1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-12 21:41:55 +02:00

new, automated website

This commit is contained in:
2022-08-21 16:37:20 +02:00
parent 7226b70c3d
commit 952d16de33
315 changed files with 839 additions and 34495 deletions

View File

@ -108,35 +108,32 @@ Produces a \code{ggplot2} variant of a so-called \href{https://en.wikipedia.org/
\details{
The colours for labels and points can be changed by adding another scale layer for colour, such as \code{scale_colour_viridis_d()} and \code{scale_colour_brewer()}.
}
\section{Stable Lifecycle}{
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:"5"} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, an argument will be deprecated and first continue to work, but will emit a message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\examples{
# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates.
# See ?pca for more info about Principal Component Analysis (PCA).
\donttest{
if (require("dplyr")) {
pca_model <- example_isolates \%>\%
filter(mo_genus(mo) == "Staphylococcus") \%>\%
group_by(species = mo_shortname(mo)) \%>\%
summarise_if (is.rsi, resistance) \%>\%
pca(FLC, AMC, CXM, GEN, TOB, TMP, SXT, CIP, TEC, TCY, ERY)
# calculate the resistance per group first
resistance_data <- example_isolates \%>\%
group_by(order = mo_order(mo), # group on anything, like order
genus = mo_genus(mo)) \%>\% # and genus as we do here;
filter(n() >= 30) \%>\% # filter on only 30 results per group
summarise_if(is.rsi, resistance) # then get resistance of all drugs
# old (base R)
biplot(pca_model)
# now conduct PCA for certain antimicrobial agents
pca_result <- resistance_data \%>\%
pca(AMC, CXM, CTX, CAZ, GEN, TOB, TMP, SXT)
summary(pca_result)
# new
ggplot_pca(pca_model)
# old base R plotting method:
biplot(pca_result)
# new ggplot2 plotting method using this package:
ggplot_pca(pca_result)
if (require("ggplot2")) {
ggplot_pca(pca_model) +
ggplot_pca(pca_result) +
scale_colour_viridis_d() +
labs(title = "Title here")
}