosides <- function(only_sir_columns = FALSE, only_treatable = TRUE, ...) { +aminoglycosides <- function(only_sir_columns = FALSE, only_treatable = TRUE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) meet_criteria(only_treatable, allow_class = "logical", has_length = 1) - ab_select_exec("aminoglycosides", only_sir_columns = only_sir_columns, only_treatable = only_treatable) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("aminoglycosides", only_sir_columns = only_sir_columns, only_treatable = only_treatable, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -aminopenicillins <- function(only_sir_columns = FALSE, ...) { +aminopenicillins <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("aminopenicillins", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("aminopenicillins", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -antifungals <- function(only_sir_columns = FALSE, ...) { +antifungals <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("antifungals", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("antifungals", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -antimycobacterials <- function(only_sir_columns = FALSE, ...) { +antimycobacterials <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("antimycobacterials", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("antimycobacterials", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -betalactams <- function(only_sir_columns = FALSE, only_treatable = TRUE, ...) { +betalactams <- function(only_sir_columns = FALSE, only_treatable = TRUE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) meet_criteria(only_treatable, allow_class = "logical", has_length = 1) - ab_select_exec("betalactams", only_sir_columns = only_sir_columns, only_treatable = only_treatable) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("betalactams", only_sir_columns = only_sir_columns, only_treatable = only_treatable, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -betalactams_with_inhibitor <- function(only_sir_columns = FALSE, ...) { +betalactams_with_inhibitor <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("betalactams_with_inhibitor", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("betalactams_with_inhibitor", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -carbapenems <- function(only_sir_columns = FALSE, only_treatable = TRUE, ...) { +carbapenems <- function(only_sir_columns = FALSE, only_treatable = TRUE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) meet_criteria(only_treatable, allow_class = "logical", has_length = 1) - ab_select_exec("carbapenems", only_sir_columns = only_sir_columns, only_treatable = only_treatable) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("carbapenems", only_sir_columns = only_sir_columns, only_treatable = only_treatable, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -cephalosporins <- function(only_sir_columns = FALSE, ...) { +cephalosporins <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("cephalosporins", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("cephalosporins", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -cephalosporins_1st <- function(only_sir_columns = FALSE, ...) { +cephalosporins_1st <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("cephalosporins_1st", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("cephalosporins_1st", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -cephalosporins_2nd <- function(only_sir_columns = FALSE, ...) { +cephalosporins_2nd <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("cephalosporins_2nd", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("cephalosporins_2nd", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -cephalosporins_3rd <- function(only_sir_columns = FALSE, ...) { +cephalosporins_3rd <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("cephalosporins_3rd", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("cephalosporins_3rd", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -cephalosporins_4th <- function(only_sir_columns = FALSE, ...) { +cephalosporins_4th <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("cephalosporins_4th", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("cephalosporins_4th", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -cephalosporins_5th <- function(only_sir_columns = FALSE, ...) { +cephalosporins_5th <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("cephalosporins_5th", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("cephalosporins_5th", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -fluoroquinolones <- function(only_sir_columns = FALSE, ...) { +fluoroquinolones <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("fluoroquinolones", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("fluoroquinolones", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -glycopeptides <- function(only_sir_columns = FALSE, ...) { +glycopeptides <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("glycopeptides", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("glycopeptides", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -lincosamides <- function(only_sir_columns = FALSE, only_treatable = TRUE, ...) { +lincosamides <- function(only_sir_columns = FALSE, only_treatable = TRUE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) meet_criteria(only_treatable, allow_class = "logical", has_length = 1) - ab_select_exec("lincosamides", only_sir_columns = only_sir_columns, only_treatable = only_treatable) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("lincosamides", only_sir_columns = only_sir_columns, only_treatable = only_treatable, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -lipoglycopeptides <- function(only_sir_columns = FALSE, ...) { +lipoglycopeptides <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("lipoglycopeptides", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("lipoglycopeptides", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -macrolides <- function(only_sir_columns = FALSE, ...) { +macrolides <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("macrolides", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("macrolides", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -nitrofurans <- function(only_sir_columns = FALSE, ...) { +nitrofurans <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("nitrofurans", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("nitrofurans", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -oxazolidinones <- function(only_sir_columns = FALSE, ...) { +oxazolidinones <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("oxazolidinones", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("oxazolidinones", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -penicillins <- function(only_sir_columns = FALSE, ...) { +penicillins <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("penicillins", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("penicillins", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -phenicols <- function(only_sir_columns = FALSE, ...) { +phenicols <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("phenicols", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("phenicols", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -polymyxins <- function(only_sir_columns = FALSE, only_treatable = TRUE, ...) { +polymyxins <- function(only_sir_columns = FALSE, only_treatable = TRUE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) meet_criteria(only_treatable, allow_class = "logical", has_length = 1) - ab_select_exec("polymyxins", only_sir_columns = only_sir_columns, only_treatable = only_treatable) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("polymyxins", only_sir_columns = only_sir_columns, only_treatable = only_treatable, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -quinolones <- function(only_sir_columns = FALSE, ...) { +quinolones <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("quinolones", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("quinolones", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -rifamycins <- function(only_sir_columns = FALSE, ...) { +rifamycins <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("rifamycins", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("rifamycins", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -streptogramins <- function(only_sir_columns = FALSE, ...) { +streptogramins <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("streptogramins", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("streptogramins", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -tetracyclines <- function(only_sir_columns = FALSE, ...) { +tetracyclines <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("tetracyclines", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("tetracyclines", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -trimethoprims <- function(only_sir_columns = FALSE, ...) { +trimethoprims <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("trimethoprims", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("trimethoprims", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -ureidopenicillins <- function(only_sir_columns = FALSE, ...) { +ureidopenicillins <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) - ab_select_exec("ureidopenicillins", only_sir_columns = only_sir_columns) + meet_criteria(return_all, allow_class = "logical", has_length = 1) + amr_select_exec("ureidopenicillins", only_sir_columns = only_sir_columns, return_all = return_all) } -#' @rdname antibiotic_class_selectors -#' @details The [administrable_per_os()] and [administrable_iv()] functions also rely on the [antibiotics] data set - antibiotic columns will be matched where a DDD (defined daily dose) for resp. oral and IV treatment is available in the [antibiotics] data set. +#' @rdname antimicrobial_class_selectors +#' @details The [administrable_per_os()] and [administrable_iv()] functions also rely on the [antibiotics] data set - antimicrobials will be matched where a DDD (defined daily dose) for resp. oral and IV treatment is available in the [antibiotics] data set. #' @export -administrable_per_os <- function(only_sir_columns = FALSE, ...) { +administrable_per_os <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) + meet_criteria(return_all, allow_class = "logical", has_length = 1) # get_current_data() has to run each time, for cases where e.g., filter() and select() are used in same call # but it only takes a couple of milliseconds vars_df <- get_current_data(arg_name = NA, call = -2) # to improve speed, get_column_abx() will only run once when e.g. in a select or group call ab_in_data <- get_column_abx(vars_df, - info = FALSE, only_sir_columns = only_sir_columns, - sort = FALSE, fn = "administrable_per_os" + info = FALSE, only_sir_columns = only_sir_columns, + sort = FALSE, fn = "administrable_per_os", return_all = return_all ) agents_all <- AMR_env$AB_lookup[which(!is.na(AMR_env$AB_lookup$oral_ddd)), "ab", drop = TRUE] agents <- AMR_env$AB_lookup[which(AMR_env$AB_lookup$ab %in% ab_in_data & !is.na(AMR_env$AB_lookup$oral_ddd)), "ab", drop = TRUE] @@ -500,8 +543,8 @@ administrable_per_os <- function(only_sir_columns = FALSE, ...) { vector_or( ab_name( sample(agents_all, - size = min(5, length(agents_all)), - replace = FALSE + size = min(5, length(agents_all)), + replace = FALSE ), tolower = TRUE, language = NULL @@ -512,21 +555,22 @@ administrable_per_os <- function(only_sir_columns = FALSE, ...) { ) ) structure(unname(agents), - class = c("ab_selector", "character") + class = c("amr_selector", "character") ) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @export -administrable_iv <- function(only_sir_columns = FALSE, ...) { +administrable_iv <- function(only_sir_columns = FALSE, return_all = TRUE, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) + meet_criteria(return_all, allow_class = "logical", has_length = 1) # get_current_data() has to run each time, for cases where e.g., filter() and select() are used in same call # but it only takes a couple of milliseconds vars_df <- get_current_data(arg_name = NA, call = -2) # to improve speed, get_column_abx() will only run once when e.g. in a select or group call ab_in_data <- get_column_abx(vars_df, - info = FALSE, only_sir_columns = only_sir_columns, - sort = FALSE, fn = "administrable_iv" + info = FALSE, only_sir_columns = only_sir_columns, + sort = FALSE, fn = "administrable_iv", return_all = return_all ) agents_all <- AMR_env$AB_lookup[which(!is.na(AMR_env$AB_lookup$iv_ddd)), "ab", drop = TRUE] agents <- AMR_env$AB_lookup[which(AMR_env$AB_lookup$ab %in% ab_in_data & !is.na(AMR_env$AB_lookup$iv_ddd)), "ab", drop = TRUE] @@ -538,13 +582,13 @@ administrable_iv <- function(only_sir_columns = FALSE, ...) { examples = "" ) structure(unname(agents), - class = c("ab_selector", "character") + class = c("amr_selector", "character") ) } -#' @rdname antibiotic_class_selectors +#' @rdname antimicrobial_class_selectors #' @inheritParams eucast_rules -#' @details The [not_intrinsic_resistant()] function can be used to only select antibiotic columns that pose no intrinsic resistance for the microorganisms in the data set. For example, if a data set contains only microorganism codes or names of *E. coli* and *K. pneumoniae* and contains a column "vancomycin", this column will be removed (or rather, unselected) using this function. It currently applies `r format_eucast_version_nr(names(EUCAST_VERSION_EXPERT_RULES[1]))` to determine intrinsic resistance, using the [eucast_rules()] function internally. Because of this determination, this function is quite slow in terms of performance. +#' @details The [not_intrinsic_resistant()] function can be used to only select antimicrobials that pose no intrinsic resistance for the microorganisms in the data set. For example, if a data set contains only microorganism codes or names of *E. coli* and *K. pneumoniae* and contains a column "vancomycin", this column will be removed (or rather, unselected) using this function. It currently applies `r format_eucast_version_nr(names(EUCAST_VERSION_EXPERT_RULES[1]))` to determine intrinsic resistance, using the [eucast_rules()] function internally. Because of this determination, this function is quite slow in terms of performance. #' @export not_intrinsic_resistant <- function(only_sir_columns = FALSE, col_mo = NULL, version_expertrules = 3.3, ...) { meet_criteria(only_sir_columns, allow_class = "logical", has_length = 1) @@ -553,21 +597,21 @@ not_intrinsic_resistant <- function(only_sir_columns = FALSE, col_mo = NULL, ver vars_df <- get_current_data(arg_name = NA, call = -2) # to improve speed, get_column_abx() will only run once when e.g. in a select or group call ab_in_data <- get_column_abx(vars_df, - info = FALSE, only_sir_columns = only_sir_columns, - sort = FALSE, fn = "not_intrinsic_resistant" + info = FALSE, only_sir_columns = only_sir_columns, + sort = FALSE, fn = "not_intrinsic_resistant", return_all = TRUE ) # intrinsic vars vars_df_R <- tryCatch( sapply( eucast_rules(vars_df, - col_mo = col_mo, - version_expertrules = version_expertrules, - rules = "expert", - info = FALSE + col_mo = col_mo, + version_expertrules = version_expertrules, + rules = "expert", + info = FALSE ), function(col) { tryCatch(!any(is.na(col)) && all(col == "R"), - error = function(e) FALSE + error = function(e) FALSE ) } ), @@ -592,35 +636,39 @@ not_intrinsic_resistant <- function(only_sir_columns = FALSE, col_mo = NULL, ver # find columns that are abx, but also intrinsic R out <- unname(intersect(ab_in_data, vars_df_R)) structure(out, - class = c("ab_selector", "character") + class = c("amr_selector", "character") ) } -ab_select_exec <- function(function_name, - only_sir_columns = FALSE, - only_treatable = FALSE, - ab_class_args = NULL) { +amr_select_exec <- function(function_name, + only_sir_columns = FALSE, + only_treatable = FALSE, + amr_class_args = NULL, + return_all = TRUE) { # get_current_data() has to run each time, for cases where e.g., filter() and select() are used in same call # it only takes a couple of milliseconds, so no problem vars_df <- tryCatch(get_current_data(arg_name = NA, call = -3), error = function(e) NULL) # to improve speed, get_column_abx() will only run once when e.g. in a select or group call if (!is.null(vars_df)) { ab_in_data <- get_column_abx(vars_df, - info = FALSE, only_sir_columns = only_sir_columns, - sort = FALSE, fn = function_name) + info = FALSE, + only_sir_columns = only_sir_columns, + sort = FALSE, + fn = function_name, + return_all = return_all) } # untreatable drugs if (!is.null(vars_df) && only_treatable == TRUE) { untreatable <- AMR_env$AB_lookup[which(AMR_env$AB_lookup$name %like% "(-high|EDTA|polysorbate|macromethod|screening|nacubactam)"), "ab", drop = TRUE] if (any(untreatable %in% names(ab_in_data))) { - if (message_not_thrown_before(function_name, "ab_class", "untreatable")) { + if (message_not_thrown_before(function_name, "amr_class", "untreatable")) { warning_( "in `", function_name, "()`: some drugs were ignored since they cannot be used for treating patients: ", vector_and( ab_name(names(ab_in_data)[names(ab_in_data) %in% untreatable], - language = NULL, - tolower = TRUE + language = NULL, + tolower = TRUE ), quotes = FALSE, sort = TRUE @@ -630,13 +678,13 @@ ab_select_exec <- function(function_name, ab_in_data <- ab_in_data[!names(ab_in_data) %in% untreatable] } } - + if (!is.null(vars_df) && length(ab_in_data) == 0) { message_("No antimicrobial drugs found in the data.") return(NULL) } - - if (is.null(ab_class_args) || isTRUE(function_name %in% c("antifungals", "antimycobacterials"))) { + + if (is.null(amr_class_args) || isTRUE(function_name %in% c("antifungals", "antimycobacterials"))) { ab_group <- NULL if (isTRUE(function_name == "antifungals")) { abx <- AMR_env$AB_lookup$ab[which(AMR_env$AB_lookup$group == "Antifungals")] @@ -663,22 +711,22 @@ ab_select_exec <- function(function_name, } examples <- paste0(" (such as ", vector_or( ab_name(sample(abx, size = min(2, length(abx)), replace = FALSE), - tolower = TRUE, - language = NULL + tolower = TRUE, + language = NULL ), quotes = FALSE ), ")") } else { - # this for the 'manual' ab_class() function + # this for the 'manual' amr_class() function abx <- subset( AMR_env$AB_lookup, - group %like% ab_class_args | - atc_group1 %like% ab_class_args | - atc_group2 %like% ab_class_args + group %like% amr_class_args | + atc_group1 %like% amr_class_args | + atc_group2 %like% amr_class_args )$ab - ab_group <- find_ab_group(ab_class_args) - function_name <- "ab_class" - examples <- paste0(" (such as ", find_ab_names(ab_class_args, 2), ")") + ab_group <- find_ab_group(amr_class_args) + function_name <- "amr_class" + examples <- paste0(" (such as ", find_ab_names(amr_class_args, 2), ")") } if (is.null(vars_df)) { @@ -694,43 +742,43 @@ ab_select_exec <- function(function_name, "\n\nNow returning a vector of all possible antimicrobials that `" , function_name, "()` can select.") return(sort(abx)) } - + # get the columns with a group names in the chosen ab class agents <- ab_in_data[names(ab_in_data) %in% abx] - + message_agent_names( function_name = function_name, agents = agents, ab_group = ab_group, examples = examples, - ab_class_args = ab_class_args + amr_class_args = amr_class_args ) - + structure(unname(agents), - class = c("ab_selector", "character") + class = c("amr_selector", "character") ) } -#' @method print ab_selector +#' @method print amr_selector #' @export #' @noRd -print.ab_selector <- function(x, ...) { - warning_("It should never be needed to print an antibiotic selector class. Are you using data.table? Then add the argument `with = FALSE`, see our examples at `?ab_selector`.", +print.amr_selector <- function(x, ...) { + warning_("It should never be needed to print an antimicrobial selector class. Are you using data.table? Then add the argument `with = FALSE`, see our examples at `?amr_selector`.", immediate = TRUE) - cat("Class 'ab_selector'\n") + cat("Class 'amr_selector'\n") print(as.character(x), quote = FALSE) } -#' @method c ab_selector +#' @method c amr_selector #' @export #' @noRd -c.ab_selector <- function(...) { +c.amr_selector <- function(...) { structure(unlist(lapply(list(...), as.character)), - class = c("ab_selector", "character") + class = c("amr_selector", "character") ) } -all_any_ab_selector <- function(type, ..., na.rm = TRUE) { +all_any_amr_selector <- function(type, ..., na.rm = TRUE) { cols_ab <- c(...) result <- cols_ab[toupper(cols_ab) %in% c("S", "SDD", "I", "R", "NI")] if (length(result) == 0) { @@ -739,13 +787,13 @@ all_any_ab_selector <- function(type, ..., na.rm = TRUE) { } cols_ab <- cols_ab[!cols_ab %in% result] df <- get_current_data(arg_name = NA, call = -3) - + if (type == "all") { scope_fn <- all } else { scope_fn <- any } - + x_transposed <- as.list(as.data.frame(t(df[, cols_ab, drop = FALSE]), stringsAsFactors = FALSE)) vapply( FUN.VALUE = logical(1), @@ -755,26 +803,26 @@ all_any_ab_selector <- function(type, ..., na.rm = TRUE) { ) } -#' @method all ab_selector +#' @method all amr_selector #' @export #' @noRd -all.ab_selector <- function(..., na.rm = FALSE) { - all_any_ab_selector("all", ..., na.rm = na.rm) +all.amr_selector <- function(..., na.rm = FALSE) { + all_any_amr_selector("all", ..., na.rm = na.rm) } -#' @method any ab_selector +#' @method any amr_selector #' @export #' @noRd -any.ab_selector <- function(..., na.rm = FALSE) { - all_any_ab_selector("any", ..., na.rm = na.rm) +any.amr_selector <- function(..., na.rm = FALSE) { + all_any_amr_selector("any", ..., na.rm = na.rm) } -#' @method all ab_selector_any_all +#' @method all amr_selector_any_all #' @export #' @noRd -all.ab_selector_any_all <- function(..., na.rm = FALSE) { - # this is all() on a logical vector from `==.ab_selector` or `!=.ab_selector` +all.amr_selector_any_all <- function(..., na.rm = FALSE) { + # this is all() on a logical vector from `==.amr_selector` or `!=.amr_selector` # e.g., example_isolates %>% filter(all(carbapenems() == "R")) # so just return the vector as is, only correcting for na.rm out <- unclass(c(...)) @@ -784,11 +832,11 @@ all.ab_selector_any_all <- function(..., na.rm = FALSE) { out } -#' @method any ab_selector_any_all +#' @method any amr_selector_any_all #' @export #' @noRd -any.ab_selector_any_all <- function(..., na.rm = FALSE) { - # this is any() on a logical vector from `==.ab_selector` or `!=.ab_selector` +any.amr_selector_any_all <- function(..., na.rm = FALSE) { + # this is any() on a logical vector from `==.amr_selector` or `!=.amr_selector` # e.g., example_isolates %>% filter(any(carbapenems() == "R")) # so just return the vector as is, only correcting for na.rm out <- unclass(c(...)) @@ -798,10 +846,10 @@ any.ab_selector_any_all <- function(..., na.rm = FALSE) { out } -#' @method == ab_selector +#' @method == amr_selector #' @export #' @noRd -`==.ab_selector` <- function(e1, e2) { +`==.amr_selector` <- function(e1, e2) { calls <- as.character(match.call()) fn_name <- calls[2] fn_name <- gsub("^(c\\()(.*)(\\))$", "\\2", fn_name) @@ -818,15 +866,15 @@ any.ab_selector_any_all <- function(..., na.rm = FALSE) { ) } } - structure(all_any_ab_selector(type = type, e1, e2), - class = c("ab_selector_any_all", "logical") + structure(all_any_amr_selector(type = type, e1, e2), + class = c("amr_selector_any_all", "logical") ) } -#' @method != ab_selector +#' @method != amr_selector #' @export #' @noRd -`!=.ab_selector` <- function(e1, e2) { +`!=.amr_selector` <- function(e1, e2) { calls <- as.character(match.call()) fn_name <- calls[2] fn_name <- gsub("^(c\\()(.*)(\\))$", "\\2", fn_name) @@ -846,29 +894,29 @@ any.ab_selector_any_all <- function(..., na.rm = FALSE) { # this is `!=`, so turn around the values sir <- c("S", "SDD", "I", "R", "NI") e2 <- sir[sir != e2] - structure(all_any_ab_selector(type = type, e1, e2), - class = c("ab_selector_any_all", "logical") + structure(all_any_amr_selector(type = type, e1, e2), + class = c("amr_selector_any_all", "logical") ) } -#' @method & ab_selector +#' @method & amr_selector #' @export #' @noRd -`&.ab_selector` <- function(e1, e2) { +`&.amr_selector` <- function(e1, e2) { # this is only required for base R, since tidyselect has already implemented this # e.g., for: example_isolates[, penicillins() & administrable_per_os()] structure(intersect(unclass(e1), unclass(e2)), - class = c("ab_selector", "character") + class = c("amr_selector", "character") ) } -#' @method | ab_selector +#' @method | amr_selector #' @export #' @noRd -`|.ab_selector` <- function(e1, e2) { +`|.amr_selector` <- function(e1, e2) { # this is only required for base R, since tidyselect has already implemented this # e.g., for: example_isolates[, penicillins() | administrable_per_os()] structure(union(unclass(e1), unclass(e2)), - class = c("ab_selector", "character") + class = c("amr_selector", "character") ) } @@ -883,12 +931,12 @@ is_all <- function(el1) { syscalls %like% paste0("[^_a-zA-Z0-9]all\\(", "(c\\()?", el1) } -find_ab_group <- function(ab_class_args) { - ab_class_args <- gsub("[^a-zA-Z0-9]", ".*", ab_class_args) +find_ab_group <- function(amr_class_args) { + amr_class_args <- gsub("[^a-zA-Z0-9]", ".*", amr_class_args) AMR_env$AB_lookup %pm>% - subset(group %like% ab_class_args | - atc_group1 %like% ab_class_args | - atc_group2 %like% ab_class_args) %pm>% + subset(group %like% amr_class_args | + atc_group1 %like% amr_class_args | + atc_group2 %like% amr_class_args) %pm>% pm_pull(group) %pm>% unique() %pm>% tolower() %pm>% @@ -898,32 +946,32 @@ find_ab_group <- function(ab_class_args) { find_ab_names <- function(ab_group, n = 3) { ab_group <- gsub("[^a-zA-Z|0-9]", ".*", ab_group) - + # try popular first, they have DDDs drugs <- AMR_env$AB_lookup[which((!is.na(AMR_env$AB_lookup$iv_ddd) | !is.na(AMR_env$AB_lookup$oral_ddd)) & - AMR_env$AB_lookup$name %unlike% " " & - AMR_env$AB_lookup$group %like% ab_group & - AMR_env$AB_lookup$ab %unlike% "[0-9]$"), ]$name + AMR_env$AB_lookup$name %unlike% " " & + AMR_env$AB_lookup$group %like% ab_group & + AMR_env$AB_lookup$ab %unlike% "[0-9]$"), ]$name if (length(drugs) < n) { # now try it all drugs <- AMR_env$AB_lookup[which((AMR_env$AB_lookup$group %like% ab_group | - AMR_env$AB_lookup$atc_group1 %like% ab_group | - AMR_env$AB_lookup$atc_group2 %like% ab_group) & - AMR_env$AB_lookup$ab %unlike% "[0-9]$"), ]$name + AMR_env$AB_lookup$atc_group1 %like% ab_group | + AMR_env$AB_lookup$atc_group2 %like% ab_group) & + AMR_env$AB_lookup$ab %unlike% "[0-9]$"), ]$name } if (length(drugs) == 0) { return("??") } vector_or( ab_name(sample(drugs, size = min(n, length(drugs)), replace = FALSE), - tolower = TRUE, - language = NULL + tolower = TRUE, + language = NULL ), quotes = FALSE ) } -message_agent_names <- function(function_name, agents, ab_group = NULL, examples = "", ab_class_args = NULL, call = NULL) { +message_agent_names <- function(function_name, agents, ab_group = NULL, examples = "", amr_class_args = NULL, call = NULL) { if (message_not_thrown_before(function_name, sort(agents))) { if (length(agents) == 0) { if (is.null(ab_group)) { @@ -942,12 +990,12 @@ message_agent_names <- function(function_name, agents, ab_group = NULL, examples agents_formatted[need_name] <- paste0(agents_formatted[need_name], " (", agents_names[need_name], ")") message_( "For `", function_name, "(", - ifelse(function_name == "ab_class", - paste0("\"", ab_class_args, "\""), - ifelse(!is.null(call), - paste0(deparse(call), collapse = " "), - "" - ) + ifelse(function_name == "amr_class", + paste0("\"", amr_class_args, "\""), + ifelse(!is.null(call), + paste0(deparse(call), collapse = " "), + "" + ) ), ")` using ", ifelse(length(agents) == 1, "column ", "columns "), diff --git a/R/antibiogram.R b/R/antibiogram.R index c62471f4a..817dda70a 100755 --- a/R/antibiogram.R +++ b/R/antibiogram.R @@ -31,7 +31,7 @@ #' #' Create detailed antibiograms with options for traditional, combination, syndromic, and Bayesian WISCA methods. Based on the approaches of Klinker *et al.*, Barbieri *et al.*, and the Bayesian WISCA model (Weighted-Incidence Syndromic Combination Antibiogram) by Bielicki *et al.*, this function provides flexible output formats including plots and tables, ideal for integration with R Markdown and Quarto reports. #' @param x a [data.frame] containing at least a column with microorganisms and columns with antibiotic results (class 'sir', see [as.sir()]) -#' @param antibiotics vector of any antibiotic name or code (will be evaluated with [as.ab()], column name of `x`, or (any combinations of) [antibiotic selectors][antibiotic_class_selectors] such as [aminoglycosides()] or [carbapenems()]. For combination antibiograms, this can also be set to values separated with `"+"`, such as "TZP+TOB" or "cipro + genta", given that columns resembling such antibiotics exist in `x`. See *Examples*. +#' @param antibiotics vector of any antibiotic name or code (will be evaluated with [as.ab()], column name of `x`, or (any combinations of) [antimicrobial selectors][antimicrobial_class_selectors] such as [aminoglycosides()] or [carbapenems()]. For combination antibiograms, this can also be set to values separated with `"+"`, such as "TZP+TOB" or "cipro + genta", given that columns resembling such antibiotics exist in `x`. See *Examples*. #' @param mo_transform a character to transform microorganism input - must be `"name"`, `"shortname"` (default), `"gramstain"`, or one of the column names of the [microorganisms] data set: `r vector_or(colnames(microorganisms), sort = FALSE, quotes = TRUE)`. Can also be `NULL` to not transform the input. #' @param ab_transform a character to transform antibiotic input - must be one of the column names of the [antibiotics] data set (defaults to `"name"`): `r vector_or(colnames(antibiotics), sort = FALSE, quotes = TRUE)`. Can also be `NULL` to not transform the input. #' @param syndromic_group a column name of `x`, or values calculated to split rows of `x`, e.g. by using [ifelse()] or [`case_when()`][dplyr::case_when()]. See *Examples*. diff --git a/R/custom_antimicrobials.R b/R/custom_antimicrobials.R index 6d28f12c8..661d792e1 100755 --- a/R/custom_antimicrobials.R +++ b/R/custom_antimicrobials.R @@ -108,7 +108,7 @@ #' ab_atc("Co-fluampicil") #' ab_name("J01CR50") #' -#' # even antibiotic selectors work +#' # even antimicrobial selectors work #' x <- data.frame( #' random_column = "some value", #' coflu = as.sir("S"), diff --git a/R/guess_ab_col.R b/R/guess_ab_col.R index 3f6cd67db..eb16825c4 100755 --- a/R/guess_ab_col.R +++ b/R/guess_ab_col.R @@ -105,7 +105,8 @@ get_column_abx <- function(x, only_sir_columns = FALSE, sort = TRUE, reuse_previous_result = TRUE, - fn = NULL) { + fn = NULL, + return_all = FALSE) { # check if retrieved before, then get it from package environment if (isTRUE(reuse_previous_result) && identical( unique_call_id( @@ -253,47 +254,50 @@ get_column_abx <- function(x, if (sort == TRUE) { out <- out[order(names(out), out)] } - # only keep the first hits, no duplicates - duplicates <- c(out[duplicated(names(out))], out[duplicated(unname(out))]) - if (length(duplicates) > 0) { - all_okay <- FALSE - } - - if (isTRUE(info)) { - if (all_okay == TRUE) { - message_(" OK.", add_fn = list(font_green, font_bold), as_note = FALSE) - } else { - message_(" WARNING.", add_fn = list(font_yellow, font_bold), as_note = FALSE) + + if (return_all == FALSE) { + # only keep the first hits, no duplicates + duplicates <- c(out[duplicated(names(out))], out[duplicated(unname(out))]) + if (length(duplicates) > 0) { + all_okay <- FALSE } - for (i in seq_len(length(out))) { - if (isTRUE(verbose) && !names(out[i]) %in% names(duplicates)) { - message_( - "Using column '", font_bold(out[i]), "' as input for ", names(out)[i], - " (", ab_name(names(out)[i], tolower = TRUE, language = NULL), ")." - ) + + if (isTRUE(info)) { + if (all_okay == TRUE) { + message_(" OK.", add_fn = list(font_green, font_bold), as_note = FALSE) + } else { + message_(" WARNING.", add_fn = list(font_yellow, font_bold), as_note = FALSE) } - if (names(out[i]) %in% names(duplicates)) { - already_set_as <- out[unname(out) == unname(out[i])][1L] - if (names(out)[i] != names(already_set_as)) { - warning_( - paste0( - "Column '", font_bold(out[i]), "' will not be used for ", - names(out)[i], " (", ab_name(names(out)[i], tolower = TRUE, language = NULL), ")", - ", as it is already set for ", - names(already_set_as), " (", ab_name(names(already_set_as), tolower = TRUE, language = NULL), ")" - ), - add_fn = font_red, - immediate = verbose + for (i in seq_len(length(out))) { + if (isTRUE(verbose) && !names(out[i]) %in% names(duplicates)) { + message_( + "Using column '", font_bold(out[i]), "' as input for ", names(out)[i], + " (", ab_name(names(out)[i], tolower = TRUE, language = NULL), ")." ) } + if (names(out[i]) %in% names(duplicates)) { + already_set_as <- out[unname(out) == unname(out[i])][1L] + if (names(out)[i] != names(already_set_as)) { + warning_( + paste0( + "Column '", font_bold(out[i]), "' will not be used for ", + names(out)[i], " (", ab_name(names(out)[i], tolower = TRUE, language = NULL), ")", + ", as it is already set for ", + names(already_set_as), " (", ab_name(names(already_set_as), tolower = TRUE, language = NULL), ")" + ), + add_fn = font_red, + immediate = verbose + ) + } + } } } - } - - out <- out[!duplicated(names(out))] - out <- out[!duplicated(unname(out))] - if (sort == TRUE) { - out <- out[order(names(out), out)] + + out <- out[!duplicated(names(out))] + out <- out[!duplicated(unname(out))] + if (sort == TRUE) { + out <- out[order(names(out), out)] + } } if (!is.null(hard_dependencies)) { diff --git a/R/mean_amr_distance.R b/R/mean_amr_distance.R index 3bcbe931e..1cbba0f5f 100755 --- a/R/mean_amr_distance.R +++ b/R/mean_amr_distance.R @@ -31,7 +31,7 @@ #' #' Calculates a normalised mean for antimicrobial resistance between multiple observations, to help to identify similar isolates without comparing antibiograms by hand. #' @param x a vector of class [sir][as.sir()], [mic][as.mic()] or [disk][as.disk()], or a [data.frame] containing columns of any of these classes -#' @param ... variables to select (supports [tidyselect language][tidyselect::language] such as `column1:column4` and `where(is.mic)`, and can thus also be [antibiotic selectors][ab_selector()] +#' @param ... variables to select (supports [tidyselect language][tidyselect::language] such as `column1:column4` and `where(is.mic)`, and can thus also be [antimicrobial selectors][amr_selector()] #' @param combine_SI a [logical] to indicate whether all values of S, SDD, and I must be merged into one, so the input only consists of S+I vs. R (susceptible vs. resistant) - the default is `TRUE` #' @details The mean AMR distance is effectively [the Z-score](https://en.wikipedia.org/wiki/Standard_score); a normalised numeric value to compare AMR test results which can help to identify similar isolates, without comparing antibiograms by hand. #' diff --git a/R/mo_source.R b/R/mo_source.R index 864677153..13b860945 100755 --- a/R/mo_source.R +++ b/R/mo_source.R @@ -60,10 +60,10 @@ #' 4 | | | #' ``` #' -#' We save it as `"home/me/ourcodes.xlsx"`. Now we have to set it as a source: +#' We save it as `"/Users/me/Documents/ourcodes.xlsx"`. Now we have to set it as a source: #' #' ``` -#' set_mo_source("home/me/ourcodes.xlsx") +#' set_mo_source("/Users/me/Documents/ourcodes.xlsx") #' #> NOTE: Created mo_source file '/Users/me/mo_source.rds' (0.3 kB) from #' #> '/Users/me/Documents/ourcodes.xlsx' (9 kB), columns #' #> "Organisation XYZ" and "mo" diff --git a/R/proportion.R b/R/proportion.R index 164460ecc..b527610c4 100644 --- a/R/proportion.R +++ b/R/proportion.R @@ -151,7 +151,7 @@ #' ) #' } #' if (require("dplyr")) { -#' # scoped dplyr verbs with antibiotic selectors +#' # scoped dplyr verbs with antimicrobial selectors #' # (you could also use across() of course) #' example_isolates %>% #' group_by(ward) %>% diff --git a/R/vctrs.R b/R/vctrs.R index aa55fa60c..daa4a979a 100755 --- a/R/vctrs.R +++ b/R/vctrs.R @@ -34,27 +34,27 @@ # see https://github.com/tidyverse/dplyr/issues/5955 why this is required -# S3: ab_selector ---- +# S3: amr_selector ---- # this does not need a .default method since it's used internally only -vec_ptype2.character.ab_selector <- function(x, y, ...) { +vec_ptype2.character.amr_selector <- function(x, y, ...) { x } -vec_ptype2.ab_selector.character <- function(x, y, ...) { +vec_ptype2.amr_selector.character <- function(x, y, ...) { y } -vec_cast.character.ab_selector <- function(x, to, ...) { +vec_cast.character.amr_selector <- function(x, to, ...) { unclass(x) } -# S3: ab_selector_any_all ---- +# S3: amr_selector_any_all ---- # this does not need a .default method since it's used internally only -vec_ptype2.logical.ab_selector_any_all <- function(x, y, ...) { +vec_ptype2.logical.amr_selector_any_all <- function(x, y, ...) { x } -vec_ptype2.ab_selector_any_all.logical <- function(x, y, ...) { +vec_ptype2.amr_selector_any_all.logical <- function(x, y, ...) { y } -vec_cast.logical.ab_selector_any_all <- function(x, to, ...) { +vec_cast.logical.amr_selector_any_all <- function(x, to, ...) { unclass(x) } diff --git a/R/zz_deprecated.R b/R/zz_deprecated.R index 4efe661e7..99b168727 100755 --- a/R/zz_deprecated.R +++ b/R/zz_deprecated.R @@ -27,14 +27,28 @@ # how to conduct AMR data analysis: https://msberends.github.io/AMR/ # # ==================================================================== # -# #' Deprecated Functions -# #' -# #' These functions are so-called '[Deprecated]'. **They will be removed in a future release.