1
0
mirror of https://github.com/msberends/AMR.git synced 2025-09-03 00:24:14 +02:00

new, automated website

This commit is contained in:
2022-08-21 16:37:20 +02:00
parent 7226b70c3d
commit 952d16de33
315 changed files with 839 additions and 34495 deletions

View File

@@ -45,39 +45,20 @@ These \code{\link[=like]{like()}} and \verb{\%like\%}/\verb{\%unlike\%} function
Using RStudio? The \verb{\%like\%}/\verb{\%unlike\%} functions can also be directly inserted in your code from the Addins menu and can have its own keyboard shortcut like \code{Shift+Ctrl+L} or \code{Shift+Cmd+L} (see menu \code{Tools} > \verb{Modify Keyboard Shortcuts...}). If you keep pressing your shortcut, the inserted text will be iterated over \verb{\%like\%} -> \verb{\%unlike\%} -> \verb{\%like_case\%} -> \verb{\%unlike_case\%}.
}
\section{Stable Lifecycle}{
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:"5"} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, an argument will be deprecated and first continue to work, but will emit a message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Read more on Our Website!}{
On our website \url{https://msberends.github.io/AMR/} you can find \href{https://msberends.github.io/AMR/articles/AMR.html}{a comprehensive tutorial} about how to conduct AMR data analysis, the \href{https://msberends.github.io/AMR/reference/}{complete documentation of all functions} and \href{https://msberends.github.io/AMR/articles/WHONET.html}{an example analysis using WHONET data}.
}
\examples{
a <- "This is a test"
b <- "TEST"
a \%like\% b
#> TRUE
b \%like\% a
#> FALSE
# also supports multiple patterns
a <- c("Test case", "Something different", "Yet another thing")
b <- c( "case", "diff", "yet")
a \%like\% b
#> TRUE TRUE TRUE
a \%unlike\% b
#> FALSE FALSE FALSE
a[1] \%like\% b
#> TRUE FALSE FALSE
a \%like\% b[1]
#> TRUE FALSE FALSE
# get isolates whose name start with 'Ent' or 'ent'
example_isolates[which(mo_name(example_isolates$mo) \%like\% "^ent"), ]