mirror of
https://github.com/msberends/AMR.git
synced 2025-07-12 11:01:52 +02:00
new, automated website
This commit is contained in:
17
man/count.Rd
17
man/count.Rd
@ -72,14 +72,6 @@ The function \code{\link[=n_rsi]{n_rsi()}} is an alias of \code{\link[=count_all
|
||||
|
||||
The function \code{\link[=count_df]{count_df()}} takes any variable from \code{data} that has an \code{\link{rsi}} class (created with \code{\link[=as.rsi]{as.rsi()}}) and counts the number of S's, I's and R's. It also supports grouped variables. The function \code{\link[=rsi_df]{rsi_df()}} works exactly like \code{\link[=count_df]{count_df()}}, but adds the percentage of S, I and R.
|
||||
}
|
||||
\section{Stable Lifecycle}{
|
||||
|
||||
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:"5"} \cr}
|
||||
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
|
||||
|
||||
If the unlying code needs breaking changes, they will occur gradually. For example, an argument will be deprecated and first continue to work, but will emit a message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
|
||||
}
|
||||
|
||||
\section{Interpretation of R and S/I}{
|
||||
|
||||
In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories R and S/I as shown below (\url{https://www.eucast.org/newsiandr/}).
|
||||
@ -132,15 +124,11 @@ and that, in combination therapies, for \code{only_all_tested = FALSE} applies t
|
||||
Using \code{only_all_tested} has no impact when only using one antibiotic as input.
|
||||
}
|
||||
|
||||
\section{Read more on Our Website!}{
|
||||
|
||||
On our website \url{https://msberends.github.io/AMR/} you can find \href{https://msberends.github.io/AMR/articles/AMR.html}{a comprehensive tutorial} about how to conduct AMR data analysis, the \href{https://msberends.github.io/AMR/reference/}{complete documentation of all functions} and \href{https://msberends.github.io/AMR/articles/WHONET.html}{an example analysis using WHONET data}.
|
||||
}
|
||||
|
||||
\examples{
|
||||
# example_isolates is a data set available in the AMR package.
|
||||
?example_isolates
|
||||
# run ?example_isolates for more info.
|
||||
|
||||
# base R ------------------------------------------------------------
|
||||
count_resistant(example_isolates$AMX) # counts "R"
|
||||
count_susceptible(example_isolates$AMX) # counts "S" and "I"
|
||||
count_all(example_isolates$AMX) # counts "S", "I" and "R"
|
||||
@ -163,6 +151,7 @@ n_rsi(example_isolates$AMX)
|
||||
count_susceptible(example_isolates$AMX)
|
||||
susceptibility(example_isolates$AMX) * n_rsi(example_isolates$AMX)
|
||||
|
||||
# dplyr -------------------------------------------------------------
|
||||
\donttest{
|
||||
if (require("dplyr")) {
|
||||
example_isolates \%>\%
|
||||
|
Reference in New Issue
Block a user