** Using the functions will give a warning with the name of the function it has been replaced by (if there is one). -# #' @keywords internal -# #' @name AMR-deprecated -# #' @rdname AMR-deprecated -# #' @export -# NULL +#' Deprecated Functions +#' +#' These functions are so-called '[Deprecated]'. **They will be removed in a future version of this package.** Using these functions will give a warning with the name of the function it has been replaced by (if there is one). +#' @keywords internal +#' @name AMR-deprecated +#' @rdname AMR-deprecated +NULL + +#' @rdname AMR-deprecated +#' @export +ab_class <- function(...) { + deprecation_warning("ab_class", "amr_class") + amr_class(...) +} + +#' @rdname AMR-deprecated +#' @export +ab_selector <- function(...) { + deprecation_warning("ab_selector", "amr_selector") + amr_selector(...) +} + deprecation_warning <- function(old = NULL, new = NULL, extra_msg = NULL, is_function = TRUE) { if (is.null(old)) { @@ -53,7 +67,7 @@ deprecation_warning <- function(old = NULL, new = NULL, extra_msg = NULL, is_fun warning_( ifelse(is.null(new), paste0("The `", old, "` ", type, " is no longer in use"), - paste0("The `", old, "` ", type, " has been replaced with `", new, "`") + paste0("The `", old, "` ", type, " has been replaced with `", new, "` and will be removed in a future version") ), ifelse(type == "argument", ". While the old argument still works, it will be removed in a future version, so please update your code.", diff --git a/R/zzz.R b/R/zzz.R index 81a86fad8..820f663c8 100755 --- a/R/zzz.R +++ b/R/zzz.R @@ -135,14 +135,14 @@ AMR_env$cli_abort <- import_fn("cli_abort", "cli", error_on_fail = FALSE) s3_register("knitr::knit_print", "formatted_bug_drug_combinations") # Support vctrs package for use in e.g. dplyr verbs # NOTE 2024-02-22 this is the right way - it should be 2 S3 classes in the second argument - # S3: ab_selector - s3_register("vctrs::vec_ptype2", "character.ab_selector") - s3_register("vctrs::vec_ptype2", "ab_selector.character") - s3_register("vctrs::vec_cast", "character.ab_selector") - # S3: ab_selector_any_all - s3_register("vctrs::vec_ptype2", "logical.ab_selector_any_all") - s3_register("vctrs::vec_ptype2", "ab_selector_any_all.logical") - s3_register("vctrs::vec_cast", "logical.ab_selector_any_all") + # S3: amr_selector + s3_register("vctrs::vec_ptype2", "character.amr_selector") + s3_register("vctrs::vec_ptype2", "amr_selector.character") + s3_register("vctrs::vec_cast", "character.amr_selector") + # S3: amr_selector_any_all + s3_register("vctrs::vec_ptype2", "logical.amr_selector_any_all") + s3_register("vctrs::vec_ptype2", "amr_selector_any_all.logical") + s3_register("vctrs::vec_cast", "logical.amr_selector_any_all") # S3: ab s3_register("vctrs::vec_ptype2", "ab.default") s3_register("vctrs::vec_ptype2", "ab.ab") diff --git a/README.md b/README.md index cbf31fc15..3fa0864e1 100755 --- a/README.md +++ b/README.md @@ -1,29 +1,37 @@ -# `AMR` (for R) - - +# The `AMR` Package for R ---- -`AMR` is a free, open-source and independent R package to simplify the analysis and prediction of Antimicrobial Resistance (AMR) and to work with microbial and antimicrobial data and properties, by using evidence-based methods. Our aim is to provide a standard for clean and reproducible antimicrobial resistance data analysis, that can therefore empower epidemiological analyses to continuously enable surveillance and treatment evaluation in any setting. It is currently being used in over 175 countries. This work was published in the Journal of Statistical Software (2022, Volume 104(3); [DOI 10.18637/jss.v104.i03](https://doi.org/10.18637/jss.v104.i03)) and formed the basis of two PhD theses ([DOI 10.33612/diss.177417131](https://doi.org/10.33612/diss.177417131) and [DOI 10.33612/diss.192486375](https://doi.org/10.33612/diss.192486375)). - -After installing this package, R knows ~52,000 distinct microbial species and all ~600 antibiotic, antimycotic, and antiviral drugs by name and code (including ATC, WHONET/EARS-Net, PubChem, LOINC and SNOMED CT), and knows all about valid SIR and MIC values. It supports any data format, including WHONET/EARS-Net data. Antimicrobial names and group names are available in English, Chinese, Danish, Dutch, French, German, Greek, Italian, Japanese, Polish, Portuguese, Russian, Spanish, Swedish, Turkish, and Ukrainian. +The `AMR` package is a free and open-source R package with zero dependencies to simplify the analysis and prediction of Antimicrobial Resistance (AMR) and to work with microbial and antimicrobial data and properties, by using evidence-based methods. **Our aim is to provide a standard** for clean and reproducible AMR data analysis, that can therefore empower epidemiological analyses to continuously enable surveillance and treatment evaluation in any setting. -This package is fully independent of any other R package and works on Windows, macOS and Linux with all versions of R since R-3.0.0 (April 2013). It was designed to work in any setting, including those with very limited resources. It was created for both routine data analysis and academic research at the Faculty of Medical Sciences of the University of Groningen, in collaboration with non-profit organisations Certe Medical Diagnostics and Advice Foundation and University Medical Center Groningen. This R package is actively maintained and free software; you can freely use and distribute it for both personal and commercial (but not patent) purposes under the terms of the GNU General Public License version 2.0 (GPL-2), as published by the Free Software Foundation. +Overview: -This is the development source of the `AMR` package for R. Not a developer? Then please visit our website [https://msberends.github.io/AMR/](https://msberends.github.io/AMR/) to read more about this package. +* Provides an **all-in-one solution** for antimicrobial resistance (AMR) data analysis in a One Health approach +* Used in over 175 countries, available in 20 languages +* Generates **antibiograms** - traditional, combined, syndromic, and even WISCA +* Provides the **full microbiological taxonomy** and extensive info on **all antimicrobial drugs** +* Applies all recent **CLSI** and **EUCAST** clinical and veterinary breakpoints for MICs, disk zones and ECOFFs +* Corrects for duplicate isolates, **calculates** and **predicts** AMR per antimicrobial class +* Integrates with **WHONET**, ATC, **EARS-Net**, PubChem, **LOINC**, **SNOMED CT**, and **NCBI** +* 100% free of costs and dependencies, highly suitable for places with **limited resources** -*NOTE: this source code is on GitHub (https://github.com/msberends/AMR), but also automatically mirrored to our university's Gitea server (https://git.web.rug.nl/P281424/AMR) and to GitLab (https://gitlab.com/msberends/AMR).* +---- + +Please visit our extensive website [https://msberends.github.io/AMR/](https://msberends.github.io/AMR/) to read more about this package, including many examples and tutorials. ### How to get this package -Please see [our website](https://msberends.github.io/AMR/#get-this-package). -You can install or update the `AMR` package from CRAN using: +To install the latest 'release' version from CRAN: ```r install.packages("AMR") ``` -It will be downloaded and installed automatically. For RStudio, click on the menu *Tools* > *Install Packages...* and then type in "AMR" and press Install. +To install the latest 'beta' version from GitHub: + +```r +remotes::install_github("msberends/AMR") +``` ---- diff --git a/_pkgdown.yml b/_pkgdown.yml index 7bb3f42fa..f8343ef2b 100644 --- a/_pkgdown.yml +++ b/_pkgdown.yml @@ -139,7 +139,7 @@ reference: These functions are meant to get taxonomically valid properties of microorganisms from any input, but also properties derived from taxonomy, such as the Gram stain (`mo_gramstain()`) , or `mo_is_yeast()`. Use `mo_source()` to teach this package how to translate your own codes to valid microorganisms, and - use `add_custom_microorganisms() to add your own custom microorganisms to this package. + use `add_custom_microorganisms()` to add your own custom microorganisms to this package. contents: - "`as.mo`" - "`mo_property`" @@ -186,7 +186,7 @@ reference: - "`mdro`" - "`count`" - "`bug_drug_combinations`" - - "`antibiotic_class_selectors`" + - "`antimicrobial_class_selectors`" - "`mean_amr_distance`" - "`resistance_predict`" - "`guess_ab_col`" diff --git a/data-raw/gpt_training_text_v2.1.1.9123.txt b/data-raw/gpt_training_text_v2.1.1.9125.txt similarity index 98% rename from data-raw/gpt_training_text_v2.1.1.9123.txt rename to data-raw/gpt_training_text_v2.1.1.9125.txt index 59df8aca7..b42f62da2 100644 --- a/data-raw/gpt_training_text_v2.1.1.9123.txt +++ b/data-raw/gpt_training_text_v2.1.1.9125.txt @@ -1,5 +1,5 @@ This files contains all context you must know about the AMR package for R. -First and foremost, you are trained on version 2.1.1.9123. Remember this whenever someone asks which AMR package version you’re at. +First and foremost, you are trained on version 2.1.1.9125. Remember this whenever someone asks which AMR package version you’re at. -------------------------------- THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'NAMESPACE': @@ -7,9 +7,9 @@ THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'NAMESPACE': # Generated by roxygen2: do not edit by hand -S3method("!=",ab_selector) -S3method("&",ab_selector) -S3method("==",ab_selector) +S3method("!=",amr_selector) +S3method("&",amr_selector) +S3method("==",amr_selector) S3method("[",ab) S3method("[",av) S3method("[",disk) @@ -32,15 +32,15 @@ S3method("[[<-",disk) S3method("[[<-",mic) S3method("[[<-",mo) S3method("[[<-",sir) -S3method("|",ab_selector) +S3method("|",amr_selector) S3method(Complex,mic) S3method(Math,mic) S3method(Ops,mic) S3method(Summary,mic) -S3method(all,ab_selector) -S3method(all,ab_selector_any_all) -S3method(any,ab_selector) -S3method(any,ab_selector_any_all) +S3method(all,amr_selector) +S3method(all,amr_selector_any_all) +S3method(any,amr_selector) +S3method(any,amr_selector_any_all) S3method(as.data.frame,ab) S3method(as.data.frame,av) S3method(as.data.frame,mic) @@ -62,7 +62,7 @@ S3method(barplot,disk) S3method(barplot,mic) S3method(barplot,sir) S3method(c,ab) -S3method(c,ab_selector) +S3method(c,amr_selector) S3method(c,av) S3method(c,custom_eucast_rules) S3method(c,custom_mdro_guideline) @@ -91,7 +91,7 @@ S3method(plot,mic) S3method(plot,resistance_predict) S3method(plot,sir) S3method(print,ab) -S3method(print,ab_selector) +S3method(print,amr_selector) S3method(print,av) S3method(print,bug_drug_combinations) S3method(print,custom_eucast_rules) @@ -158,7 +158,9 @@ export(age_groups) export(all_antimicrobials) export(aminoglycosides) export(aminopenicillins) +export(amr_class) export(amr_distance_from_row) +export(amr_selector) export(anti_join_microorganisms) export(antibiogram) export(antifungals) @@ -375,7 +377,7 @@ THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'index.md': * Generates **antibiograms** - traditional, combined, syndromic, and even WISCA * Provides the **full microbiological taxonomy** and extensive info on **all antimicrobial drugs** * Applies all recent **CLSI** and **EUCAST** clinical and veterinary breakpoints for MICs, disk zones and ECOFFs -* Corrects for duplicate isolates, **calculates** and **predicts** AMR per antibiotic class +* Corrects for duplicate isolates, **calculates** and **predicts** AMR per antimicrobial class * Integrates with **WHONET**, ATC, **EARS-Net**, PubChem, **LOINC**, **SNOMED CT**, and **NCBI** * 100% free of costs and dependencies, highly suitable for places with **limited resources** @@ -410,7 +412,7 @@ With the help of contributors from all corners of the world, the `AMR` package i #### Filtering and selecting data -One of the most powerful functions of this package, aside from calculating and plotting AMR, is selecting and filtering based on antibiotic columns. This can be done using the so-called [antibiotic class selectors](https://msberends.github.io/AMR/reference/antibiotic_class_selectors.html) that work in base R, `dplyr` and `data.table`: +One of the most powerful functions of this package, aside from calculating and plotting AMR, is selecting and filtering based on antimicrobial columns. This can be done using the so-called [antimicrobial class selectors](https://msberends.github.io/AMR/reference/antimicrobial_class_selectors.html), which work in base R, `dplyr` and `data.table`: ```r # AMR works great with dplyr, but it's not required or neccesary @@ -422,7 +424,7 @@ example_isolates %>% # filtering functions for microorganisms: filter(mo_is_gram_negative(), mo_is_intrinsic_resistant(ab = "cefotax")) %>% - # antibiotic selectors: + # antimicrobial selectors: select(bacteria, aminoglycosides(), carbapenems()) @@ -532,7 +534,7 @@ example_isolates %>% |ICU | 0.290 |0.253-0.330 | 0.400 |0.353-0.449 | |Outpatient | 0.200 |0.131-0.285 | 0.368 |0.254-0.493 | -Or use [antibiotic class selectors](https://msberends.github.io/AMR/reference/antibiotic_class_selectors.html) to select a series of antibiotic columns: +Or use [antimicrobial class selectors](https://msberends.github.io/AMR/reference/antimicrobial_class_selectors.html) to select a series of antibiotic columns: ```r library(AMR) @@ -588,7 +590,7 @@ This package was intended as a comprehensive toolbox for integrated AMR data ana * Calculating (empirical) susceptibility of both mono therapy and combination therapies ([tutorial](./articles/AMR.html)) * Predicting future antimicrobial resistance using regression models ([tutorial](./articles/resistance_predict.html)) * Getting properties for any microorganism (like Gram stain, species, genus or family) ([manual](./reference/mo_property.html)) - * Getting properties for any antibiotic (like name, code of EARS-Net/ATC/LOINC/PubChem, defined daily dose or trade name) ([manual](./reference/ab_property.html)) + * Getting properties for any antimicrobial (like name, code of EARS-Net/ATC/LOINC/PubChem, defined daily dose or trade name) ([manual](./reference/ab_property.html)) * Plotting antimicrobial resistance ([tutorial](./articles/AMR.html)) * Applying EUCAST expert rules ([manual](./reference/eucast_rules.html)) * Getting SNOMED codes of a microorganism, or getting properties of a microorganism based on a SNOMED code ([manual](./reference/mo_property.html)) @@ -682,6 +684,28 @@ This R package is free, open-source software and licensed under the [GNU General +THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'man/AMR-deprecated.Rd': + + +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/zz_deprecated.R +\name{AMR-deprecated} +\alias{AMR-deprecated} +\alias{ab_class} +\alias{ab_selector} +\title{Deprecated Functions} +\usage{ +ab_class(...) + +ab_selector(...) +} +\description{ +These functions are so-called '\link{Deprecated}'. \strong{They will be removed in a future version of this package.} Using these functions will give a warning with the name of the function it has been replaced by (if there is one). +} +\keyword{internal} + + + THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'man/AMR-options.Rd': @@ -1312,7 +1336,7 @@ add_custom_antimicrobials( ab_atc("Co-fluampicil") ab_name("J01CR50") -# even antibiotic selectors work +# even antimicrobial selectors work x <- data.frame( random_column = "some value", coflu = as.sir("S"), @@ -1635,7 +1659,7 @@ antibiogram( \arguments{ \item{x}{a \link{data.frame} containing at least a column with microorganisms and columns with antibiotic results (class 'sir', see \code{\link[=as.sir]{as.sir()}})} -\item{antibiotics}{vector of any antibiotic name or code (will be evaluated with \code{\link[=as.ab]{as.ab()}}, column name of \code{x}, or (any combinations of) \link[=antibiotic_class_selectors]{antibiotic selectors} such as \code{\link[=aminoglycosides]{aminoglycosides()}} or \code{\link[=carbapenems]{carbapenems()}}. For combination antibiograms, this can also be set to values separated with \code{"+"}, such as "TZP+TOB" or "cipro + genta", given that columns resembling such antibiotics exist in \code{x}. See \emph{Examples}.} +\item{antibiotics}{vector of any antibiotic name or code (will be evaluated with \code{\link[=as.ab]{as.ab()}}, column name of \code{x}, or (any combinations of) \link[=antimicrobial_class_selectors]{antimicrobial selectors} such as \code{\link[=aminoglycosides]{aminoglycosides()}} or \code{\link[=carbapenems]{carbapenems()}}. For combination antibiograms, this can also be set to values separated with \code{"+"}, such as "TZP+TOB" or "cipro + genta", given that columns resembling such antibiotics exist in \code{x}. See \emph{Examples}.} \item{mo_transform}{a character to transform microorganism input - must be \code{"name"}, \code{"shortname"} (default), \code{"gramstain"}, or one of the column names of the \link{microorganisms} data set: "mo", "fullname", "status", "kingdom", "phylum", "class", "order", "family", "genus", "species", "subspecies", "rank", "ref", "oxygen_tolerance", "source", "lpsn", "lpsn_parent", "lpsn_renamed_to", "mycobank", "mycobank_parent", "mycobank_renamed_to", "gbif", "gbif_parent", "gbif_renamed_to", "prevalence", or "snomed". Can also be \code{NULL} to not transform the input.} @@ -1923,373 +1947,6 @@ plot(ab2) -THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'man/antibiotic_class_selectors.Rd': - - -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/ab_selectors.R -\name{antibiotic_class_selectors} -\alias{antibiotic_class_selectors} -\alias{ab_class} -\alias{ab_selector} -\alias{aminoglycosides} -\alias{aminopenicillins} -\alias{antifungals} -\alias{antimycobacterials} -\alias{betalactams} -\alias{betalactams_with_inhibitor} -\alias{carbapenems} -\alias{cephalosporins} -\alias{cephalosporins_1st} -\alias{cephalosporins_2nd} -\alias{cephalosporins_3rd} -\alias{cephalosporins_4th} -\alias{cephalosporins_5th} -\alias{fluoroquinolones} -\alias{glycopeptides} -\alias{lincosamides} -\alias{lipoglycopeptides} -\alias{macrolides} -\alias{nitrofurans} -\alias{oxazolidinones} -\alias{penicillins} -\alias{phenicols} -\alias{polymyxins} -\alias{quinolones} -\alias{rifamycins} -\alias{streptogramins} -\alias{tetracyclines} -\alias{trimethoprims} -\alias{ureidopenicillins} -\alias{administrable_per_os} -\alias{administrable_iv} -\alias{not_intrinsic_resistant} -\title{Antibiotic Selectors} -\usage{ -ab_class(ab_class, only_sir_columns = FALSE, only_treatable = TRUE, ...) - -ab_selector(filter, only_sir_columns = FALSE, only_treatable = TRUE, ...) - -aminoglycosides(only_sir_columns = FALSE, only_treatable = TRUE, ...) - -aminopenicillins(only_sir_columns = FALSE, ...) - -antifungals(only_sir_columns = FALSE, ...) - -antimycobacterials(only_sir_columns = FALSE, ...) - -betalactams(only_sir_columns = FALSE, only_treatable = TRUE, ...) - -betalactams_with_inhibitor(only_sir_columns = FALSE, ...) - -carbapenems(only_sir_columns = FALSE, only_treatable = TRUE, ...) - -cephalosporins(only_sir_columns = FALSE, ...) - -cephalosporins_1st(only_sir_columns = FALSE, ...) - -cephalosporins_2nd(only_sir_columns = FALSE, ...) - -cephalosporins_3rd(only_sir_columns = FALSE, ...) - -cephalosporins_4th(only_sir_columns = FALSE, ...) - -cephalosporins_5th(only_sir_columns = FALSE, ...) - -fluoroquinolones(only_sir_columns = FALSE, ...) - -glycopeptides(only_sir_columns = FALSE, ...) - -lincosamides(only_sir_columns = FALSE, only_treatable = TRUE, ...) - -lipoglycopeptides(only_sir_columns = FALSE, ...) - -macrolides(only_sir_columns = FALSE, ...) - -nitrofurans(only_sir_columns = FALSE, ...) - -oxazolidinones(only_sir_columns = FALSE, ...) - -penicillins(only_sir_columns = FALSE, ...) - -phenicols(only_sir_columns = FALSE, ...) - -polymyxins(only_sir_columns = FALSE, only_treatable = TRUE, ...) - -quinolones(only_sir_columns = FALSE, ...) - -rifamycins(only_sir_columns = FALSE, ...) - -streptogramins(only_sir_columns = FALSE, ...) - -tetracyclines(only_sir_columns = FALSE, ...) - -trimethoprims(only_sir_columns = FALSE, ...) - -ureidopenicillins(only_sir_columns = FALSE, ...) - -administrable_per_os(only_sir_columns = FALSE, ...) - -administrable_iv(only_sir_columns = FALSE, ...) - -not_intrinsic_resistant( - only_sir_columns = FALSE, - col_mo = NULL, - version_expertrules = 3.3, - ... -) -} -\arguments{ -\item{ab_class}{an antimicrobial class or a part of it, such as \code{"carba"} and \code{"carbapenems"}. The columns \code{group}, \code{atc_group1} and \code{atc_group2} of the \link{antibiotics} data set will be searched (case-insensitive) for this value.} - -\item{only_sir_columns}{a \link{logical} to indicate whether only columns of class \code{sir} must be selected (default is \code{FALSE}), see \code{\link[=as.sir]{as.sir()}}} - -\item{only_treatable}{a \link{logical} to indicate whether antimicrobial drugs should be excluded that are only for laboratory tests (default is \code{TRUE}), such as gentamicin-high (\code{GEH}) and imipenem/EDTA (\code{IPE})} - -\item{...}{ignored, only in place to allow future extensions} - -\item{filter}{an \link{expression} to be evaluated in the \link{antibiotics} data set, such as \code{name \%like\% "trim"}} - -\item{col_mo}{column name of the names or codes of the microorganisms (see \code{\link[=as.mo]{as.mo()}}) - the default is the first column of class \code{\link{mo}}. Values will be coerced using \code{\link[=as.mo]{as.mo()}}.} - -\item{version_expertrules}{the version number to use for the EUCAST Expert Rules and Intrinsic Resistance guideline. Can be "3.3", "3.2", or "3.1".} -} -\value{ -When used inside selecting or filtering, this returns a \link{character} vector of column names, with additional class \code{"ab_selector"}. When used individually, this returns an \link[=as.ab]{'ab' vector} with all possible antimicrobials that the function would be able to select or filter. -} -\description{ -These functions allow for filtering rows and selecting columns based on antibiotic test results that are of a specific antibiotic class or group (according to the \link{antibiotics} data set), without the need to define the columns or antibiotic abbreviations. - -In short, if you have a column name that resembles an antimicrobial drug, it will be picked up by any of these functions that matches its pharmaceutical class: "cefazolin", "kefzol", "CZO" and "J01DB04" will all be picked up by \code{\link[=cephalosporins]{cephalosporins()}}. -} -\details{ -These functions can be used in data set calls for selecting columns and filtering rows. They work with base \R, the Tidyverse, and \code{data.table}. They are heavily inspired by the \link[tidyselect:language]{Tidyverse selection helpers} such as \code{\link[tidyselect:everything]{everything()}}, but are not limited to \code{dplyr} verbs. Nonetheless, they are very convenient to use with \code{dplyr} functions such as \code{\link[dplyr:select]{select()}}, \code{\link[dplyr:filter]{filter()}} and \code{\link[dplyr:summarise]{summarise()}}, see \emph{Examples}. - -All columns in the data in which these functions are called will be searched for known antibiotic names, abbreviations, brand names, and codes (ATC, EARS-Net, WHO, etc.) according to the \link{antibiotics} data set. This means that a selector such as \code{\link[=aminoglycosides]{aminoglycosides()}} will pick up column names like 'gen', 'genta', 'J01GB03', 'tobra', 'Tobracin', etc. - -The \code{\link[=ab_class]{ab_class()}} function can be used to filter/select on a manually defined antibiotic class. It searches for results in the \link{antibiotics} data set within the columns \code{group}, \code{atc_group1} and \code{atc_group2}. - -The \code{\link[=ab_selector]{ab_selector()}} function can be used to internally filter the \link{antibiotics} data set on any results, see \emph{Examples}. It allows for filtering on a (part of) a certain name, and/or a group name or even a minimum of DDDs for oral treatment. This function yields the highest flexibility, but is also the least user-friendly, since it requires a hard-coded filter to set. - -The \code{\link[=administrable_per_os]{administrable_per_os()}} and \code{\link[=administrable_iv]{administrable_iv()}} functions also rely on the \link{antibiotics} data set - antibiotic columns will be matched where a DDD (defined daily dose) for resp. oral and IV treatment is available in the \link{antibiotics} data set. - -The \code{\link[=not_intrinsic_resistant]{not_intrinsic_resistant()}} function can be used to only select antibiotic columns that pose no intrinsic resistance for the microorganisms in the data set. For example, if a data set contains only microorganism codes or names of \emph{E. coli} and \emph{K. pneumoniae} and contains a column "vancomycin", this column will be removed (or rather, unselected) using this function. It currently applies \href{https://www.eucast.org/expert_rules_and_expected_phenotypes}{'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes' v3.3} (2021) to determine intrinsic resistance, using the \code{\link[=eucast_rules]{eucast_rules()}} function internally. Because of this determination, this function is quite slow in terms of performance. -} -\section{Full list of supported (antibiotic) classes}{ - -\itemize{ -\item \code{\link[=aminoglycosides]{aminoglycosides()}} can select: \cr amikacin (AMK), amikacin/fosfomycin (AKF), apramycin (APR), arbekacin (ARB), astromicin (AST), bekanamycin (BEK), dibekacin (DKB), framycetin (FRM), gentamicin (GEN), gentamicin-high (GEH), habekacin (HAB), hygromycin (HYG), isepamicin (ISE), kanamycin (KAN), kanamycin-high (KAH), kanamycin/cephalexin (KAC), micronomicin (MCR), neomycin (NEO), netilmicin (NET), pentisomicin (PIM), plazomicin (PLZ), propikacin (PKA), ribostamycin (RST), sisomicin (SIS), streptoduocin (STR), streptomycin (STR1), streptomycin-high (STH), tobramycin (TOB), and tobramycin-high (TOH) -\item \code{\link[=aminopenicillins]{aminopenicillins()}} can select: \cr amoxicillin (AMX) and ampicillin (AMP) -\item \code{\link[=antifungals]{antifungals()}} can select: \cr amorolfine (AMO), amphotericin B (AMB), amphotericin B-high (AMH), anidulafungin (ANI), butoconazole (BUT), caspofungin (CAS), ciclopirox (CIX), clotrimazole (CTR), econazole (ECO), fluconazole (FLU), flucytosine (FCT), fosfluconazole (FFL), griseofulvin (GRI), hachimycin (HCH), ibrexafungerp (IBX), isavuconazole (ISV), isoconazole (ISO), itraconazole (ITR), ketoconazole (KET), manogepix (MGX), micafungin (MIF), miconazole (MCZ), nystatin (NYS), oteseconazole (OTE), pimaricin (PMR), posaconazole (POS), rezafungin (RZF), ribociclib (RBC), sulconazole (SUC), terbinafine (TRB), terconazole (TRC), and voriconazole (VOR) -\item \code{\link[=antimycobacterials]{antimycobacterials()}} can select: \cr 4-aminosalicylic acid (AMA), calcium aminosalicylate (CLA), capreomycin (CAP), clofazimine (CLF), delamanid (DLM), enviomycin (ENV), ethambutol (ETH), ethambutol/isoniazid (ETI), ethionamide (ETI1), isoniazid (INH), isoniazid/sulfamethoxazole/trimethoprim/pyridoxine (IST), morinamide (MRN), p-aminosalicylic acid (PAS), pretomanid (PMD), protionamide (PTH), pyrazinamide (PZA), rifabutin (RIB), rifampicin (RIF), rifampicin/ethambutol/isoniazid (REI), rifampicin/isoniazid (RFI), rifampicin/pyrazinamide/ethambutol/isoniazid (RPEI), rifampicin/pyrazinamide/isoniazid (RPI), rifamycin (RFM), rifapentine (RFP), simvastatin/fenofibrate (SMF), sodium aminosalicylate (SDA), streptomycin/isoniazid (STI), terizidone (TRZ), thioacetazone (TAT), thioacetazone/isoniazid (THI1), tiocarlide (TCR), and viomycin (VIO) -\item \code{\link[=betalactams]{betalactams()}} can select: \cr amoxicillin (AMX), amoxicillin/clavulanic acid (AMC), amoxicillin/sulbactam (AXS), ampicillin (AMP), ampicillin/sulbactam (SAM), apalcillin (APL), aspoxicillin (APX), avibactam (AVB), azidocillin (AZD), azlocillin (AZL), aztreonam (ATM), aztreonam/avibactam (AZA), aztreonam/nacubactam (ANC), bacampicillin (BAM), benzathine benzylpenicillin (BNB), benzathine phenoxymethylpenicillin (BNP), benzylpenicillin (PEN), biapenem (BIA), carbenicillin (CRB), carindacillin (CRN), cefacetrile (CAC), cefaclor (CEC), cefadroxil (CFR), cefalexin (LEX), cefaloridine (RID), cefalotin (CEP), cefamandole (MAN), cefapirin (HAP), cefatrizine (CTZ), cefazedone (CZD), cefazolin (CZO), cefcapene (CCP), cefcapene pivoxil (CCX), cefdinir (CDR), cefditoren (DIT), cefditoren pivoxil (DIX), cefepime (FEP), cefepime/clavulanic acid (CPC), cefepime/nacubactam (FNC), cefepime/tazobactam (FPT), cefetamet (CAT), cefetamet pivoxil (CPI), cefetecol (CCL), cefetrizole (CZL), cefiderocol (FDC), cefixime (CFM), cefmenoxime (CMX), cefmetazole (CMZ), cefodizime (DIZ), cefonicid (CID), cefoperazone (CFP), cefoperazone/sulbactam (CSL), ceforanide (CND), cefoselis (CSE), cefotaxime (CTX), cefotaxime/clavulanic acid (CTC), cefotaxime/sulbactam (CTS), cefotetan (CTT), cefotiam (CTF), cefotiam hexetil (CHE), cefovecin (FOV), cefoxitin (FOX), cefoxitin screening (FOX1), cefozopran (ZOP), cefpimizole (CFZ), cefpiramide (CPM), cefpirome (CPO), cefpodoxime (CPD), cefpodoxime proxetil (CPX), cefpodoxime/clavulanic acid (CDC), cefprozil (CPR), cefquinome (CEQ), cefroxadine (CRD), cefsulodin (CFS), cefsumide (CSU), ceftaroline (CPT), ceftaroline/avibactam (CPA), ceftazidime (CAZ), ceftazidime/avibactam (CZA), ceftazidime/clavulanic acid (CCV), cefteram (CEM), cefteram pivoxil (CPL), ceftezole (CTL), ceftibuten (CTB), ceftiofur (TIO), ceftizoxime (CZX), ceftizoxime alapivoxil (CZP), ceftobiprole (BPR), ceftobiprole medocaril (CFM1), ceftolozane/tazobactam (CZT), ceftriaxone (CRO), ceftriaxone/beta-lactamase inhibitor (CEB), cefuroxime (CXM), cefuroxime axetil (CXA), cephradine (CED), ciclacillin (CIC), clometocillin (CLM), cloxacillin (CLO), dicloxacillin (DIC), doripenem (DOR), epicillin (EPC), ertapenem (ETP), flucloxacillin (FLC), hetacillin (HET), imipenem (IPM), imipenem/EDTA (IPE), imipenem/relebactam (IMR), latamoxef (LTM), lenampicillin (LEN), loracarbef (LOR), mecillinam (MEC), meropenem (MEM), meropenem/nacubactam (MNC), meropenem/vaborbactam (MEV), metampicillin (MTM), meticillin (MET), mezlocillin (MEZ), mezlocillin/sulbactam (MSU), nacubactam (NAC), nafcillin (NAF), oxacillin (OXA), panipenem (PAN), penamecillin (PNM), penicillin/novobiocin (PNO), penicillin/sulbactam (PSU), pheneticillin (PHE), phenoxymethylpenicillin (PHN), piperacillin (PIP), piperacillin/sulbactam (PIS), piperacillin/tazobactam (TZP), piridicillin (PRC), pivampicillin (PVM), pivmecillinam (PME), procaine benzylpenicillin (PRB), propicillin (PRP), razupenem (RZM), ritipenem (RIT), ritipenem acoxil (RIA), sarmoxicillin (SRX), sulbactam (SUL), sulbenicillin (SBC), sultamicillin (SLT6), talampicillin (TAL), tazobactam (TAZ), tebipenem (TBP), temocillin (TEM), ticarcillin (TIC), and ticarcillin/clavulanic acid (TCC) -\item \code{\link[=betalactams_with_inhibitor]{betalactams_with_inhibitor()}} can select: \cr amoxicillin/clavulanic acid (AMC), amoxicillin/sulbactam (AXS), ampicillin/sulbactam (SAM), aztreonam/avibactam (AZA), aztreonam/nacubactam (ANC), cefepime/clavulanic acid (CPC), cefepime/nacubactam (FNC), cefepime/tazobactam (FPT), cefoperazone/sulbactam (CSL), cefotaxime/clavulanic acid (CTC), cefotaxime/sulbactam (CTS), cefpodoxime/clavulanic acid (CDC), ceftaroline/avibactam (CPA), ceftazidime/avibactam (CZA), ceftazidime/clavulanic acid (CCV), ceftolozane/tazobactam (CZT), ceftriaxone/beta-lactamase inhibitor (CEB), imipenem/relebactam (IMR), meropenem/nacubactam (MNC), meropenem/vaborbactam (MEV), mezlocillin/sulbactam (MSU), penicillin/novobiocin (PNO), penicillin/sulbactam (PSU), piperacillin/sulbactam (PIS), piperacillin/tazobactam (TZP), and ticarcillin/clavulanic acid (TCC) -\item \code{\link[=carbapenems]{carbapenems()}} can select: \cr biapenem (BIA), doripenem (DOR), ertapenem (ETP), imipenem (IPM), imipenem/EDTA (IPE), imipenem/relebactam (IMR), meropenem (MEM), meropenem/nacubactam (MNC), meropenem/vaborbactam (MEV), panipenem (PAN), razupenem (RZM), ritipenem (RIT), ritipenem acoxil (RIA), and tebipenem (TBP) -\item \code{\link[=cephalosporins]{cephalosporins()}} can select: \cr cefacetrile (CAC), cefaclor (CEC), cefadroxil (CFR), cefalexin (LEX), cefaloridine (RID), cefalotin (CEP), cefamandole (MAN), cefapirin (HAP), cefatrizine (CTZ), cefazedone (CZD), cefazolin (CZO), cefcapene (CCP), cefcapene pivoxil (CCX), cefdinir (CDR), cefditoren (DIT), cefditoren pivoxil (DIX), cefepime (FEP), cefepime/clavulanic acid (CPC), cefepime/tazobactam (FPT), cefetamet (CAT), cefetamet pivoxil (CPI), cefetecol (CCL), cefetrizole (CZL), cefiderocol (FDC), cefixime (CFM), cefmenoxime (CMX), cefmetazole (CMZ), cefodizime (DIZ), cefonicid (CID), cefoperazone (CFP), cefoperazone/sulbactam (CSL), ceforanide (CND), cefoselis (CSE), cefotaxime (CTX), cefotaxime/clavulanic acid (CTC), cefotaxime/sulbactam (CTS), cefotetan (CTT), cefotiam (CTF), cefotiam hexetil (CHE), cefovecin (FOV), cefoxitin (FOX), cefoxitin screening (FOX1), cefozopran (ZOP), cefpimizole (CFZ), cefpiramide (CPM), cefpirome (CPO), cefpodoxime (CPD), cefpodoxime proxetil (CPX), cefpodoxime/clavulanic acid (CDC), cefprozil (CPR), cefquinome (CEQ), cefroxadine (CRD), cefsulodin (CFS), cefsumide (CSU), ceftaroline (CPT), ceftaroline/avibactam (CPA), ceftazidime (CAZ), ceftazidime/avibactam (CZA), ceftazidime/clavulanic acid (CCV), cefteram (CEM), cefteram pivoxil (CPL), ceftezole (CTL), ceftibuten (CTB), ceftiofur (TIO), ceftizoxime (CZX), ceftizoxime alapivoxil (CZP), ceftobiprole (BPR), ceftobiprole medocaril (CFM1), ceftolozane/tazobactam (CZT), ceftriaxone (CRO), ceftriaxone/beta-lactamase inhibitor (CEB), cefuroxime (CXM), cefuroxime axetil (CXA), cephradine (CED), latamoxef (LTM), and loracarbef (LOR) -\item \code{\link[=cephalosporins_1st]{cephalosporins_1st()}} can select: \cr cefacetrile (CAC), cefadroxil (CFR), cefalexin (LEX), cefaloridine (RID), cefalotin (CEP), cefapirin (HAP), cefatrizine (CTZ), cefazedone (CZD), cefazolin (CZO), cefroxadine (CRD), ceftezole (CTL), and cephradine (CED) -\item \code{\link[=cephalosporins_2nd]{cephalosporins_2nd()}} can select: \cr cefaclor (CEC), cefamandole (MAN), cefmetazole (CMZ), cefonicid (CID), ceforanide (CND), cefotetan (CTT), cefotiam (CTF), cefoxitin (FOX), cefoxitin screening (FOX1), cefprozil (CPR), cefuroxime (CXM), cefuroxime axetil (CXA), and loracarbef (LOR) -\item \code{\link[=cephalosporins_3rd]{cephalosporins_3rd()}} can select: \cr cefcapene (CCP), cefcapene pivoxil (CCX), cefdinir (CDR), cefditoren (DIT), cefditoren pivoxil (DIX), cefetamet (CAT), cefetamet pivoxil (CPI), cefixime (CFM), cefmenoxime (CMX), cefodizime (DIZ), cefoperazone (CFP), cefoperazone/sulbactam (CSL), cefotaxime (CTX), cefotaxime/clavulanic acid (CTC), cefotaxime/sulbactam (CTS), cefotiam hexetil (CHE), cefovecin (FOV), cefpimizole (CFZ), cefpiramide (CPM), cefpodoxime (CPD), cefpodoxime proxetil (CPX), cefpodoxime/clavulanic acid (CDC), cefsulodin (CFS), ceftazidime (CAZ), ceftazidime/avibactam (CZA), ceftazidime/clavulanic acid (CCV), cefteram (CEM), cefteram pivoxil (CPL), ceftibuten (CTB), ceftiofur (TIO), ceftizoxime (CZX), ceftizoxime alapivoxil (CZP), ceftriaxone (CRO), ceftriaxone/beta-lactamase inhibitor (CEB), and latamoxef (LTM) -\item \code{\link[=cephalosporins_4th]{cephalosporins_4th()}} can select: \cr cefepime (FEP), cefepime/clavulanic acid (CPC), cefepime/tazobactam (FPT), cefetecol (CCL), cefoselis (CSE), cefozopran (ZOP), cefpirome (CPO), and cefquinome (CEQ) -\item \code{\link[=cephalosporins_5th]{cephalosporins_5th()}} can select: \cr ceftaroline (CPT), ceftaroline/avibactam (CPA), ceftobiprole (BPR), ceftobiprole medocaril (CFM1), and ceftolozane/tazobactam (CZT) -\item \code{\link[=fluoroquinolones]{fluoroquinolones()}} can select: \cr besifloxacin (BES), ciprofloxacin (CIP), clinafloxacin (CLX), danofloxacin (DAN), delafloxacin (DFX), difloxacin (DIF), enoxacin (ENX), enrofloxacin (ENR), finafloxacin (FIN), fleroxacin (FLE), garenoxacin (GRN), gatifloxacin (GAT), gemifloxacin (GEM), grepafloxacin (GRX), lascufloxacin (LSC), levofloxacin (LVX), levonadifloxacin (LND), lomefloxacin (LOM), marbofloxacin (MAR), metioxate (MXT), miloxacin (MIL), moxifloxacin (MFX), nadifloxacin (NAD), nifuroquine (NIF), norfloxacin (NOR), ofloxacin (OFX), orbifloxacin (ORB), pazufloxacin (PAZ), pefloxacin (PEF), pradofloxacin (PRA), premafloxacin (PRX), prulifloxacin (PRU), rufloxacin (RFL), sarafloxacin (SAR), sitafloxacin (SIT), sparfloxacin (SPX), temafloxacin (TMX), tilbroquinol (TBQ), tioxacin (TXC), tosufloxacin (TFX), and trovafloxacin (TVA) -\item \code{\link[=glycopeptides]{glycopeptides()}} can select: \cr avoparcin (AVO), dalbavancin (DAL), norvancomycin (NVA), oritavancin (ORI), ramoplanin (RAM), teicoplanin (TEC), teicoplanin-macromethod (TCM), telavancin (TLV), vancomycin (VAN), and vancomycin-macromethod (VAM) -\item \code{\link[=lincosamides]{lincosamides()}} can select: \cr acetylmidecamycin (ACM), acetylspiramycin (ASP), clindamycin (CLI), clindamycin inducible screening (CLI1), gamithromycin (GAM), kitasamycin (KIT), lincomycin (LIN), meleumycin (MEL), nafithromycin (ZWK), pirlimycin (PRL), primycin (PRM), solithromycin (SOL), tildipirosin (TIP), tilmicosin (TIL), tulathromycin (TUL), tylosin (TYL), and tylvalosin (TYL1) -\item \code{\link[=lipoglycopeptides]{lipoglycopeptides()}} can select: \cr dalbavancin (DAL), oritavancin (ORI), and telavancin (TLV) -\item \code{\link[=macrolides]{macrolides()}} can select: \cr acetylmidecamycin (ACM), acetylspiramycin (ASP), azithromycin (AZM), clarithromycin (CLR), dirithromycin (DIR), erythromycin (ERY), flurithromycin (FLR1), gamithromycin (GAM), josamycin (JOS), kitasamycin (KIT), meleumycin (MEL), midecamycin (MID), miocamycin (MCM), nafithromycin (ZWK), oleandomycin (OLE), pirlimycin (PRL), primycin (PRM), rokitamycin (ROK), roxithromycin (RXT), solithromycin (SOL), spiramycin (SPI), telithromycin (TLT), tildipirosin (TIP), tilmicosin (TIL), troleandomycin (TRL), tulathromycin (TUL), tylosin (TYL), and tylvalosin (TYL1) -\item \code{\link[=nitrofurans]{nitrofurans()}} can select: \cr furazidin (FUR), furazolidone (FRZ), nifurtoinol (NFR), nitrofurantoin (NIT), and nitrofurazone (NIZ) -\item \code{\link[=oxazolidinones]{oxazolidinones()}} can select: \cr cadazolid (CDZ), cycloserine (CYC), linezolid (LNZ), tedizolid (TZD), and thiacetazone (THA) -\item \code{\link[=penicillins]{penicillins()}} can select: \cr amoxicillin (AMX), amoxicillin/clavulanic acid (AMC), amoxicillin/sulbactam (AXS), ampicillin (AMP), ampicillin/sulbactam (SAM), apalcillin (APL), aspoxicillin (APX), avibactam (AVB), azidocillin (AZD), azlocillin (AZL), aztreonam (ATM), aztreonam/avibactam (AZA), aztreonam/nacubactam (ANC), bacampicillin (BAM), benzathine benzylpenicillin (BNB), benzathine phenoxymethylpenicillin (BNP), benzylpenicillin (PEN), carbenicillin (CRB), carindacillin (CRN), cefepime/nacubactam (FNC), ciclacillin (CIC), clometocillin (CLM), cloxacillin (CLO), dicloxacillin (DIC), epicillin (EPC), flucloxacillin (FLC), hetacillin (HET), lenampicillin (LEN), mecillinam (MEC), metampicillin (MTM), meticillin (MET), mezlocillin (MEZ), mezlocillin/sulbactam (MSU), nacubactam (NAC), nafcillin (NAF), oxacillin (OXA), penamecillin (PNM), penicillin/novobiocin (PNO), penicillin/sulbactam (PSU), pheneticillin (PHE), phenoxymethylpenicillin (PHN), piperacillin (PIP), piperacillin/sulbactam (PIS), piperacillin/tazobactam (TZP), piridicillin (PRC), pivampicillin (PVM), pivmecillinam (PME), procaine benzylpenicillin (PRB), propicillin (PRP), sarmoxicillin (SRX), sulbactam (SUL), sulbenicillin (SBC), sultamicillin (SLT6), talampicillin (TAL), tazobactam (TAZ), temocillin (TEM), ticarcillin (TIC), and ticarcillin/clavulanic acid (TCC) -\item \code{\link[=phenicols]{phenicols()}} can select: \cr chloramphenicol (CHL), florfenicol (FLR), and thiamphenicol (THI) -\item \code{\link[=polymyxins]{polymyxins()}} can select: \cr colistin (COL), polymyxin B (PLB), and polymyxin B/polysorbate 80 (POP) -\item \code{\link[=quinolones]{quinolones()}} can select: \cr besifloxacin (BES), cinoxacin (CIN), ciprofloxacin (CIP), ciprofloxacin/metronidazole (CIM), ciprofloxacin/ornidazole (CIO), ciprofloxacin/tinidazole (CIT), clinafloxacin (CLX), danofloxacin (DAN), delafloxacin (DFX), difloxacin (DIF), enoxacin (ENX), enrofloxacin (ENR), finafloxacin (FIN), fleroxacin (FLE), flumequine (FLM), garenoxacin (GRN), gatifloxacin (GAT), gemifloxacin (GEM), grepafloxacin (GRX), lascufloxacin (LSC), levofloxacin (LVX), levonadifloxacin (LND), lomefloxacin (LOM), marbofloxacin (MAR), metioxate (MXT), miloxacin (MIL), moxifloxacin (MFX), nadifloxacin (NAD), nalidixic acid (NAL), nemonoxacin (NEM), nifuroquine (NIF), nitroxoline (NTR), norfloxacin (NOR), ofloxacin (OFX), orbifloxacin (ORB), oxolinic acid (OXO), pazufloxacin (PAZ), pefloxacin (PEF), pipemidic acid (PPA), piromidic acid (PIR), pradofloxacin (PRA), premafloxacin (PRX), prulifloxacin (PRU), rosoxacin (ROS), rufloxacin (RFL), sarafloxacin (SAR), sitafloxacin (SIT), sparfloxacin (SPX), temafloxacin (TMX), tilbroquinol (TBQ), tioxacin (TXC), tosufloxacin (TFX), and trovafloxacin (TVA) -\item \code{\link[=rifamycins]{rifamycins()}} can select: \cr rifabutin (RIB), rifampicin (RIF), rifampicin/ethambutol/isoniazid (REI), rifampicin/isoniazid (RFI), rifampicin/pyrazinamide/ethambutol/isoniazid (RPEI), rifampicin/pyrazinamide/isoniazid (RPI), rifamycin (RFM), and rifapentine (RFP) -\item \code{\link[=streptogramins]{streptogramins()}} can select: \cr pristinamycin (PRI) and quinupristin/dalfopristin (QDA) -\item \code{\link[=tetracyclines]{tetracyclines()}} can select: \cr cetocycline (CTO), chlortetracycline (CTE), clomocycline (CLM1), demeclocycline (DEM), doxycycline (DOX), eravacycline (ERV), lymecycline (LYM), metacycline (MTC), minocycline (MNO), omadacycline (OMC), oxytetracycline (OXY), penimepicycline (PNM1), rolitetracycline (RLT), sarecycline (SRC), tetracycline (TCY), and tigecycline (TGC) -\item \code{\link[=trimethoprims]{trimethoprims()}} can select: \cr brodimoprim (BDP), sulfadiazine (SDI), sulfadiazine/tetroxoprim (SLT), sulfadiazine/trimethoprim (SLT1), sulfadimethoxine (SUD), sulfadimidine (SDM), sulfadimidine/trimethoprim (SLT2), sulfafurazole (SLF), sulfaisodimidine (SLF1), sulfalene (SLF2), sulfamazone (SZO), sulfamerazine (SLF3), sulfamerazine/trimethoprim (SLT3), sulfamethizole (SLF4), sulfamethoxazole (SMX), sulfamethoxypyridazine (SLF5), sulfametomidine (SLF6), sulfametoxydiazine (SLF7), sulfametrole/trimethoprim (SLT4), sulfamoxole (SLF8), sulfamoxole/trimethoprim (SLT5), sulfanilamide (SLF9), sulfaperin (SLF10), sulfaphenazole (SLF11), sulfapyridine (SLF12), sulfathiazole (SUT), sulfathiourea (SLF13), trimethoprim (TMP), and trimethoprim/sulfamethoxazole (SXT) -\item \code{\link[=ureidopenicillins]{ureidopenicillins()}} can select: \cr azlocillin (AZL), mezlocillin (MEZ), piperacillin (PIP), and piperacillin/tazobactam (TZP) -} -} - -\section{Reference Data Publicly Available}{ - -All data sets in this \code{AMR} package (about microorganisms, antibiotics, SIR interpretation, EUCAST rules, etc.) are publicly and freely available for download in the following formats: R, MS Excel, Apache Feather, Apache Parquet, SPSS, and Stata. We also provide tab-separated plain text files that are machine-readable and suitable for input in any software program, such as laboratory information systems. Please visit \href{https://msberends.github.io/AMR/articles/datasets.html}{our website for the download links}. The actual files are of course available on \href{https://github.com/msberends/AMR/tree/main/data-raw}{our GitHub repository}. -} - -\examples{ -# `example_isolates` is a data set available in the AMR package. -# See ?example_isolates. -example_isolates - - -# you can use the selectors separately to retrieve all possible antimicrobials: -carbapenems() - - -# Though they are primarily intended to use for selections and filters. -# Examples sections below are split into 'dplyr', 'base R', and 'data.table': - -\donttest{ -\dontrun{ -# dplyr ------------------------------------------------------------------- - -library(dplyr, warn.conflicts = FALSE) - -example_isolates \%>\% select(carbapenems()) - -# select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB' -example_isolates \%>\% select(mo, aminoglycosides()) - -# you can combine selectors like you are used with tidyverse -# e.g., for betalactams, but not the ones with an enzyme inhibitor: -example_isolates \%>\% select(betalactams(), -betalactams_with_inhibitor()) - -# select only antibiotic columns with DDDs for oral treatment -example_isolates \%>\% select(administrable_per_os()) - -# get AMR for all aminoglycosides e.g., per ward: -example_isolates \%>\% - group_by(ward) \%>\% - summarise(across(aminoglycosides(), - resistance)) - -# You can combine selectors with '&' to be more specific: -example_isolates \%>\% - select(penicillins() & administrable_per_os()) - -# get AMR for only drugs that matter - no intrinsic resistance: -example_isolates \%>\% - filter(mo_genus() \%in\% c("Escherichia", "Klebsiella")) \%>\% - group_by(ward) \%>\% - summarise_at(not_intrinsic_resistant(), - resistance) - -# get susceptibility for antibiotics whose name contains "trim": -example_isolates \%>\% - filter(first_isolate()) \%>\% - group_by(ward) \%>\% - summarise(across(ab_selector(name \%like\% "trim"), susceptibility)) - -# this will select columns 'IPM' (imipenem) and 'MEM' (meropenem): -example_isolates \%>\% - select(carbapenems()) - -# this will select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB': -example_isolates \%>\% - select(mo, aminoglycosides()) - -# any() and all() work in dplyr's filter() too: -example_isolates \%>\% - filter( - any(aminoglycosides() == "R"), - all(cephalosporins_2nd() == "R") - ) - -# also works with c(): -example_isolates \%>\% - filter(any(c(carbapenems(), aminoglycosides()) == "R")) - -# not setting any/all will automatically apply all(): -example_isolates \%>\% - filter(aminoglycosides() == "R") - -# this will select columns 'mo' and all antimycobacterial drugs ('RIF'): -example_isolates \%>\% - select(mo, ab_class("mycobact")) - -# get bug/drug combinations for only glycopeptides in Gram-positives: -example_isolates \%>\% - filter(mo_is_gram_positive()) \%>\% - select(mo, glycopeptides()) \%>\% - bug_drug_combinations() \%>\% - format() - -data.frame( - some_column = "some_value", - J01CA01 = "S" -) \%>\% # ATC code of ampicillin - select(penicillins()) # only the 'J01CA01' column will be selected - -# with recent versions of dplyr, this is all equal: -x <- example_isolates[carbapenems() == "R", ] -y <- example_isolates \%>\% filter(carbapenems() == "R") -z <- example_isolates \%>\% filter(if_all(carbapenems(), ~ .x == "R")) -identical(x, y) && identical(y, z) - -} -# base R ------------------------------------------------------------------ - -# select columns 'IPM' (imipenem) and 'MEM' (meropenem) -example_isolates[, carbapenems()] - -# select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB' -example_isolates[, c("mo", aminoglycosides())] - -# select only antibiotic columns with DDDs for oral treatment -example_isolates[, administrable_per_os()] - -# filter using any() or all() -example_isolates[any(carbapenems() == "R"), ] -subset(example_isolates, any(carbapenems() == "R")) - -# filter on any or all results in the carbapenem columns (i.e., IPM, MEM): -example_isolates[any(carbapenems()), ] -example_isolates[all(carbapenems()), ] - -# filter with multiple antibiotic selectors using c() -example_isolates[all(c(carbapenems(), aminoglycosides()) == "R"), ] - -# filter + select in one go: get penicillins in carbapenem-resistant strains -example_isolates[any(carbapenems() == "R"), penicillins()] - -# You can combine selectors with '&' to be more specific. For example, -# penicillins() would select benzylpenicillin ('peni G') and -# administrable_per_os() would select erythromycin. Yet, when combined these -# drugs are both omitted since benzylpenicillin is not administrable per os -# and erythromycin is not a penicillin: -example_isolates[, penicillins() & administrable_per_os()] - -# ab_selector() applies a filter in the `antibiotics` data set and is thus -# very flexible. For instance, to select antibiotic columns with an oral DDD -# of at least 1 gram: -example_isolates[, ab_selector(oral_ddd > 1 & oral_units == "g")] - - -# data.table -------------------------------------------------------------- - -# data.table is supported as well, just use it in the same way as with -# base R, but add `with = FALSE` if using a single AB selector. - -if (require("data.table")) { - dt <- as.data.table(example_isolates) - - # this does not work, it returns column *names* - dt[, carbapenems()] -} -if (require("data.table")) { - # so `with = FALSE` is required - dt[, carbapenems(), with = FALSE] -} - -# for multiple selections or AB selectors, `with = FALSE` is not needed: -if (require("data.table")) { - dt[, c("mo", aminoglycosides())] -} -if (require("data.table")) { - dt[, c(carbapenems(), aminoglycosides())] -} - -# row filters are also supported: -if (require("data.table")) { - dt[any(carbapenems() == "S"), ] -} -if (require("data.table")) { - dt[any(carbapenems() == "S"), penicillins(), with = FALSE] -} -} -} - - - THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'man/antibiotics.Rd': @@ -2384,6 +2041,419 @@ antivirals +THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'man/antimicrobial_class_selectors.Rd': + + +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/amr_selectors.R +\name{antimicrobial_class_selectors} +\alias{antimicrobial_class_selectors} +\alias{amr_class} +\alias{amr_selector} +\alias{aminoglycosides} +\alias{aminopenicillins} +\alias{antifungals} +\alias{antimycobacterials} +\alias{betalactams} +\alias{betalactams_with_inhibitor} +\alias{carbapenems} +\alias{cephalosporins} +\alias{cephalosporins_1st} +\alias{cephalosporins_2nd} +\alias{cephalosporins_3rd} +\alias{cephalosporins_4th} +\alias{cephalosporins_5th} +\alias{fluoroquinolones} +\alias{glycopeptides} +\alias{lincosamides} +\alias{lipoglycopeptides} +\alias{macrolides} +\alias{nitrofurans} +\alias{oxazolidinones} +\alias{penicillins} +\alias{phenicols} +\alias{polymyxins} +\alias{quinolones} +\alias{rifamycins} +\alias{streptogramins} +\alias{tetracyclines} +\alias{trimethoprims} +\alias{ureidopenicillins} +\alias{administrable_per_os} +\alias{administrable_iv} +\alias{not_intrinsic_resistant} +\title{Antimicrobial Selectors} +\usage{ +amr_class( + amr_class, + only_sir_columns = FALSE, + only_treatable = TRUE, + return_all = TRUE, + ... +) + +amr_selector( + filter, + only_sir_columns = FALSE, + only_treatable = TRUE, + return_all = TRUE, + ... +) + +aminoglycosides( + only_sir_columns = FALSE, + only_treatable = TRUE, + return_all = TRUE, + ... +) + +aminopenicillins(only_sir_columns = FALSE, return_all = TRUE, ...) + +antifungals(only_sir_columns = FALSE, return_all = TRUE, ...) + +antimycobacterials(only_sir_columns = FALSE, return_all = TRUE, ...) + +betalactams( + only_sir_columns = FALSE, + only_treatable = TRUE, + return_all = TRUE, + ... +) + +betalactams_with_inhibitor(only_sir_columns = FALSE, return_all = TRUE, ...) + +carbapenems( + only_sir_columns = FALSE, + only_treatable = TRUE, + return_all = TRUE, + ... +) + +cephalosporins(only_sir_columns = FALSE, return_all = TRUE, ...) + +cephalosporins_1st(only_sir_columns = FALSE, return_all = TRUE, ...) + +cephalosporins_2nd(only_sir_columns = FALSE, return_all = TRUE, ...) + +cephalosporins_3rd(only_sir_columns = FALSE, return_all = TRUE, ...) + +cephalosporins_4th(only_sir_columns = FALSE, return_all = TRUE, ...) + +cephalosporins_5th(only_sir_columns = FALSE, return_all = TRUE, ...) + +fluoroquinolones(only_sir_columns = FALSE, return_all = TRUE, ...) + +glycopeptides(only_sir_columns = FALSE, return_all = TRUE, ...) + +lincosamides( + only_sir_columns = FALSE, + only_treatable = TRUE, + return_all = TRUE, + ... +) + +lipoglycopeptides(only_sir_columns = FALSE, return_all = TRUE, ...) + +macrolides(only_sir_columns = FALSE, return_all = TRUE, ...) + +nitrofurans(only_sir_columns = FALSE, return_all = TRUE, ...) + +oxazolidinones(only_sir_columns = FALSE, return_all = TRUE, ...) + +penicillins(only_sir_columns = FALSE, return_all = TRUE, ...) + +phenicols(only_sir_columns = FALSE, return_all = TRUE, ...) + +polymyxins( + only_sir_columns = FALSE, + only_treatable = TRUE, + return_all = TRUE, + ... +) + +quinolones(only_sir_columns = FALSE, return_all = TRUE, ...) + +rifamycins(only_sir_columns = FALSE, return_all = TRUE, ...) + +streptogramins(only_sir_columns = FALSE, return_all = TRUE, ...) + +tetracyclines(only_sir_columns = FALSE, return_all = TRUE, ...) + +trimethoprims(only_sir_columns = FALSE, return_all = TRUE, ...) + +ureidopenicillins(only_sir_columns = FALSE, return_all = TRUE, ...) + +administrable_per_os(only_sir_columns = FALSE, return_all = TRUE, ...) + +administrable_iv(only_sir_columns = FALSE, return_all = TRUE, ...) + +not_intrinsic_resistant( + only_sir_columns = FALSE, + col_mo = NULL, + version_expertrules = 3.3, + ... +) +} +\arguments{ +\item{amr_class}{an antimicrobial class or a part of it, such as \code{"carba"} and \code{"carbapenems"}. The columns \code{group}, \code{atc_group1} and \code{atc_group2} of the \link{antibiotics} data set will be searched (case-insensitive) for this value.} + +\item{only_sir_columns}{a \link{logical} to indicate whether only columns of class \code{sir} must be selected (default is \code{FALSE}), see \code{\link[=as.sir]{as.sir()}}} + +\item{only_treatable}{a \link{logical} to indicate whether antimicrobial drugs should be excluded that are only for laboratory tests (default is \code{TRUE}), such as gentamicin-high (\code{GEH}) and imipenem/EDTA (\code{IPE})} + +\item{return_all}{a \link{logical} to indicate whether all matched columns must be returned (default is \code{TRUE}). With \code{FALSE}, only the first of each unique antimicrobial will be returned, e.g. if both columns \code{"genta"} and \code{"gentamicin"} exist in the data, only the first hit for gentamicin will be returned.} + +\item{...}{ignored, only in place to allow future extensions} + +\item{filter}{an \link{expression} to be evaluated in the \link{antibiotics} data set, such as \code{name \%like\% "trim"}} + +\item{col_mo}{column name of the names or codes of the microorganisms (see \code{\link[=as.mo]{as.mo()}}) - the default is the first column of class \code{\link{mo}}. Values will be coerced using \code{\link[=as.mo]{as.mo()}}.} + +\item{version_expertrules}{the version number to use for the EUCAST Expert Rules and Intrinsic Resistance guideline. Can be "3.3", "3.2", or "3.1".} +} +\value{ +When used inside selecting or filtering, this returns a \link{character} vector of column names, with additional class \code{"amr_selector"}. When used individually, this returns an \link[=as.ab]{'ab' vector} with all possible antimicrobials that the function would be able to select or filter. +} +\description{ +These functions allow for filtering rows and selecting columns based on antimicrobial test results that are of a specific antimicrobial class or group, without the need to define the columns or antimicrobial abbreviations. + +In short, if you have a column name that resembles an antimicrobial drug, it will be picked up by any of these functions that matches its pharmaceutical class: "cefazolin", "kefzol", "CZO" and "J01DB04" will all be picked up using: + +\if{html}{\out{
}}\preformatted{library(dplyr) +my_data_with_all_these_columns \%>\% + select(cephalosporins()) +}\if{html}{\out{
}} +} +\details{ +These functions can be used in data set calls for selecting columns and filtering rows. They work with base \R, the Tidyverse, and \code{data.table}. They are heavily inspired by the \link[tidyselect:language]{Tidyverse selection helpers} such as \code{\link[tidyselect:everything]{everything()}}, but are not limited to \code{dplyr} verbs. Nonetheless, they are very convenient to use with \code{dplyr} functions such as \code{\link[dplyr:select]{select()}}, \code{\link[dplyr:filter]{filter()}} and \code{\link[dplyr:summarise]{summarise()}}, see \emph{Examples}. + +All selectors can also be used in \code{tidymodels} packages such as \code{recipe} and \code{parsnip}. See for more info \href{https://msberends.github.io/AMR/articles/AMR_with_tidymodels.html}{our tutorial} on using these AMR functions for predictive modelling. + +All columns in the data in which these functions are called will be searched for known antimicrobial names, abbreviations, brand names, and codes (ATC, EARS-Net, WHO, etc.) according to the \link{antibiotics} data set. This means that a selector such as \code{\link[=aminoglycosides]{aminoglycosides()}} will pick up column names like 'gen', 'genta', 'J01GB03', 'tobra', 'Tobracin', etc. + +The \code{\link[=amr_class]{amr_class()}} function can be used to filter/select on a manually defined antimicrobial class. It searches for results in the \link{antibiotics} data set within the columns \code{group}, \code{atc_group1} and \code{atc_group2}. + +The \code{\link[=amr_selector]{amr_selector()}} function can be used to internally filter the \link{antibiotics} data set on any results, see \emph{Examples}. It allows for filtering on a (part of) a certain name, and/or a group name or even a minimum of DDDs for oral treatment. This function yields the highest flexibility, but is also the least user-friendly, since it requires a hard-coded filter to set. + +The \code{\link[=administrable_per_os]{administrable_per_os()}} and \code{\link[=administrable_iv]{administrable_iv()}} functions also rely on the \link{antibiotics} data set - antimicrobials will be matched where a DDD (defined daily dose) for resp. oral and IV treatment is available in the \link{antibiotics} data set. + +The \code{\link[=not_intrinsic_resistant]{not_intrinsic_resistant()}} function can be used to only select antimicrobials that pose no intrinsic resistance for the microorganisms in the data set. For example, if a data set contains only microorganism codes or names of \emph{E. coli} and \emph{K. pneumoniae} and contains a column "vancomycin", this column will be removed (or rather, unselected) using this function. It currently applies \href{https://www.eucast.org/expert_rules_and_expected_phenotypes}{'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes' v3.3} (2021) to determine intrinsic resistance, using the \code{\link[=eucast_rules]{eucast_rules()}} function internally. Because of this determination, this function is quite slow in terms of performance. +} +\section{Full list of supported (antimicrobial) classes}{ + +\itemize{ +\item \code{\link[=aminoglycosides]{aminoglycosides()}} can select: \cr amikacin (AMK), amikacin/fosfomycin (AKF), apramycin (APR), arbekacin (ARB), astromicin (AST), bekanamycin (BEK), dibekacin (DKB), framycetin (FRM), gentamicin (GEN), gentamicin-high (GEH), habekacin (HAB), hygromycin (HYG), isepamicin (ISE), kanamycin (KAN), kanamycin-high (KAH), kanamycin/cephalexin (KAC), micronomicin (MCR), neomycin (NEO), netilmicin (NET), pentisomicin (PIM), plazomicin (PLZ), propikacin (PKA), ribostamycin (RST), sisomicin (SIS), streptoduocin (STR), streptomycin (STR1), streptomycin-high (STH), tobramycin (TOB), and tobramycin-high (TOH) +\item \code{\link[=aminopenicillins]{aminopenicillins()}} can select: \cr amoxicillin (AMX) and ampicillin (AMP) +\item \code{\link[=antifungals]{antifungals()}} can select: \cr amorolfine (AMO), amphotericin B (AMB), amphotericin B-high (AMH), anidulafungin (ANI), butoconazole (BUT), caspofungin (CAS), ciclopirox (CIX), clotrimazole (CTR), econazole (ECO), fluconazole (FLU), flucytosine (FCT), fosfluconazole (FFL), griseofulvin (GRI), hachimycin (HCH), ibrexafungerp (IBX), isavuconazole (ISV), isoconazole (ISO), itraconazole (ITR), ketoconazole (KET), manogepix (MGX), micafungin (MIF), miconazole (MCZ), nystatin (NYS), oteseconazole (OTE), pimaricin (PMR), posaconazole (POS), rezafungin (RZF), ribociclib (RBC), sulconazole (SUC), terbinafine (TRB), terconazole (TRC), and voriconazole (VOR) +\item \code{\link[=antimycobacterials]{antimycobacterials()}} can select: \cr 4-aminosalicylic acid (AMA), calcium aminosalicylate (CLA), capreomycin (CAP), clofazimine (CLF), delamanid (DLM), enviomycin (ENV), ethambutol (ETH), ethambutol/isoniazid (ETI), ethionamide (ETI1), isoniazid (INH), isoniazid/sulfamethoxazole/trimethoprim/pyridoxine (IST), morinamide (MRN), p-aminosalicylic acid (PAS), pretomanid (PMD), protionamide (PTH), pyrazinamide (PZA), rifabutin (RIB), rifampicin (RIF), rifampicin/ethambutol/isoniazid (REI), rifampicin/isoniazid (RFI), rifampicin/pyrazinamide/ethambutol/isoniazid (RPEI), rifampicin/pyrazinamide/isoniazid (RPI), rifamycin (RFM), rifapentine (RFP), simvastatin/fenofibrate (SMF), sodium aminosalicylate (SDA), streptomycin/isoniazid (STI), terizidone (TRZ), thioacetazone (TAT), thioacetazone/isoniazid (THI1), tiocarlide (TCR), and viomycin (VIO) +\item \code{\link[=betalactams]{betalactams()}} can select: \cr amoxicillin (AMX), amoxicillin/clavulanic acid (AMC), amoxicillin/sulbactam (AXS), ampicillin (AMP), ampicillin/sulbactam (SAM), apalcillin (APL), aspoxicillin (APX), avibactam (AVB), azidocillin (AZD), azlocillin (AZL), aztreonam (ATM), aztreonam/avibactam (AZA), aztreonam/nacubactam (ANC), bacampicillin (BAM), benzathine benzylpenicillin (BNB), benzathine phenoxymethylpenicillin (BNP), benzylpenicillin (PEN), biapenem (BIA), carbenicillin (CRB), carindacillin (CRN), cefacetrile (CAC), cefaclor (CEC), cefadroxil (CFR), cefalexin (LEX), cefaloridine (RID), cefalotin (CEP), cefamandole (MAN), cefapirin (HAP), cefatrizine (CTZ), cefazedone (CZD), cefazolin (CZO), cefcapene (CCP), cefcapene pivoxil (CCX), cefdinir (CDR), cefditoren (DIT), cefditoren pivoxil (DIX), cefepime (FEP), cefepime/clavulanic acid (CPC), cefepime/nacubactam (FNC), cefepime/tazobactam (FPT), cefetamet (CAT), cefetamet pivoxil (CPI), cefetecol (CCL), cefetrizole (CZL), cefiderocol (FDC), cefixime (CFM), cefmenoxime (CMX), cefmetazole (CMZ), cefodizime (DIZ), cefonicid (CID), cefoperazone (CFP), cefoperazone/sulbactam (CSL), ceforanide (CND), cefoselis (CSE), cefotaxime (CTX), cefotaxime/clavulanic acid (CTC), cefotaxime/sulbactam (CTS), cefotetan (CTT), cefotiam (CTF), cefotiam hexetil (CHE), cefovecin (FOV), cefoxitin (FOX), cefoxitin screening (FOX1), cefozopran (ZOP), cefpimizole (CFZ), cefpiramide (CPM), cefpirome (CPO), cefpodoxime (CPD), cefpodoxime proxetil (CPX), cefpodoxime/clavulanic acid (CDC), cefprozil (CPR), cefquinome (CEQ), cefroxadine (CRD), cefsulodin (CFS), cefsumide (CSU), ceftaroline (CPT), ceftaroline/avibactam (CPA), ceftazidime (CAZ), ceftazidime/avibactam (CZA), ceftazidime/clavulanic acid (CCV), cefteram (CEM), cefteram pivoxil (CPL), ceftezole (CTL), ceftibuten (CTB), ceftiofur (TIO), ceftizoxime (CZX), ceftizoxime alapivoxil (CZP), ceftobiprole (BPR), ceftobiprole medocaril (CFM1), ceftolozane/tazobactam (CZT), ceftriaxone (CRO), ceftriaxone/beta-lactamase inhibitor (CEB), cefuroxime (CXM), cefuroxime axetil (CXA), cephradine (CED), ciclacillin (CIC), clometocillin (CLM), cloxacillin (CLO), dicloxacillin (DIC), doripenem (DOR), epicillin (EPC), ertapenem (ETP), flucloxacillin (FLC), hetacillin (HET), imipenem (IPM), imipenem/EDTA (IPE), imipenem/relebactam (IMR), latamoxef (LTM), lenampicillin (LEN), loracarbef (LOR), mecillinam (MEC), meropenem (MEM), meropenem/nacubactam (MNC), meropenem/vaborbactam (MEV), metampicillin (MTM), meticillin (MET), mezlocillin (MEZ), mezlocillin/sulbactam (MSU), nacubactam (NAC), nafcillin (NAF), oxacillin (OXA), panipenem (PAN), penamecillin (PNM), penicillin/novobiocin (PNO), penicillin/sulbactam (PSU), pheneticillin (PHE), phenoxymethylpenicillin (PHN), piperacillin (PIP), piperacillin/sulbactam (PIS), piperacillin/tazobactam (TZP), piridicillin (PRC), pivampicillin (PVM), pivmecillinam (PME), procaine benzylpenicillin (PRB), propicillin (PRP), razupenem (RZM), ritipenem (RIT), ritipenem acoxil (RIA), sarmoxicillin (SRX), sulbactam (SUL), sulbenicillin (SBC), sultamicillin (SLT6), talampicillin (TAL), tazobactam (TAZ), tebipenem (TBP), temocillin (TEM), ticarcillin (TIC), and ticarcillin/clavulanic acid (TCC) +\item \code{\link[=betalactams_with_inhibitor]{betalactams_with_inhibitor()}} can select: \cr amoxicillin/clavulanic acid (AMC), amoxicillin/sulbactam (AXS), ampicillin/sulbactam (SAM), aztreonam/avibactam (AZA), aztreonam/nacubactam (ANC), cefepime/clavulanic acid (CPC), cefepime/nacubactam (FNC), cefepime/tazobactam (FPT), cefoperazone/sulbactam (CSL), cefotaxime/clavulanic acid (CTC), cefotaxime/sulbactam (CTS), cefpodoxime/clavulanic acid (CDC), ceftaroline/avibactam (CPA), ceftazidime/avibactam (CZA), ceftazidime/clavulanic acid (CCV), ceftolozane/tazobactam (CZT), ceftriaxone/beta-lactamase inhibitor (CEB), imipenem/relebactam (IMR), meropenem/nacubactam (MNC), meropenem/vaborbactam (MEV), mezlocillin/sulbactam (MSU), penicillin/novobiocin (PNO), penicillin/sulbactam (PSU), piperacillin/sulbactam (PIS), piperacillin/tazobactam (TZP), and ticarcillin/clavulanic acid (TCC) +\item \code{\link[=carbapenems]{carbapenems()}} can select: \cr biapenem (BIA), doripenem (DOR), ertapenem (ETP), imipenem (IPM), imipenem/EDTA (IPE), imipenem/relebactam (IMR), meropenem (MEM), meropenem/nacubactam (MNC), meropenem/vaborbactam (MEV), panipenem (PAN), razupenem (RZM), ritipenem (RIT), ritipenem acoxil (RIA), and tebipenem (TBP) +\item \code{\link[=cephalosporins]{cephalosporins()}} can select: \cr cefacetrile (CAC), cefaclor (CEC), cefadroxil (CFR), cefalexin (LEX), cefaloridine (RID), cefalotin (CEP), cefamandole (MAN), cefapirin (HAP), cefatrizine (CTZ), cefazedone (CZD), cefazolin (CZO), cefcapene (CCP), cefcapene pivoxil (CCX), cefdinir (CDR), cefditoren (DIT), cefditoren pivoxil (DIX), cefepime (FEP), cefepime/clavulanic acid (CPC), cefepime/tazobactam (FPT), cefetamet (CAT), cefetamet pivoxil (CPI), cefetecol (CCL), cefetrizole (CZL), cefiderocol (FDC), cefixime (CFM), cefmenoxime (CMX), cefmetazole (CMZ), cefodizime (DIZ), cefonicid (CID), cefoperazone (CFP), cefoperazone/sulbactam (CSL), ceforanide (CND), cefoselis (CSE), cefotaxime (CTX), cefotaxime/clavulanic acid (CTC), cefotaxime/sulbactam (CTS), cefotetan (CTT), cefotiam (CTF), cefotiam hexetil (CHE), cefovecin (FOV), cefoxitin (FOX), cefoxitin screening (FOX1), cefozopran (ZOP), cefpimizole (CFZ), cefpiramide (CPM), cefpirome (CPO), cefpodoxime (CPD), cefpodoxime proxetil (CPX), cefpodoxime/clavulanic acid (CDC), cefprozil (CPR), cefquinome (CEQ), cefroxadine (CRD), cefsulodin (CFS), cefsumide (CSU), ceftaroline (CPT), ceftaroline/avibactam (CPA), ceftazidime (CAZ), ceftazidime/avibactam (CZA), ceftazidime/clavulanic acid (CCV), cefteram (CEM), cefteram pivoxil (CPL), ceftezole (CTL), ceftibuten (CTB), ceftiofur (TIO), ceftizoxime (CZX), ceftizoxime alapivoxil (CZP), ceftobiprole (BPR), ceftobiprole medocaril (CFM1), ceftolozane/tazobactam (CZT), ceftriaxone (CRO), ceftriaxone/beta-lactamase inhibitor (CEB), cefuroxime (CXM), cefuroxime axetil (CXA), cephradine (CED), latamoxef (LTM), and loracarbef (LOR) +\item \code{\link[=cephalosporins_1st]{cephalosporins_1st()}} can select: \cr cefacetrile (CAC), cefadroxil (CFR), cefalexin (LEX), cefaloridine (RID), cefalotin (CEP), cefapirin (HAP), cefatrizine (CTZ), cefazedone (CZD), cefazolin (CZO), cefroxadine (CRD), ceftezole (CTL), and cephradine (CED) +\item \code{\link[=cephalosporins_2nd]{cephalosporins_2nd()}} can select: \cr cefaclor (CEC), cefamandole (MAN), cefmetazole (CMZ), cefonicid (CID), ceforanide (CND), cefotetan (CTT), cefotiam (CTF), cefoxitin (FOX), cefoxitin screening (FOX1), cefprozil (CPR), cefuroxime (CXM), cefuroxime axetil (CXA), and loracarbef (LOR) +\item \code{\link[=cephalosporins_3rd]{cephalosporins_3rd()}} can select: \cr cefcapene (CCP), cefcapene pivoxil (CCX), cefdinir (CDR), cefditoren (DIT), cefditoren pivoxil (DIX), cefetamet (CAT), cefetamet pivoxil (CPI), cefixime (CFM), cefmenoxime (CMX), cefodizime (DIZ), cefoperazone (CFP), cefoperazone/sulbactam (CSL), cefotaxime (CTX), cefotaxime/clavulanic acid (CTC), cefotaxime/sulbactam (CTS), cefotiam hexetil (CHE), cefovecin (FOV), cefpimizole (CFZ), cefpiramide (CPM), cefpodoxime (CPD), cefpodoxime proxetil (CPX), cefpodoxime/clavulanic acid (CDC), cefsulodin (CFS), ceftazidime (CAZ), ceftazidime/avibactam (CZA), ceftazidime/clavulanic acid (CCV), cefteram (CEM), cefteram pivoxil (CPL), ceftibuten (CTB), ceftiofur (TIO), ceftizoxime (CZX), ceftizoxime alapivoxil (CZP), ceftriaxone (CRO), ceftriaxone/beta-lactamase inhibitor (CEB), and latamoxef (LTM) +\item \code{\link[=cephalosporins_4th]{cephalosporins_4th()}} can select: \cr cefepime (FEP), cefepime/clavulanic acid (CPC), cefepime/tazobactam (FPT), cefetecol (CCL), cefoselis (CSE), cefozopran (ZOP), cefpirome (CPO), and cefquinome (CEQ) +\item \code{\link[=cephalosporins_5th]{cephalosporins_5th()}} can select: \cr ceftaroline (CPT), ceftaroline/avibactam (CPA), ceftobiprole (BPR), ceftobiprole medocaril (CFM1), and ceftolozane/tazobactam (CZT) +\item \code{\link[=fluoroquinolones]{fluoroquinolones()}} can select: \cr besifloxacin (BES), ciprofloxacin (CIP), clinafloxacin (CLX), danofloxacin (DAN), delafloxacin (DFX), difloxacin (DIF), enoxacin (ENX), enrofloxacin (ENR), finafloxacin (FIN), fleroxacin (FLE), garenoxacin (GRN), gatifloxacin (GAT), gemifloxacin (GEM), grepafloxacin (GRX), lascufloxacin (LSC), levofloxacin (LVX), levonadifloxacin (LND), lomefloxacin (LOM), marbofloxacin (MAR), metioxate (MXT), miloxacin (MIL), moxifloxacin (MFX), nadifloxacin (NAD), nifuroquine (NIF), norfloxacin (NOR), ofloxacin (OFX), orbifloxacin (ORB), pazufloxacin (PAZ), pefloxacin (PEF), pradofloxacin (PRA), premafloxacin (PRX), prulifloxacin (PRU), rufloxacin (RFL), sarafloxacin (SAR), sitafloxacin (SIT), sparfloxacin (SPX), temafloxacin (TMX), tilbroquinol (TBQ), tioxacin (TXC), tosufloxacin (TFX), and trovafloxacin (TVA) +\item \code{\link[=glycopeptides]{glycopeptides()}} can select: \cr avoparcin (AVO), dalbavancin (DAL), norvancomycin (NVA), oritavancin (ORI), ramoplanin (RAM), teicoplanin (TEC), teicoplanin-macromethod (TCM), telavancin (TLV), vancomycin (VAN), and vancomycin-macromethod (VAM) +\item \code{\link[=lincosamides]{lincosamides()}} can select: \cr acetylmidecamycin (ACM), acetylspiramycin (ASP), clindamycin (CLI), clindamycin inducible screening (CLI1), gamithromycin (GAM), kitasamycin (KIT), lincomycin (LIN), meleumycin (MEL), nafithromycin (ZWK), pirlimycin (PRL), primycin (PRM), solithromycin (SOL), tildipirosin (TIP), tilmicosin (TIL), tulathromycin (TUL), tylosin (TYL), and tylvalosin (TYL1) +\item \code{\link[=lipoglycopeptides]{lipoglycopeptides()}} can select: \cr dalbavancin (DAL), oritavancin (ORI), and telavancin (TLV) +\item \code{\link[=macrolides]{macrolides()}} can select: \cr acetylmidecamycin (ACM), acetylspiramycin (ASP), azithromycin (AZM), clarithromycin (CLR), dirithromycin (DIR), erythromycin (ERY), flurithromycin (FLR1), gamithromycin (GAM), josamycin (JOS), kitasamycin (KIT), meleumycin (MEL), midecamycin (MID), miocamycin (MCM), nafithromycin (ZWK), oleandomycin (OLE), pirlimycin (PRL), primycin (PRM), rokitamycin (ROK), roxithromycin (RXT), solithromycin (SOL), spiramycin (SPI), telithromycin (TLT), tildipirosin (TIP), tilmicosin (TIL), troleandomycin (TRL), tulathromycin (TUL), tylosin (TYL), and tylvalosin (TYL1) +\item \code{\link[=nitrofurans]{nitrofurans()}} can select: \cr furazidin (FUR), furazolidone (FRZ), nifurtoinol (NFR), nitrofurantoin (NIT), and nitrofurazone (NIZ) +\item \code{\link[=oxazolidinones]{oxazolidinones()}} can select: \cr cadazolid (CDZ), cycloserine (CYC), linezolid (LNZ), tedizolid (TZD), and thiacetazone (THA) +\item \code{\link[=penicillins]{penicillins()}} can select: \cr amoxicillin (AMX), amoxicillin/clavulanic acid (AMC), amoxicillin/sulbactam (AXS), ampicillin (AMP), ampicillin/sulbactam (SAM), apalcillin (APL), aspoxicillin (APX), avibactam (AVB), azidocillin (AZD), azlocillin (AZL), aztreonam (ATM), aztreonam/avibactam (AZA), aztreonam/nacubactam (ANC), bacampicillin (BAM), benzathine benzylpenicillin (BNB), benzathine phenoxymethylpenicillin (BNP), benzylpenicillin (PEN), carbenicillin (CRB), carindacillin (CRN), cefepime/nacubactam (FNC), ciclacillin (CIC), clometocillin (CLM), cloxacillin (CLO), dicloxacillin (DIC), epicillin (EPC), flucloxacillin (FLC), hetacillin (HET), lenampicillin (LEN), mecillinam (MEC), metampicillin (MTM), meticillin (MET), mezlocillin (MEZ), mezlocillin/sulbactam (MSU), nacubactam (NAC), nafcillin (NAF), oxacillin (OXA), penamecillin (PNM), penicillin/novobiocin (PNO), penicillin/sulbactam (PSU), pheneticillin (PHE), phenoxymethylpenicillin (PHN), piperacillin (PIP), piperacillin/sulbactam (PIS), piperacillin/tazobactam (TZP), piridicillin (PRC), pivampicillin (PVM), pivmecillinam (PME), procaine benzylpenicillin (PRB), propicillin (PRP), sarmoxicillin (SRX), sulbactam (SUL), sulbenicillin (SBC), sultamicillin (SLT6), talampicillin (TAL), tazobactam (TAZ), temocillin (TEM), ticarcillin (TIC), and ticarcillin/clavulanic acid (TCC) +\item \code{\link[=phenicols]{phenicols()}} can select: \cr chloramphenicol (CHL), florfenicol (FLR), and thiamphenicol (THI) +\item \code{\link[=polymyxins]{polymyxins()}} can select: \cr colistin (COL), polymyxin B (PLB), and polymyxin B/polysorbate 80 (POP) +\item \code{\link[=quinolones]{quinolones()}} can select: \cr besifloxacin (BES), cinoxacin (CIN), ciprofloxacin (CIP), ciprofloxacin/metronidazole (CIM), ciprofloxacin/ornidazole (CIO), ciprofloxacin/tinidazole (CIT), clinafloxacin (CLX), danofloxacin (DAN), delafloxacin (DFX), difloxacin (DIF), enoxacin (ENX), enrofloxacin (ENR), finafloxacin (FIN), fleroxacin (FLE), flumequine (FLM), garenoxacin (GRN), gatifloxacin (GAT), gemifloxacin (GEM), grepafloxacin (GRX), lascufloxacin (LSC), levofloxacin (LVX), levonadifloxacin (LND), lomefloxacin (LOM), marbofloxacin (MAR), metioxate (MXT), miloxacin (MIL), moxifloxacin (MFX), nadifloxacin (NAD), nalidixic acid (NAL), nemonoxacin (NEM), nifuroquine (NIF), nitroxoline (NTR), norfloxacin (NOR), ofloxacin (OFX), orbifloxacin (ORB), oxolinic acid (OXO), pazufloxacin (PAZ), pefloxacin (PEF), pipemidic acid (PPA), piromidic acid (PIR), pradofloxacin (PRA), premafloxacin (PRX), prulifloxacin (PRU), rosoxacin (ROS), rufloxacin (RFL), sarafloxacin (SAR), sitafloxacin (SIT), sparfloxacin (SPX), temafloxacin (TMX), tilbroquinol (TBQ), tioxacin (TXC), tosufloxacin (TFX), and trovafloxacin (TVA) +\item \code{\link[=rifamycins]{rifamycins()}} can select: \cr rifabutin (RIB), rifampicin (RIF), rifampicin/ethambutol/isoniazid (REI), rifampicin/isoniazid (RFI), rifampicin/pyrazinamide/ethambutol/isoniazid (RPEI), rifampicin/pyrazinamide/isoniazid (RPI), rifamycin (RFM), and rifapentine (RFP) +\item \code{\link[=streptogramins]{streptogramins()}} can select: \cr pristinamycin (PRI) and quinupristin/dalfopristin (QDA) +\item \code{\link[=tetracyclines]{tetracyclines()}} can select: \cr cetocycline (CTO), chlortetracycline (CTE), clomocycline (CLM1), demeclocycline (DEM), doxycycline (DOX), eravacycline (ERV), lymecycline (LYM), metacycline (MTC), minocycline (MNO), omadacycline (OMC), oxytetracycline (OXY), penimepicycline (PNM1), rolitetracycline (RLT), sarecycline (SRC), tetracycline (TCY), and tigecycline (TGC) +\item \code{\link[=trimethoprims]{trimethoprims()}} can select: \cr brodimoprim (BDP), sulfadiazine (SDI), sulfadiazine/tetroxoprim (SLT), sulfadiazine/trimethoprim (SLT1), sulfadimethoxine (SUD), sulfadimidine (SDM), sulfadimidine/trimethoprim (SLT2), sulfafurazole (SLF), sulfaisodimidine (SLF1), sulfalene (SLF2), sulfamazone (SZO), sulfamerazine (SLF3), sulfamerazine/trimethoprim (SLT3), sulfamethizole (SLF4), sulfamethoxazole (SMX), sulfamethoxypyridazine (SLF5), sulfametomidine (SLF6), sulfametoxydiazine (SLF7), sulfametrole/trimethoprim (SLT4), sulfamoxole (SLF8), sulfamoxole/trimethoprim (SLT5), sulfanilamide (SLF9), sulfaperin (SLF10), sulfaphenazole (SLF11), sulfapyridine (SLF12), sulfathiazole (SUT), sulfathiourea (SLF13), trimethoprim (TMP), and trimethoprim/sulfamethoxazole (SXT) +\item \code{\link[=ureidopenicillins]{ureidopenicillins()}} can select: \cr azlocillin (AZL), mezlocillin (MEZ), piperacillin (PIP), and piperacillin/tazobactam (TZP) +} +} + +\section{Reference Data Publicly Available}{ + +All data sets in this \code{AMR} package (about microorganisms, antibiotics, SIR interpretation, EUCAST rules, etc.) are publicly and freely available for download in the following formats: R, MS Excel, Apache Feather, Apache Parquet, SPSS, and Stata. We also provide tab-separated plain text files that are machine-readable and suitable for input in any software program, such as laboratory information systems. Please visit \href{https://msberends.github.io/AMR/articles/datasets.html}{our website for the download links}. The actual files are of course available on \href{https://github.com/msberends/AMR/tree/main/data-raw}{our GitHub repository}. +} + +\examples{ +# `example_isolates` is a data set available in the AMR package. +# See ?example_isolates. +example_isolates + + +# you can use the selectors separately to retrieve all possible antimicrobials: +carbapenems() + + +# Though they are primarily intended to use for selections and filters. +# Examples sections below are split into 'dplyr', 'base R', and 'data.table': + +\donttest{ +\dontrun{ +# dplyr ------------------------------------------------------------------- + +library(dplyr, warn.conflicts = FALSE) + +example_isolates \%>\% select(carbapenems()) + +# select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB' +example_isolates \%>\% select(mo, aminoglycosides()) + +# you can combine selectors like you are used with tidyverse +# e.g., for betalactams, but not the ones with an enzyme inhibitor: +example_isolates \%>\% select(betalactams(), -betalactams_with_inhibitor()) + +# select only antimicrobials with DDDs for oral treatment +example_isolates \%>\% select(administrable_per_os()) + +# get AMR for all aminoglycosides e.g., per ward: +example_isolates \%>\% + group_by(ward) \%>\% + summarise(across(aminoglycosides(), + resistance)) + +# You can combine selectors with '&' to be more specific: +example_isolates \%>\% + select(penicillins() & administrable_per_os()) + +# get AMR for only drugs that matter - no intrinsic resistance: +example_isolates \%>\% + filter(mo_genus() \%in\% c("Escherichia", "Klebsiella")) \%>\% + group_by(ward) \%>\% + summarise_at(not_intrinsic_resistant(), + resistance) + +# get susceptibility for antimicrobials whose name contains "trim": +example_isolates \%>\% + filter(first_isolate()) \%>\% + group_by(ward) \%>\% + summarise(across(amr_selector(name \%like\% "trim"), susceptibility)) + +# this will select columns 'IPM' (imipenem) and 'MEM' (meropenem): +example_isolates \%>\% + select(carbapenems()) + +# this will select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB': +example_isolates \%>\% + select(mo, aminoglycosides()) + +# any() and all() work in dplyr's filter() too: +example_isolates \%>\% + filter( + any(aminoglycosides() == "R"), + all(cephalosporins_2nd() == "R") + ) + +# also works with c(): +example_isolates \%>\% + filter(any(c(carbapenems(), aminoglycosides()) == "R")) + +# not setting any/all will automatically apply all(): +example_isolates \%>\% + filter(aminoglycosides() == "R") + +# this will select columns 'mo' and all antimycobacterial drugs ('RIF'): +example_isolates \%>\% + select(mo, amr_class("mycobact")) + +# get bug/drug combinations for only glycopeptides in Gram-positives: +example_isolates \%>\% + filter(mo_is_gram_positive()) \%>\% + select(mo, glycopeptides()) \%>\% + bug_drug_combinations() \%>\% + format() + +data.frame( + some_column = "some_value", + J01CA01 = "S" +) \%>\% # ATC code of ampicillin + select(penicillins()) # only the 'J01CA01' column will be selected + +# with recent versions of dplyr, this is all equal: +x <- example_isolates[carbapenems() == "R", ] +y <- example_isolates \%>\% filter(carbapenems() == "R") +z <- example_isolates \%>\% filter(if_all(carbapenems(), ~ .x == "R")) +identical(x, y) && identical(y, z) + +} +# base R ------------------------------------------------------------------ + +# select columns 'IPM' (imipenem) and 'MEM' (meropenem) +example_isolates[, carbapenems()] + +# select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB' +example_isolates[, c("mo", aminoglycosides())] + +# select only antimicrobials with DDDs for oral treatment +example_isolates[, administrable_per_os()] + +# filter using any() or all() +example_isolates[any(carbapenems() == "R"), ] +subset(example_isolates, any(carbapenems() == "R")) + +# filter on any or all results in the carbapenem columns (i.e., IPM, MEM): +example_isolates[any(carbapenems()), ] +example_isolates[all(carbapenems()), ] + +# filter with multiple antimicrobial selectors using c() +example_isolates[all(c(carbapenems(), aminoglycosides()) == "R"), ] + +# filter + select in one go: get penicillins in carbapenem-resistant strains +example_isolates[any(carbapenems() == "R"), penicillins()] + +# You can combine selectors with '&' to be more specific. For example, +# penicillins() would select benzylpenicillin ('peni G') and +# administrable_per_os() would select erythromycin. Yet, when combined these +# drugs are both omitted since benzylpenicillin is not administrable per os +# and erythromycin is not a penicillin: +example_isolates[, penicillins() & administrable_per_os()] + +# amr_selector() applies a filter in the `antibiotics` data set and is thus +# very flexible. For instance, to select antimicrobials with an oral DDD +# of at least 1 gram: +example_isolates[, amr_selector(oral_ddd > 1 & oral_units == "g")] + + +# data.table -------------------------------------------------------------- + +# data.table is supported as well, just use it in the same way as with +# base R, but add `with = FALSE` if using a single AB selector. + +if (require("data.table")) { + dt <- as.data.table(example_isolates) + + # this does not work, it returns column *names* + dt[, carbapenems()] +} +if (require("data.table")) { + # so `with = FALSE` is required + dt[, carbapenems(), with = FALSE] +} + +# for multiple selections or AB selectors, `with = FALSE` is not needed: +if (require("data.table")) { + dt[, c("mo", aminoglycosides())] +} +if (require("data.table")) { + dt[, c(carbapenems(), aminoglycosides())] +} + +# row filters are also supported: +if (require("data.table")) { + dt[any(carbapenems() == "S"), ] +} +if (require("data.table")) { + dt[any(carbapenems() == "S"), penicillins(), with = FALSE] +} +} +} + + + THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'man/as.ab.Rd': @@ -6340,7 +6410,7 @@ amr_distance_from_row(amr_distance, row) \arguments{ \item{x}{a vector of class \link[=as.sir]{sir}, \link[=as.mic]{mic} or \link[=as.disk]{disk}, or a \link{data.frame} containing columns of any of these classes} -\item{...}{variables to select (supports \link[tidyselect:language]{tidyselect language} such as \code{column1:column4} and \code{where(is.mic)}, and can thus also be \link[=ab_selector]{antibiotic selectors}} +\item{...}{variables to select (supports \link[tidyselect:language]{tidyselect language} such as \code{column1:column4} and \code{where(is.mic)}, and can thus also be \link[=amr_selector]{antimicrobial selectors}} \item{combine_SI}{a \link{logical} to indicate whether all values of S, SDD, and I must be merged into one, so the input only consists of S+I vs. R (susceptible vs. resistant) - the default is \code{TRUE}} @@ -7256,9 +7326,9 @@ Imagine this data on a sheet of an Excel file. The first column contains the org 4 | | | }\if{html}{\out{}} -We save it as \code{"home/me/ourcodes.xlsx"}. Now we have to set it as a source: +We save it as \code{"/Users/me/Documents/ourcodes.xlsx"}. Now we have to set it as a source: -\if{html}{\out{
}}\preformatted{set_mo_source("home/me/ourcodes.xlsx") +\if{html}{\out{
}}\preformatted{set_mo_source("/Users/me/Documents/ourcodes.xlsx") #> NOTE: Created mo_source file '/Users/me/mo_source.rds' (0.3 kB) from #> '/Users/me/Documents/ourcodes.xlsx' (9 kB), columns #> "Organisation XYZ" and "mo" @@ -7949,7 +8019,7 @@ if (require("dplyr")) { ) } if (require("dplyr")) { - # scoped dplyr verbs with antibiotic selectors + # scoped dplyr verbs with antimicrobial selectors # (you could also use across() of course) example_isolates \%>\% group_by(ward) \%>\% diff --git a/index.md b/index.md index 90b8cefae..0188c42dd 100644 --- a/index.md +++ b/index.md @@ -5,7 +5,7 @@ * Generates **antibiograms** - traditional, combined, syndromic, and even WISCA * Provides the **full microbiological taxonomy** and extensive info on **all antimicrobial drugs** * Applies all recent **CLSI** and **EUCAST** clinical and veterinary breakpoints for MICs, disk zones and ECOFFs -* Corrects for duplicate isolates, **calculates** and **predicts** AMR per antibiotic class +* Corrects for duplicate isolates, **calculates** and **predicts** AMR per antimicrobial class * Integrates with **WHONET**, ATC, **EARS-Net**, PubChem, **LOINC**, **SNOMED CT**, and **NCBI** * 100% free of costs and dependencies, highly suitable for places with **limited resources** @@ -40,7 +40,7 @@ With the help of contributors from all corners of the world, the `AMR` package i #### Filtering and selecting data -One of the most powerful functions of this package, aside from calculating and plotting AMR, is selecting and filtering based on antibiotic columns. This can be done using the so-called [antibiotic class selectors](https://msberends.github.io/AMR/reference/antibiotic_class_selectors.html) that work in base R, `dplyr` and `data.table`: +One of the most powerful functions of this package, aside from calculating and plotting AMR, is selecting and filtering based on antimicrobial columns. This can be done using the so-called [antimicrobial class selectors](https://msberends.github.io/AMR/reference/antimicrobial_class_selectors.html), which work in base R, `dplyr` and `data.table`: ```r # AMR works great with dplyr, but it's not required or neccesary @@ -52,7 +52,7 @@ example_isolates %>% # filtering functions for microorganisms: filter(mo_is_gram_negative(), mo_is_intrinsic_resistant(ab = "cefotax")) %>% - # antibiotic selectors: + # antimicrobial selectors: select(bacteria, aminoglycosides(), carbapenems()) @@ -162,7 +162,7 @@ example_isolates %>% |ICU | 0.290 |0.253-0.330 | 0.400 |0.353-0.449 | |Outpatient | 0.200 |0.131-0.285 | 0.368 |0.254-0.493 | -Or use [antibiotic class selectors](https://msberends.github.io/AMR/reference/antibiotic_class_selectors.html) to select a series of antibiotic columns: +Or use [antimicrobial class selectors](https://msberends.github.io/AMR/reference/antimicrobial_class_selectors.html) to select a series of antibiotic columns: ```r library(AMR) @@ -218,7 +218,7 @@ This package was intended as a comprehensive toolbox for integrated AMR data ana * Calculating (empirical) susceptibility of both mono therapy and combination therapies ([tutorial](./articles/AMR.html)) * Predicting future antimicrobial resistance using regression models ([tutorial](./articles/resistance_predict.html)) * Getting properties for any microorganism (like Gram stain, species, genus or family) ([manual](./reference/mo_property.html)) - * Getting properties for any antibiotic (like name, code of EARS-Net/ATC/LOINC/PubChem, defined daily dose or trade name) ([manual](./reference/ab_property.html)) + * Getting properties for any antimicrobial (like name, code of EARS-Net/ATC/LOINC/PubChem, defined daily dose or trade name) ([manual](./reference/ab_property.html)) * Plotting antimicrobial resistance ([tutorial](./articles/AMR.html)) * Applying EUCAST expert rules ([manual](./reference/eucast_rules.html)) * Getting SNOMED codes of a microorganism, or getting properties of a microorganism based on a SNOMED code ([manual](./reference/mo_property.html)) diff --git a/inst/tinytest/test-ab_selectors.R b/inst/tinytest/test-ab_selectors.R index eead76b63..e41f138d3 100644 --- a/inst/tinytest/test-ab_selectors.R +++ b/inst/tinytest/test-ab_selectors.R @@ -97,9 +97,13 @@ x <- data.frame( ) # should have the first hits expect_identical( - colnames(x[, aminoglycosides()]), + colnames(x[, aminoglycosides(return_all = FALSE)]), c("gen", "tobra") ) +expect_identical( + colnames(x[, aminoglycosides()]), + c("gen", "genta", "J01GB03", "tobra", "Tobracin") +) if (AMR:::pkg_is_available("dplyr", min_version = "1.0.0", also_load = TRUE)) { expect_equal(example_isolates %>% select(administrable_per_os() & penicillins()) %>% ncol(), 5, tolerance = 0.5) diff --git a/man/AMR-deprecated.Rd b/man/AMR-deprecated.Rd new file mode 100644 index 000000000..3ab303ef5 --- /dev/null +++ b/man/AMR-deprecated.Rd @@ -0,0 +1,16 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/zz_deprecated.R +\name{AMR-deprecated} +\alias{AMR-deprecated} +\alias{ab_class} +\alias{ab_selector} +\title{Deprecated Functions} +\usage{ +ab_class(...) + +ab_selector(...) +} +\description{ +These functions are so-called '\link{Deprecated}'. \strong{They will be removed in a future version of this package.} Using these functions will give a warning with the name of the function it has been replaced by (if there is one). +} +\keyword{internal} diff --git a/man/add_custom_antimicrobials.Rd b/man/add_custom_antimicrobials.Rd index be8a8afb0..839b953b2 100644 --- a/man/add_custom_antimicrobials.Rd +++ b/man/add_custom_antimicrobials.Rd @@ -89,7 +89,7 @@ add_custom_antimicrobials( ab_atc("Co-fluampicil") ab_name("J01CR50") -# even antibiotic selectors work +# even antimicrobial selectors work x <- data.frame( random_column = "some value", coflu = as.sir("S"), diff --git a/man/antibiogram.Rd b/man/antibiogram.Rd index 0c93eb5b8..5a62a2ff7 100644 --- a/man/antibiogram.Rd +++ b/man/antibiogram.Rd @@ -47,7 +47,7 @@ antibiogram( \arguments{ \item{x}{a \link{data.frame} containing at least a column with microorganisms and columns with antibiotic results (class 'sir', see \code{\link[=as.sir]{as.sir()}})} -\item{antibiotics}{vector of any antibiotic name or code (will be evaluated with \code{\link[=as.ab]{as.ab()}}, column name of \code{x}, or (any combinations of) \link[=antibiotic_class_selectors]{antibiotic selectors} such as \code{\link[=aminoglycosides]{aminoglycosides()}} or \code{\link[=carbapenems]{carbapenems()}}. For combination antibiograms, this can also be set to values separated with \code{"+"}, such as "TZP+TOB" or "cipro + genta", given that columns resembling such antibiotics exist in \code{x}. See \emph{Examples}.} +\item{antibiotics}{vector of any antibiotic name or code (will be evaluated with \code{\link[=as.ab]{as.ab()}}, column name of \code{x}, or (any combinations of) \link[=antimicrobial_class_selectors]{antimicrobial selectors} such as \code{\link[=aminoglycosides]{aminoglycosides()}} or \code{\link[=carbapenems]{carbapenems()}}. For combination antibiograms, this can also be set to values separated with \code{"+"}, such as "TZP+TOB" or "cipro + genta", given that columns resembling such antibiotics exist in \code{x}. See \emph{Examples}.} \item{mo_transform}{a character to transform microorganism input - must be \code{"name"}, \code{"shortname"} (default), \code{"gramstain"}, or one of the column names of the \link{microorganisms} data set: "mo", "fullname", "status", "kingdom", "phylum", "class", "order", "family", "genus", "species", "subspecies", "rank", "ref", "oxygen_tolerance", "source", "lpsn", "lpsn_parent", "lpsn_renamed_to", "mycobank", "mycobank_parent", "mycobank_renamed_to", "gbif", "gbif_parent", "gbif_renamed_to", "prevalence", or "snomed". Can also be \code{NULL} to not transform the input.} diff --git a/man/antibiotic_class_selectors.Rd b/man/antimicrobial_class_selectors.Rd similarity index 80% rename from man/antibiotic_class_selectors.Rd rename to man/antimicrobial_class_selectors.Rd index 628ec43c4..6bb978998 100644 --- a/man/antibiotic_class_selectors.Rd +++ b/man/antimicrobial_class_selectors.Rd @@ -1,9 +1,9 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/ab_selectors.R -\name{antibiotic_class_selectors} -\alias{antibiotic_class_selectors} -\alias{ab_class} -\alias{ab_selector} +% Please edit documentation in R/amr_selectors.R +\name{antimicrobial_class_selectors} +\alias{antimicrobial_class_selectors} +\alias{amr_class} +\alias{amr_selector} \alias{aminoglycosides} \alias{aminopenicillins} \alias{antifungals} @@ -36,73 +36,110 @@ \alias{administrable_per_os} \alias{administrable_iv} \alias{not_intrinsic_resistant} -\title{Antibiotic Selectors} +\title{Antimicrobial Selectors} \usage{ -ab_class(ab_class, only_sir_columns = FALSE, only_treatable = TRUE, ...) +amr_class( + amr_class, + only_sir_columns = FALSE, + only_treatable = TRUE, + return_all = TRUE, + ... +) -ab_selector(filter, only_sir_columns = FALSE, only_treatable = TRUE, ...) +amr_selector( + filter, + only_sir_columns = FALSE, + only_treatable = TRUE, + return_all = TRUE, + ... +) -aminoglycosides(only_sir_columns = FALSE, only_treatable = TRUE, ...) +aminoglycosides( + only_sir_columns = FALSE, + only_treatable = TRUE, + return_all = TRUE, + ... +) -aminopenicillins(only_sir_columns = FALSE, ...) +aminopenicillins(only_sir_columns = FALSE, return_all = TRUE, ...) -antifungals(only_sir_columns = FALSE, ...) +antifungals(only_sir_columns = FALSE, return_all = TRUE, ...) -antimycobacterials(only_sir_columns = FALSE, ...) +antimycobacterials(only_sir_columns = FALSE, return_all = TRUE, ...) -betalactams(only_sir_columns = FALSE, only_treatable = TRUE, ...) +betalactams( + only_sir_columns = FALSE, + only_treatable = TRUE, + return_all = TRUE, + ... +) -betalactams_with_inhibitor(only_sir_columns = FALSE, ...) +betalactams_with_inhibitor(only_sir_columns = FALSE, return_all = TRUE, ...) -carbapenems(only_sir_columns = FALSE, only_treatable = TRUE, ...) +carbapenems( + only_sir_columns = FALSE, + only_treatable = TRUE, + return_all = TRUE, + ... +) -cephalosporins(only_sir_columns = FALSE, ...) +cephalosporins(only_sir_columns = FALSE, return_all = TRUE, ...) -cephalosporins_1st(only_sir_columns = FALSE, ...) +cephalosporins_1st(only_sir_columns = FALSE, return_all = TRUE, ...) -cephalosporins_2nd(only_sir_columns = FALSE, ...) +cephalosporins_2nd(only_sir_columns = FALSE, return_all = TRUE, ...) -cephalosporins_3rd(only_sir_columns = FALSE, ...) +cephalosporins_3rd(only_sir_columns = FALSE, return_all = TRUE, ...) -cephalosporins_4th(only_sir_columns = FALSE, ...) +cephalosporins_4th(only_sir_columns = FALSE, return_all = TRUE, ...) -cephalosporins_5th(only_sir_columns = FALSE, ...) +cephalosporins_5th(only_sir_columns = FALSE, return_all = TRUE, ...) -fluoroquinolones(only_sir_columns = FALSE, ...) +fluoroquinolones(only_sir_columns = FALSE, return_all = TRUE, ...) -glycopeptides(only_sir_columns = FALSE, ...) +glycopeptides(only_sir_columns = FALSE, return_all = TRUE, ...) -lincosamides(only_sir_columns = FALSE, only_treatable = TRUE, ...) +lincosamides( + only_sir_columns = FALSE, + only_treatable = TRUE, + return_all = TRUE, + ... +) -lipoglycopeptides(only_sir_columns = FALSE, ...) +lipoglycopeptides(only_sir_columns = FALSE, return_all = TRUE, ...) -macrolides(only_sir_columns = FALSE, ...) +macrolides(only_sir_columns = FALSE, return_all = TRUE, ...) -nitrofurans(only_sir_columns = FALSE, ...) +nitrofurans(only_sir_columns = FALSE, return_all = TRUE, ...) -oxazolidinones(only_sir_columns = FALSE, ...) +oxazolidinones(only_sir_columns = FALSE, return_all = TRUE, ...) -penicillins(only_sir_columns = FALSE, ...) +penicillins(only_sir_columns = FALSE, return_all = TRUE, ...) -phenicols(only_sir_columns = FALSE, ...) +phenicols(only_sir_columns = FALSE, return_all = TRUE, ...) -polymyxins(only_sir_columns = FALSE, only_treatable = TRUE, ...) +polymyxins( + only_sir_columns = FALSE, + only_treatable = TRUE, + return_all = TRUE, + ... +) -quinolones(only_sir_columns = FALSE, ...) +quinolones(only_sir_columns = FALSE, return_all = TRUE, ...) -rifamycins(only_sir_columns = FALSE, ...) +rifamycins(only_sir_columns = FALSE, return_all = TRUE, ...) -streptogramins(only_sir_columns = FALSE, ...) +streptogramins(only_sir_columns = FALSE, return_all = TRUE, ...) -tetracyclines(only_sir_columns = FALSE, ...) +tetracyclines(only_sir_columns = FALSE, return_all = TRUE, ...) -trimethoprims(only_sir_columns = FALSE, ...) +trimethoprims(only_sir_columns = FALSE, return_all = TRUE, ...) -ureidopenicillins(only_sir_columns = FALSE, ...) +ureidopenicillins(only_sir_columns = FALSE, return_all = TRUE, ...) -administrable_per_os(only_sir_columns = FALSE, ...) +administrable_per_os(only_sir_columns = FALSE, return_all = TRUE, ...) -administrable_iv(only_sir_columns = FALSE, ...) +administrable_iv(only_sir_columns = FALSE, return_all = TRUE, ...) not_intrinsic_resistant( only_sir_columns = FALSE, @@ -112,12 +149,14 @@ not_intrinsic_resistant( ) } \arguments{ -\item{ab_class}{an antimicrobial class or a part of it, such as \code{"carba"} and \code{"carbapenems"}. The columns \code{group}, \code{atc_group1} and \code{atc_group2} of the \link{antibiotics} data set will be searched (case-insensitive) for this value.} +\item{amr_class}{an antimicrobial class or a part of it, such as \code{"carba"} and \code{"carbapenems"}. The columns \code{group}, \code{atc_group1} and \code{atc_group2} of the \link{antibiotics} data set will be searched (case-insensitive) for this value.} \item{only_sir_columns}{a \link{logical} to indicate whether only columns of class \code{sir} must be selected (default is \code{FALSE}), see \code{\link[=as.sir]{as.sir()}}} \item{only_treatable}{a \link{logical} to indicate whether antimicrobial drugs should be excluded that are only for laboratory tests (default is \code{TRUE}), such as gentamicin-high (\code{GEH}) and imipenem/EDTA (\code{IPE})} +\item{return_all}{a \link{logical} to indicate whether all matched columns must be returned (default is \code{TRUE}). With \code{FALSE}, only the first of each unique antimicrobial will be returned, e.g. if both columns \code{"genta"} and \code{"gentamicin"} exist in the data, only the first hit for gentamicin will be returned.} + \item{...}{ignored, only in place to allow future extensions} \item{filter}{an \link{expression} to be evaluated in the \link{antibiotics} data set, such as \code{name \%like\% "trim"}} @@ -127,27 +166,34 @@ not_intrinsic_resistant( \item{version_expertrules}{the version number to use for the EUCAST Expert Rules and Intrinsic Resistance guideline. Can be "3.3", "3.2", or "3.1".} } \value{ -When used inside selecting or filtering, this returns a \link{character} vector of column names, with additional class \code{"ab_selector"}. When used individually, this returns an \link[=as.ab]{'ab' vector} with all possible antimicrobials that the function would be able to select or filter. +When used inside selecting or filtering, this returns a \link{character} vector of column names, with additional class \code{"amr_selector"}. When used individually, this returns an \link[=as.ab]{'ab' vector} with all possible antimicrobials that the function would be able to select or filter. } \description{ -These functions allow for filtering rows and selecting columns based on antibiotic test results that are of a specific antibiotic class or group (according to the \link{antibiotics} data set), without the need to define the columns or antibiotic abbreviations. +These functions allow for filtering rows and selecting columns based on antimicrobial test results that are of a specific antimicrobial class or group, without the need to define the columns or antimicrobial abbreviations. -In short, if you have a column name that resembles an antimicrobial drug, it will be picked up by any of these functions that matches its pharmaceutical class: "cefazolin", "kefzol", "CZO" and "J01DB04" will all be picked up by \code{\link[=cephalosporins]{cephalosporins()}}. +In short, if you have a column name that resembles an antimicrobial drug, it will be picked up by any of these functions that matches its pharmaceutical class: "cefazolin", "kefzol", "CZO" and "J01DB04" will all be picked up using: + +\if{html}{\out{
}}\preformatted{library(dplyr) +my_data_with_all_these_columns \%>\% + select(cephalosporins()) +}\if{html}{\out{
}} } \details{ These functions can be used in data set calls for selecting columns and filtering rows. They work with base \R, the Tidyverse, and \code{data.table}. They are heavily inspired by the \link[tidyselect:language]{Tidyverse selection helpers} such as \code{\link[tidyselect:everything]{everything()}}, but are not limited to \code{dplyr} verbs. Nonetheless, they are very convenient to use with \code{dplyr} functions such as \code{\link[dplyr:select]{select()}}, \code{\link[dplyr:filter]{filter()}} and \code{\link[dplyr:summarise]{summarise()}}, see \emph{Examples}. -All columns in the data in which these functions are called will be searched for known antibiotic names, abbreviations, brand names, and codes (ATC, EARS-Net, WHO, etc.) according to the \link{antibiotics} data set. This means that a selector such as \code{\link[=aminoglycosides]{aminoglycosides()}} will pick up column names like 'gen', 'genta', 'J01GB03', 'tobra', 'Tobracin', etc. +All selectors can also be used in \code{tidymodels} packages such as \code{recipe} and \code{parsnip}. See for more info \href{https://msberends.github.io/AMR/articles/AMR_with_tidymodels.html}{our tutorial} on using these AMR functions for predictive modelling. -The \code{\link[=ab_class]{ab_class()}} function can be used to filter/select on a manually defined antibiotic class. It searches for results in the \link{antibiotics} data set within the columns \code{group}, \code{atc_group1} and \code{atc_group2}. +All columns in the data in which these functions are called will be searched for known antimicrobial names, abbreviations, brand names, and codes (ATC, EARS-Net, WHO, etc.) according to the \link{antibiotics} data set. This means that a selector such as \code{\link[=aminoglycosides]{aminoglycosides()}} will pick up column names like 'gen', 'genta', 'J01GB03', 'tobra', 'Tobracin', etc. -The \code{\link[=ab_selector]{ab_selector()}} function can be used to internally filter the \link{antibiotics} data set on any results, see \emph{Examples}. It allows for filtering on a (part of) a certain name, and/or a group name or even a minimum of DDDs for oral treatment. This function yields the highest flexibility, but is also the least user-friendly, since it requires a hard-coded filter to set. +The \code{\link[=amr_class]{amr_class()}} function can be used to filter/select on a manually defined antimicrobial class. It searches for results in the \link{antibiotics} data set within the columns \code{group}, \code{atc_group1} and \code{atc_group2}. -The \code{\link[=administrable_per_os]{administrable_per_os()}} and \code{\link[=administrable_iv]{administrable_iv()}} functions also rely on the \link{antibiotics} data set - antibiotic columns will be matched where a DDD (defined daily dose) for resp. oral and IV treatment is available in the \link{antibiotics} data set. +The \code{\link[=amr_selector]{amr_selector()}} function can be used to internally filter the \link{antibiotics} data set on any results, see \emph{Examples}. It allows for filtering on a (part of) a certain name, and/or a group name or even a minimum of DDDs for oral treatment. This function yields the highest flexibility, but is also the least user-friendly, since it requires a hard-coded filter to set. -The \code{\link[=not_intrinsic_resistant]{not_intrinsic_resistant()}} function can be used to only select antibiotic columns that pose no intrinsic resistance for the microorganisms in the data set. For example, if a data set contains only microorganism codes or names of \emph{E. coli} and \emph{K. pneumoniae} and contains a column "vancomycin", this column will be removed (or rather, unselected) using this function. It currently applies \href{https://www.eucast.org/expert_rules_and_expected_phenotypes}{'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes' v3.3} (2021) to determine intrinsic resistance, using the \code{\link[=eucast_rules]{eucast_rules()}} function internally. Because of this determination, this function is quite slow in terms of performance. +The \code{\link[=administrable_per_os]{administrable_per_os()}} and \code{\link[=administrable_iv]{administrable_iv()}} functions also rely on the \link{antibiotics} data set - antimicrobials will be matched where a DDD (defined daily dose) for resp. oral and IV treatment is available in the \link{antibiotics} data set. + +The \code{\link[=not_intrinsic_resistant]{not_intrinsic_resistant()}} function can be used to only select antimicrobials that pose no intrinsic resistance for the microorganisms in the data set. For example, if a data set contains only microorganism codes or names of \emph{E. coli} and \emph{K. pneumoniae} and contains a column "vancomycin", this column will be removed (or rather, unselected) using this function. It currently applies \href{https://www.eucast.org/expert_rules_and_expected_phenotypes}{'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes' v3.3} (2021) to determine intrinsic resistance, using the \code{\link[=eucast_rules]{eucast_rules()}} function internally. Because of this determination, this function is quite slow in terms of performance. } -\section{Full list of supported (antibiotic) classes}{ +\section{Full list of supported (antimicrobial) classes}{ \itemize{ \item \code{\link[=aminoglycosides]{aminoglycosides()}} can select: \cr amikacin (AMK), amikacin/fosfomycin (AKF), apramycin (APR), arbekacin (ARB), astromicin (AST), bekanamycin (BEK), dibekacin (DKB), framycetin (FRM), gentamicin (GEN), gentamicin-high (GEH), habekacin (HAB), hygromycin (HYG), isepamicin (ISE), kanamycin (KAN), kanamycin-high (KAH), kanamycin/cephalexin (KAC), micronomicin (MCR), neomycin (NEO), netilmicin (NET), pentisomicin (PIM), plazomicin (PLZ), propikacin (PKA), ribostamycin (RST), sisomicin (SIS), streptoduocin (STR), streptomycin (STR1), streptomycin-high (STH), tobramycin (TOB), and tobramycin-high (TOH) @@ -215,7 +261,7 @@ example_isolates \%>\% select(mo, aminoglycosides()) # e.g., for betalactams, but not the ones with an enzyme inhibitor: example_isolates \%>\% select(betalactams(), -betalactams_with_inhibitor()) -# select only antibiotic columns with DDDs for oral treatment +# select only antimicrobials with DDDs for oral treatment example_isolates \%>\% select(administrable_per_os()) # get AMR for all aminoglycosides e.g., per ward: @@ -235,11 +281,11 @@ example_isolates \%>\% summarise_at(not_intrinsic_resistant(), resistance) -# get susceptibility for antibiotics whose name contains "trim": +# get susceptibility for antimicrobials whose name contains "trim": example_isolates \%>\% filter(first_isolate()) \%>\% group_by(ward) \%>\% - summarise(across(ab_selector(name \%like\% "trim"), susceptibility)) + summarise(across(amr_selector(name \%like\% "trim"), susceptibility)) # this will select columns 'IPM' (imipenem) and 'MEM' (meropenem): example_isolates \%>\% @@ -266,7 +312,7 @@ example_isolates \%>\% # this will select columns 'mo' and all antimycobacterial drugs ('RIF'): example_isolates \%>\% - select(mo, ab_class("mycobact")) + select(mo, amr_class("mycobact")) # get bug/drug combinations for only glycopeptides in Gram-positives: example_isolates \%>\% @@ -296,7 +342,7 @@ example_isolates[, carbapenems()] # select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB' example_isolates[, c("mo", aminoglycosides())] -# select only antibiotic columns with DDDs for oral treatment +# select only antimicrobials with DDDs for oral treatment example_isolates[, administrable_per_os()] # filter using any() or all() @@ -307,7 +353,7 @@ subset(example_isolates, any(carbapenems() == "R")) example_isolates[any(carbapenems()), ] example_isolates[all(carbapenems()), ] -# filter with multiple antibiotic selectors using c() +# filter with multiple antimicrobial selectors using c() example_isolates[all(c(carbapenems(), aminoglycosides()) == "R"), ] # filter + select in one go: get penicillins in carbapenem-resistant strains @@ -320,10 +366,10 @@ example_isolates[any(carbapenems() == "R"), penicillins()] # and erythromycin is not a penicillin: example_isolates[, penicillins() & administrable_per_os()] -# ab_selector() applies a filter in the `antibiotics` data set and is thus -# very flexible. For instance, to select antibiotic columns with an oral DDD +# amr_selector() applies a filter in the `antibiotics` data set and is thus +# very flexible. For instance, to select antimicrobials with an oral DDD # of at least 1 gram: -example_isolates[, ab_selector(oral_ddd > 1 & oral_units == "g")] +example_isolates[, amr_selector(oral_ddd > 1 & oral_units == "g")] # data.table -------------------------------------------------------------- diff --git a/man/mean_amr_distance.Rd b/man/mean_amr_distance.Rd index 50cf1d120..a00cefd23 100644 --- a/man/mean_amr_distance.Rd +++ b/man/mean_amr_distance.Rd @@ -18,7 +18,7 @@ amr_distance_from_row(amr_distance, row) \arguments{ \item{x}{a vector of class \link[=as.sir]{sir}, \link[=as.mic]{mic} or \link[=as.disk]{disk}, or a \link{data.frame} containing columns of any of these classes} -\item{...}{variables to select (supports \link[tidyselect:language]{tidyselect language} such as \code{column1:column4} and \code{where(is.mic)}, and can thus also be \link[=ab_selector]{antibiotic selectors}} +\item{...}{variables to select (supports \link[tidyselect:language]{tidyselect language} such as \code{column1:column4} and \code{where(is.mic)}, and can thus also be \link[=amr_selector]{antimicrobial selectors}} \item{combine_SI}{a \link{logical} to indicate whether all values of S, SDD, and I must be merged into one, so the input only consists of S+I vs. R (susceptible vs. resistant) - the default is \code{TRUE}} diff --git a/man/mo_source.Rd b/man/mo_source.Rd index 322468e95..80687aa31 100644 --- a/man/mo_source.Rd +++ b/man/mo_source.Rd @@ -47,9 +47,9 @@ Imagine this data on a sheet of an Excel file. The first column contains the org 4 | | | }\if{html}{\out{
}} -We save it as \code{"home/me/ourcodes.xlsx"}. Now we have to set it as a source: +We save it as \code{"/Users/me/Documents/ourcodes.xlsx"}. Now we have to set it as a source: -\if{html}{\out{
}}\preformatted{set_mo_source("home/me/ourcodes.xlsx") +\if{html}{\out{
}}\preformatted{set_mo_source("/Users/me/Documents/ourcodes.xlsx") #> NOTE: Created mo_source file '/Users/me/mo_source.rds' (0.3 kB) from #> '/Users/me/Documents/ourcodes.xlsx' (9 kB), columns #> "Organisation XYZ" and "mo" diff --git a/man/proportion.Rd b/man/proportion.Rd index e911214d9..b6894f996 100644 --- a/man/proportion.Rd +++ b/man/proportion.Rd @@ -213,7 +213,7 @@ if (require("dplyr")) { ) } if (require("dplyr")) { - # scoped dplyr verbs with antibiotic selectors + # scoped dplyr verbs with antimicrobial selectors # (you could also use across() of course) example_isolates \%>\% group_by(ward) \%>\%